An accurate prediction of earth pressure balance(EPB)shield moving performance is important to ensure the safety tunnel excavation.A hybrid model is developed based on the particle swarm optimization(PSO)and gated rec...An accurate prediction of earth pressure balance(EPB)shield moving performance is important to ensure the safety tunnel excavation.A hybrid model is developed based on the particle swarm optimization(PSO)and gated recurrent unit(GRU)neural network.PSO is utilized to assign the optimal hyperparameters of GRU neural network.There are mainly four steps:data collection and processing,hybrid model establishment,model performance evaluation and correlation analysis.The developed model provides an alternative to tackle with time-series data of tunnel project.Apart from that,a novel framework about model application is performed to provide guidelines in practice.A tunnel project is utilized to evaluate the performance of proposed hybrid model.Results indicate that geological and construction variables are significant to the model performance.Correlation analysis shows that construction variables(main thrust and foam liquid volume)display the highest correlation with the cutterhead torque(CHT).This work provides a feasible and applicable alternative way to estimate the performance of shield tunneling.展开更多
The design of casting gating system directly determines the solidification sequence,defect severity,and overall quality of the casting.A novel machine learning strategy was developed to design the counter pressure cas...The design of casting gating system directly determines the solidification sequence,defect severity,and overall quality of the casting.A novel machine learning strategy was developed to design the counter pressure casting gating system of a large thin-walled cabin casting.A high-quality dataset was established through orthogonal experiments combined with design criteria for the gating system.Spearman’s correlation analysis was used to select high-quality features.The gating system dimensions were predicted using a gated recurrent unit(GRU)recurrent neural network and an elastic network model.Using EasyCast and ProCAST casting software,a comparative analysis of the flow field,temperature field,and solidification field can be conducted to demonstrate the achievement of steady filling and top-down sequential solidification.Compared to the empirical formula method,this method eliminates trial-and-error iterations,reduces porosity,reduces casting defect volume from 11.23 cubic centimeters to 2.23 cubic centimeters,eliminates internal casting defects through the incorporation of an internally cooled iron,fulfilling the goal of intelligent gating system design.展开更多
基金funded by“The Pearl River Talent Recruitment Program”of Guangdong Province in 2019(Grant No.2019CX01G338)the Research Funding of Shantou University for New Faculty Member(Grant No.NTF19024-2019).
文摘An accurate prediction of earth pressure balance(EPB)shield moving performance is important to ensure the safety tunnel excavation.A hybrid model is developed based on the particle swarm optimization(PSO)and gated recurrent unit(GRU)neural network.PSO is utilized to assign the optimal hyperparameters of GRU neural network.There are mainly four steps:data collection and processing,hybrid model establishment,model performance evaluation and correlation analysis.The developed model provides an alternative to tackle with time-series data of tunnel project.Apart from that,a novel framework about model application is performed to provide guidelines in practice.A tunnel project is utilized to evaluate the performance of proposed hybrid model.Results indicate that geological and construction variables are significant to the model performance.Correlation analysis shows that construction variables(main thrust and foam liquid volume)display the highest correlation with the cutterhead torque(CHT).This work provides a feasible and applicable alternative way to estimate the performance of shield tunneling.
基金supported by the National Natural Science Foundation of China(Nos.52074246,52275390,52375394)the National Defense Basic Scientific Research Program of China(No.JCKY2020408B002)the Key R&D Program of Shanxi Province(No.202102050201011).
文摘The design of casting gating system directly determines the solidification sequence,defect severity,and overall quality of the casting.A novel machine learning strategy was developed to design the counter pressure casting gating system of a large thin-walled cabin casting.A high-quality dataset was established through orthogonal experiments combined with design criteria for the gating system.Spearman’s correlation analysis was used to select high-quality features.The gating system dimensions were predicted using a gated recurrent unit(GRU)recurrent neural network and an elastic network model.Using EasyCast and ProCAST casting software,a comparative analysis of the flow field,temperature field,and solidification field can be conducted to demonstrate the achievement of steady filling and top-down sequential solidification.Compared to the empirical formula method,this method eliminates trial-and-error iterations,reduces porosity,reduces casting defect volume from 11.23 cubic centimeters to 2.23 cubic centimeters,eliminates internal casting defects through the incorporation of an internally cooled iron,fulfilling the goal of intelligent gating system design.