期刊文献+
共找到26,513篇文章
< 1 2 250 >
每页显示 20 50 100
Investigation into the Effect and Microscopic Mechanism of Retarders on Two-component Backfilling Grout in Shield Engineering
1
作者 CAI Hongwei MIN Fanlu +5 位作者 YUAN Rui LI Zhen ZHANG Jianfeng WANG Dengfeng ZHANG Yazhou YAO Zhanhu 《Journal of Wuhan University of Technology(Materials Science)》 2026年第1期84-95,共12页
To address the issues of short setting time and high bleeding rate of A component,which easily cause pipe plugging and poor grouting performance when a two-component grout is injected synchronously behind the Segmenta... To address the issues of short setting time and high bleeding rate of A component,which easily cause pipe plugging and poor grouting performance when a two-component grout is injected synchronously behind the Segmental Lining,the inorganic retarder sodium pyrophosphate(TSPP)and three organic retarders were added to the A component:sodium citrate(SC),sodium tartrate(ST)and glycerol(GLY).The effect law and microscopic mechanism of viscosity,bleeding rate,setting time,gelling time,compressive strength,and stone rate were investigated.The results revealed that the addition of retarders could enhance the stability and setting time of the A component and increase the gelling time,stone rate,and compressive strength of two-component grout.Among them,the performance of the grout with an SC dosage of 0.1% was superior.The bleeding rate of this grout was reduced to 3.5%,the stone rate of the two-component grout was more than 99%,and the early compressive strength and late compressive strength of this grout were increased by approximately 35% and 7%,respectively.The initial and final setting time of the A component with a TSPP dosage of 0.3% was the longest,which was prolonged to 17 and 26 h,respectively.Microscopic analysis revealed that the four retarders hindered the hydration process of cement through complexation and adsorption,and inhibited the hydration of C_(3)S and the crystallisation of CH.Moreover,they reduced the defects caused by the rapid reaction of water glass and CH on the solid phase structure,enabled the microstructure of the stone body to be denser,and subsequently,enhanced the compressive strength. 展开更多
关键词 backfilling grout two-component grout RETARDER working performance gelling performance microscopic mechanism
原文传递
Effects of elevated ground temperatures on properties of cement grouts for deep rock grouting
2
作者 Zhipeng Xu Jianping Sun +2 位作者 Runguo Li Lei He Changwu Liu 《Deep Underground Science and Engineering》 2025年第2期171-188,共18页
Appropriate determination of the mix ratios of cement grouts is of vital importance to the quality of rock grouting and the risk reduction of groundwater inflow.The behavior of grout,often highly temperature dependent... Appropriate determination of the mix ratios of cement grouts is of vital importance to the quality of rock grouting and the risk reduction of groundwater inflow.The behavior of grout,often highly temperature dependent,is likely to be affected by the elevated ground temperature in deep rock masses.This paper aims to experimentally gain insights into the effects of elevated ground temperatures on the properties of cement grout in fresh and hardened states in deep rock grouting.The results revealed that a temperature of 35°C is crucial for changes in the properties of thick cement grout with a water–cement ratio of less than 0.8.When the temperature is up to 35°C,there can be significant improvements in rheological parameters,acceleration of grout setting,and increase in the rheological time dependence of thick cement grout;however,there may also be a slight impact on the initial grout flowability and the nature of shear thinning.The high temperature may still improve the stability of fresh cement grout and also improve the porosity and creep deformation of hardened cement grout considerably.The proposed constitutive model that couples the Burgers model with a fractional derivativebased Abel dashpot in the series can be used to characterize the creep behavior of hardened cement grout appropriately.The paper provides a valuable reference for optimization of mixture design of cement grouts,thus enhancing deep rock grouting quality and improving safety. 展开更多
关键词 cement grout CREEP deep rock RHEOLOGY rock grouting temperature
原文传递
Experimental Study on Performances of Cement-Fly Ash Composite Expansive Stable Grout
3
作者 WANG Senwei MA Chuanyi +5 位作者 YANG Lei YANG Weimin WANG Ruipeng LIN Rongfeng YU Honghao FU Xin 《Journal of Wuhan University of Technology(Materials Science)》 2025年第4期1037-1047,共11页
The cement-fly ash composite expansive stable grout was prepared to deal with the problems of poor stability and volume shrinkage of ordinary cement grout,and the effects of fly ash ratio and water-binder ratio on the... The cement-fly ash composite expansive stable grout was prepared to deal with the problems of poor stability and volume shrinkage of ordinary cement grout,and the effects of fly ash ratio and water-binder ratio on the properties of the grout and its consolidation were analyzed.In addition,the mineral composition and microstructural characteristics of grout consolidation with different mixing ratios were investigated.The experimental results indicate that fly ash and the increase of water-binder ratio reduce the strength of the grout consolidation,and increase the fluidity,bleeding rate,and setting time of the composite grout.However,the magnitude of the fly ash-induced strength reduction decreases with time.And the effect of fly ash on the setting time and compressive strength becomes more significant with the water-binder ratio.The later expansion performance of grout consolidation(after 7-42 d)is improved by fly ash.But the expansibility of consolidation with fly ash decreases at the early curing stage,and the reduction amplitude of expansion rate is smaller and the reduction age is shorter with the water-binder ratio increase.Fly ash improves the corrosion resistance performance of grout consolidation,and the corrosion resistance coefficient rises first and then falls with the fly ash ratio.And for 0.6:1 water-binder ratio,the corrosion resistance coefficient of the samples mixed with fly ash are greater than 100%.XRD and SEM show that fly ash inhibited the formation of ettringite in the early stage,which is unfavorable to the expansion of the slurry,and with the increase of age,this effect gradually weakened. 展开更多
关键词 cement-fly ash composite grout grout property EXPANSIBILITY hydration product MICROMORPHOLOGY
原文传递
Development and application of novel high‐efficiency composite ultrafine cement grouts for roadway in fractured surrounding rocks 被引量:1
4
作者 Maolin Tian Shaojie Chen +1 位作者 Lijun Han Hongtian Xiao 《Deep Underground Science and Engineering》 2024年第1期53-69,共17页
The fractured surrounding rocks of roadways pose major challenges to safe mining.Grouting has often been used to reinforce the surrounding rocks to mitigate the safety risks associated with fractured rocks.The aim of ... The fractured surrounding rocks of roadways pose major challenges to safe mining.Grouting has often been used to reinforce the surrounding rocks to mitigate the safety risks associated with fractured rocks.The aim of this study is to develop highly efficient composite ultrafine cement(CUC)grouts to reinforce the roadway in fractured surrounding rocks.The materials used are ultrafine cement(UC),ultrafine fly ash(UF),ultrafine slag(US),and additives(superplasticizer[SUP],aluminate ultrafine expansion agent[AUA],gypsum,and retarder).The fluidity,bleeding,shrinkage,setting time,chemical composition,microstructure,degree of hydration,and mechanical property of grouting materials were evaluated in this study.Also,a suitable and effective CUC grout mixture was used to reinforce the roadway in the fractured surrounding rock.The results have shown that the addition of UF and US reduces the plastic viscosity of CUC,and the best fluidity can be obtained by adding 40%UF and 10%US.Since UC and UF particles are small,the pozzolanic effect of UF promotes the hydration reaction,which is conductive to the stability of CUC grouts.In addition,fine particles of UC,UF,and US can effectively fill the pores,while the volumetric expansion of AUA and gypsum decreases the pores and thus affects the microstructure of the solidified grout.The compressive test results have shown that the addition of specific amounts of UF and US can ameliorate the mechanical properties of CUC grouts.Finally,the CUC22‐8 grout was used to reinforce the No.20322 belt roadway.The results of numerical simulation and field monitoring have indicated that grouting can efficaciously reinforce the surrounding rock of the roadway.In this research,high‐performance CUC grouts were developed for surrounding rock reinforcement of underground engineering by utilizing UC and some additives. 展开更多
关键词 broken surrounding rock composite ultrafine cement(CUC)grouts grouting material grouting performance grouting reinforcement
原文传递
An extended discontinuous deformation analysis for simulation of grouting reinforcement in a water-rich fractured rock tunnel 被引量:1
5
作者 Jingyao Gao Siyu Peng +1 位作者 Guangqi Chen Hongyun Fan 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第1期168-186,共19页
Grouting has been the most effective approach to mitigate water inrush disasters in underground engineering due to its ability to plug groundwater and enhance rock strength.Nevertheless,there is a lack of potent numer... Grouting has been the most effective approach to mitigate water inrush disasters in underground engineering due to its ability to plug groundwater and enhance rock strength.Nevertheless,there is a lack of potent numerical tools for assessing the grouting effectiveness in water-rich fractured strata.In this study,the hydro-mechanical coupled discontinuous deformation analysis(HM-DDA)is inaugurally extended to simulate the grouting process in a water-rich discrete fracture network(DFN),including the slurry migration,fracture dilation,water plugging in a seepage field,and joint reinforcement after coagulation.To validate the capabilities of the developed method,several numerical examples are conducted incorporating the Newtonian fluid and Bingham slurry.The simulation results closely align with the analytical solutions.Additionally,a set of compression tests is conducted on the fresh and grouted rock specimens to verify the reinforcement method and calibrate the rational properties of reinforced joints.An engineering-scale model based on a real water inrush case of the Yonglian tunnel in a water-rich fractured zone has been established.The model demonstrates the effectiveness of grouting reinforcement in mitigating water inrush disaster.The results indicate that increased grouting pressure greatly affects the regulation of water outflow from the tunnel face and the prevention of rock detachment face after excavation. 展开更多
关键词 Discontinuous deformation analysis(DDA) Water-rich fractured rock tunnel grouting reinforcement Water inrush disaster
在线阅读 下载PDF
Resistance of Cement-based Grouting Materials with Nano- SiO_(2) Emulsion to Chloride Ion Penetration
6
作者 LI Shuiping CHENG Jian +2 位作者 WEI Chao YUAN Bin YU Chengxiao 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2025年第1期114-119,共6页
The chloride penetration resistance of cement-based grout materials was improved by nano-silica emulsion.Specimens of mixtures containing different nano-silica particles or emulsions were exposed in sodium chloride so... The chloride penetration resistance of cement-based grout materials was improved by nano-silica emulsion.Specimens of mixtures containing different nano-silica particles or emulsions were exposed in sodium chloride solutions of specific concentrations with different test ages.Hardened properties of the mixes were assessed in terms of weight loss and compressive strength.X-ray diffraction(XRD)and scanning electron microscopy(SEM)of mixes were performed to analysis the phase evolution and microstructure.The results demonstrated that the introduction of nano-SiO_(2) emulsion significantly decreased the compressive strength loss and calcium hydroxide(CH)crystal content of hydration production,and then enhanced the resistance of cement-based grouting materials to chloride ion penetration.This improvement derives from the filling and pozzolanic effects of nano-SiO_(2) particles,which were incorporated via an emulsion and attributed to a well dispersion in grouting matrix. 展开更多
关键词 grouting materials nano-SiO_(2)emulsion chloride ion penetration weight loss strength loss
原文传递
Mechanical Performance Analysis of Rubber Elastic Polymer-Polyurethane Reinforced Cement-Based Composite Grouting Materials
7
作者 Baoping Zou Jiahao Yin +1 位作者 Chunhui Cao Xu Long 《Journal of Polymer Materials》 2025年第1期255-275,共21页
The ongoing operation of subway systems makes existing tunnels vulnerable to deformations and structural damage caused by adjacent foundation pit construction.Such deformations-manifesting as horizontal displacement,h... The ongoing operation of subway systems makes existing tunnels vulnerable to deformations and structural damage caused by adjacent foundation pit construction.Such deformations-manifesting as horizontal displacement,heightened lateral convergence,and internal force redistribution-may significantly compromise subway operational safety.Grouting remediation has become a widely adopted solution for tunnel deformation control and structural reinforcement.Developing optimized grouting materials is crucial for improving remediation effectiveness,ensuring structural integrity,and maintaining uninterrupted subway operations.This investigation explores the substitution of fine mortar aggregates with 0.1 mm discarded rubber particles at varying concentrations(0%,3%,6%,9%,12%,and 15%).Experimental parameters included three water-cement ratios(0.65,0.70,and 0.75)with constant 4%WPU content.Mechanical properties including compressive strength,flexural strength,and compression-to-bending ratio were evaluated across specified curing periods.Material characterization employed Fourier Transform Infrared Spectroscopy(FTIR)spectroscopy for molecular analysis and Scanning Electron Microscopy(SEM)for microstructural examination.Results indicate optimal toughness at 0.70 water-cement ratio with 6%rubber content,meeting mechanical pumping specifications while maintaining structural performance. 展开更多
关键词 Rubber particles POLYMER POLYURETHANE grouting material mechanical properties
在线阅读 下载PDF
Intelligent prediction of grouting in fractured rock masses
8
作者 Dongya Sun Yun Chen +2 位作者 Huidong Wang Zhenjia Yang Guowei Ma 《Intelligent Geoengineering》 2025年第2期66-79,共14页
Curtain grouting projects are characterized by their large scale and complexity,presenting significant challenges for real-time prediction of grout penetration using traditional methods.This study introduces an intell... Curtain grouting projects are characterized by their large scale and complexity,presenting significant challenges for real-time prediction of grout penetration using traditional methods.This study introduces an intelligent prediction method for grouting in fractured rock masses based on three core principles:integration of multi-source input features,fracture voxel modeling,and shortest path in sequential grouting.Three categories of data(geological structure data,grouting environmental data,and grouting operation data in the concept of a grouting geological model)are integrated and served as multi-source structured data in the intelligent prediction of grouting.A voxelization model quantifies the spatial characteristics of fractures,with voxel size optimized for capturing grouting paths.A shortest path algorithm based on a hierarchical solution is then developed to calculate grout penetration distances in the process of sequential grouting.A complete analysis framework is established,from the voxelization of the fracture network model to precise voxel classification,ultimately achieving an accurate prediction of grout penetration.The method demonstrates excellent performance on the test set,with validation against numerical methods in single-fracture and sequential grouting scenarios confirming its accuracy and prediction efficiency as hundreds of times faster than numerical methods.Application to the Dongzhuang hydraulic project’s grouting test area further validates its effectiveness in multi-hole grouting scenarios. 展开更多
关键词 Fracture network groutING Rock mass Intelligent prediction
在线阅读 下载PDF
Field investigation of grout propagation within a caving mass under flowing water conditions in a metal mine
9
作者 Baofu Wu Guilei Han +3 位作者 Zhiqi Wang Jiabin Shi Hongjiang You Asrullah 《Deep Underground Science and Engineering》 2025年第2期222-240,共19页
Due to the invisibility and complexity of the underground spaces,monitoring the propagation and filling characteristics of the grouting slurry post the water–sand mixture inrush in metal mines is challenging,which co... Due to the invisibility and complexity of the underground spaces,monitoring the propagation and filling characteristics of the grouting slurry post the water–sand mixture inrush in metal mines is challenging,which complicates engineering treatment.This research investigated the propagation law of cement-sodium silicate slurry under flowing water conditions within the caving mass of a metal mine.First,based on borehole packer test results and borehole TV images,the fractured strata before grouting were classified into four types:cavity,hidden,fissure,and complete.Second,an orthogonal experimental design was employed to evaluate the impact of four key factors—stratigraphic fragmentation,water flow rate,grouting flow rate,and water-cement ratio—on the efficacy of grouting within a caving mass at the site.The results indicate that the factors influencing grouting efficacy are ranked in the following order of importance:stratigraphic fragmentation>water flow rate>water–cement ratio>grouting flow rate.Ultimately,five propagation filling modes—pure slurry,big crack,small crack,small karst pore,and pore penetration—were identified by examining the propagation filling characteristics of slurry in rock samples,incorporating microscopic material structure analysis through scanning electron microscopy and energy spectrum analysis.The findings of this study provide valuable insights into selecting engineering treatment parameters and methodologies,serving as a reference for preventing and controlling water–sand mixture inrush in metal mines,thereby enhancing treatment efficacy and ensuring grouting success. 展开更多
关键词 fissured rock mass metal mine slurry propagation filling two-liquid grouting water-sand mixture
原文传递
Effects of Repair Grouting and Jacketing on Corrosion Concrete Using Ultrasonic Method
10
作者 Rivky Afanda Ahmad Zaki 《Structural Durability & Health Monitoring》 2025年第2期265-284,共20页
Concrete is one of the most important elements in building construction.However,concrete used in construction is susceptible to damage due to corrosion.The influence of corrosive substances causes changes in the reinf... Concrete is one of the most important elements in building construction.However,concrete used in construction is susceptible to damage due to corrosion.The influence of corrosive substances causes changes in the reinforcing steel and affects the strength of the structure.The repair method is one approach to overcome this problem.This research aims to determine the effect of grouting and jacketing repairs on corroded concrete.The concrete used has dimensions of 15 cm×15 cm×60 cm with planned corrosion variations of 50%,60%,and 70%.The test objects were tested using the Non-Destructive Testing(NDT)method using Ultrasonic Pulse Velocity(UPV).The test results show that the average speed of normal concrete is 5070 m/s,while the lowest average speed is 3070 m/s on the 70%planned corrosion test object.The test object was then given a load of 1600 kgf.At this stage,there is a decrease in speed and wave shape with the lowest average speed obtained at 2753 m/s.The repair method is an effort to restore concrete performance by using grouting and jacketing.Grouting is done by injecting mortar material into it.Jacketing involves adding thickness to the existing concrete layer with additional layers of concrete.After improvements were made,there was an improvement in the UPV test,with a peak speed value of 4910 m/s.Repairing concrete by filling cracks can improve concrete continuity and reduce waveform distortion,thereby increasing wave propagation speed. 展开更多
关键词 CORROSION CONCRETE REPAIR groutING JACKETING non-destructive testing(NDT) ultrasonic pulse velocity(UPV)
在线阅读 下载PDF
Grouting Flow in Deep Fractured Rock:A State-of-the-Art Review of Theory and Practice
11
作者 Xuewei Liu Jinze Sun +4 位作者 Bin Liu Yongshui Kang Yongchao Tian Yuan Zhou Quansheng Liu 《Fluid Dynamics & Materials Processing》 2025年第8期2047-2073,共27页
Grouting is a widely applied technique for reinforcing fractured zones in deep soft rock tunnels.By infiltrating rock fissures,slurry materials enhance structural integrity and improve the overall stability of the sur... Grouting is a widely applied technique for reinforcing fractured zones in deep soft rock tunnels.By infiltrating rock fissures,slurry materials enhance structural integrity and improve the overall stability of the surrounding rock.The performance of grouting is primarily governed by the flow behavior and diffusion extent of the slurry.This review considers recent advances in the theory and methodology of slurry flow and diffusion in fractured rock.It examines commonly used grout materials,including cement-based,chemical,and composite formulations,each offering distinct advantages for specific geological conditions.Themechanisms of reinforcement vary significantly across materials,requiring tailored application strategies.The rheological properties of grouting slurries,particularly cement-based types,have been widely modeled using classical constitutive approaches.However,the influence of time-and space-dependent viscosity evolution on slurry behavior remains underexplored.Experimental studies have provided valuable insights into slurry diffusion,yet further research is needed to capture real-time behavior under multi-scale and multi-physics coupling conditions.Similarly,current numerical simulations are largely limited to twoand three-dimensional models of single-fracture flow.These models often neglect the complexity of fracture networks and geological heterogeneity,highlighting a need for more realistic and integrated simulation frameworks.Future research should focus on:(1)fine-scale modeling of slurry hydration and mechanical reinforcement processes;(2)cross-scale analysis of slurry flow under coupled thermal,hydraulic,andmechanical fields;and(3)development of realtime,three-dimensional dynamic simulation tools to capture the full grouting process.These efforts will strengthen the theoretical foundation and practical effectiveness of grouting in complex underground environments. 展开更多
关键词 grouting material rheological characterization diffusion behavior numerical simulation method
在线阅读 下载PDF
Advancements in Sinkhole Remediation:Field data-driven Sinkhole grout volume prediction model via machine learning-based regression Analysis
12
作者 Bubryur Kim Yuvaraj Natarajan +7 位作者 K.R.Sri Preethaa V.Danushkumar Ryan Shamet Jiannan Chen Rui Xie Timothy Copeland Boo Hyun Nam Jinwoo An 《Artificial Intelligence in Geosciences》 2025年第2期320-333,共14页
Sinkhole formation poses a significant geohazard in karst regions,where unpredictable subsurface erosion often necessitates costly grouting for stabilization.Accurate estimation of grout volume remains a persistent ch... Sinkhole formation poses a significant geohazard in karst regions,where unpredictable subsurface erosion often necessitates costly grouting for stabilization.Accurate estimation of grout volume remains a persistent challenge due to spatial variability,site-specific conditions,and the limitations of traditional empirical methods.This study introduces a novel machine learning-based regression model for grout volume prediction that integrates cone penetration test(CPT)-derived Sinkhole Resistance Ratio(SRR)values,spatial correlations between CPT and grouting points(GPs),and field-recorded grout volumes from six sinkhole sites in Florida.Three data trans-formation methods,the Proximal Allocation Method(PAM),the Equitable Distribution Method(EDM),and the Threshold-based Equitable Distribution Method(TEDM),were applied to distribute grout influence across CPTs,with TEDM demonstrating superior predictive performance.Synthetic data augmentation using spline method-ology further improved model robustness.A high-degree polynomial regression model,optimized with ridge regularization,achieved high accuracy(R^(2)=0.95;PEV=0.94)and significantly outperformed existing linear and logarithmic models.Results confirm that lower SRR values correlate with higher grout demand,and the proposed model reliably captures these nonlinear relationships.This research advances sinkhole remediation practice by providing a data-driven,accurate,and generalizable framework for grout volume estimation,enabling more efficient resource allocation and improved project outcomes. 展开更多
关键词 grout volume Cone penetration test Sinkhole resistance ratio Machine learning techniques
在线阅读 下载PDF
Cumulative damage characteristics of fully grouted GFRP bolts in rock under blasting dynamic loads
13
作者 WANG Wenjie SONG Jiale +2 位作者 LIU Chao YU Longzhe KABILA Kevin 《Journal of Mountain Science》 2025年第5期1871-1887,共17页
In the civil and mining industries,bolts are critical components of support systems,playing a vital role in ensuring their stability.Glass fibre reinforced polymer(GFRP)bolts are widely used because they are corrosion... In the civil and mining industries,bolts are critical components of support systems,playing a vital role in ensuring their stability.Glass fibre reinforced polymer(GFRP)bolts are widely used because they are corrosion-resistant and cost-effective.However,the damage mechanisms of GFRP bolts under blasting dynamic loads are still unclear,especially compared to metal bolts.This study investigates the cumulative damage of fully grouted GFRP bolts under blasting dynamic loads.The maximum axial stress at the tails of the bolts is defined as the damage variable,based on the failure characteristics of GFRP bolts.By combining this with Miner's cumulative damage theory,a comprehensive theoretical and numerical model is established to calculate cumulative damage.Field data collected from the Jinchuan No.3 Mining Area,including GFRP bolts parameters and blasting vibration data are used for further analysis of cumulative damage in fully grouted GFRP bolts.Results indicate that with an increasing number of blasts,axial stress increases in all parts of GFRP bolts.The tail exhibits the most significant rise,with stress extending deeper into the anchorage zone.Cumulative damage follows an exponential trend with the number of blasts,although the incremental damage per blast decelerates over time.Higher dynamic load intensities accelerate damage accumulation,leading to an exponential decline in the maximum loading cycles before failure.Additionally,stronger surrounding rock and grout mitigate damage accumulation,with the effect of surrounding rock strength being more pronounced than that of grout.In contrast,the maximum axial stress of metal bolts increases quickly to a certain point and then stabilizes.This shows a clear difference between GFRP and metal bolts.This study presents a new cumulative damage theory that underpins the design of GFRP bolt support systems under blasting conditions,identifies key damage factors,and suggests mitigation measures to enhance system stability. 展开更多
关键词 Blasting dynamic load Fully grouted GFRP bolt Cumulative damage Axial stress
原文传递
Evaluating densification effect of ideal compaction grouting in unsaturated soils by volumetric water content
14
作者 Qiong Wang Guang Hu +2 位作者 Shanyong Wang Wei Su Weimin Ye 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第8期5089-5098,共10页
Compaction grouting is primarily applied based on empiricism,and it is challenging to quantify its densification effect.To address this issue,five sets of laboratory model tests on ideal compaction grouting were condu... Compaction grouting is primarily applied based on empiricism,and it is challenging to quantify its densification effect.To address this issue,five sets of laboratory model tests on ideal compaction grouting were conducted,with varying pressures from 400 kPa to 800 kPa,to quantitatively evaluate the densification effect in unsaturated soils.The response of surrounding soil during compaction grouting was monitored.The changes in dry density and void ratio induced by compaction grouting were obtained by monitoring volumetric water content to determine compaction efficiency.In addition,a model was developed and validated to predict the effective compaction range.The results show that soil dry density increased rapidly during compaction grouting before being stabilized at a consistent level.As expected,it is positively correlated with grouting pressures(GPs)and negatively correlated with the distance from the injection point.At higher GPs,the difference in densification effect around the injection point after compaction grouting was significant.Interestingly,variations in ultimate dry density and peak earth pressures perpendicular to the injection direction exhibited axisymmetric behavior around the injection point when comparing the dry density and earth pressure results.Furthermore,soil densification resulted in a decrease in suction.However,no significant effect of GP on suction at different soil positions was observed.Moreover,compaction efficiency decreased with increasing distance from the injection point,showing a strong linear relationship.In addition,the model results for the effective compaction range were basically consistent with the extrapolated values from the experimental results. 展开更多
关键词 Compaction grouting Densification effect Dry density Void ratio Volumetric water content Unsaturated soil
在线阅读 下载PDF
Corrosion resistance and modification mechanism of modified anchoring grouting material in carbonaceous mudstone environment
15
作者 QIU Xiang YIN Qian +5 位作者 XU Hong LI Yao CHEN Jing-cheng WU Yong XIA Xie-hui FU Si-ni 《Journal of Central South University》 2025年第11期4486-4499,共14页
In the corrosive environment of carbonaceous mudstone,the mechanical properties of grouting materials in the anchorage section of anchor bolts continue to deteriorate.In response,a cement-based modified anchoring grou... In the corrosive environment of carbonaceous mudstone,the mechanical properties of grouting materials in the anchorage section of anchor bolts continue to deteriorate.In response,a cement-based modified anchoring grouting material(MAGM)with high corrosion resistance was developed.The results reveal that compared with those of ordinary Portland cement(OPC)grouting material,the compressive strength,tensile strength,and shear stress peak of the MAGM increased by 85.9%,44.4%and 45.4%,respectively,after 28 d of corrosion in a carbonaceous mudstone solution.Waterborne epoxy resin and curing agent create a network membrane structure under the action of nano-Al_(2)O_(3)to protect the cement hydration products.In the corrosive environment of carbonaceous mudstone,corrosion products formed on the surface of the stone body have adsorbed onto the reticular membrane structure,filling the pores of the stone body and slowing the erosion rate of ions.After 365 d of application of MAGM and OPC in the corrosive environment of a carbonaceous mudstone slope,the peak shear stress of MAGM is,on average,55.3%greater than that of OPC. 展开更多
关键词 grouting material nanometer material water epoxy resin modification mechanism carbonaceous mudstone
在线阅读 下载PDF
The effect of thermal-hydro-mechanical coupling on grouting in a single fracture under coal mine flowing water conditions
16
作者 Dingyang Zhang Dangping Liu 《Deep Underground Science and Engineering》 2025年第2期264-277,共14页
Groundwater inrush is a hazard that always occurs during underground mining.Grouting is one of the most effective processes to seal underground water inflow for hazard prevention.In this study,grouting experiments are... Groundwater inrush is a hazard that always occurs during underground mining.Grouting is one of the most effective processes to seal underground water inflow for hazard prevention.In this study,grouting experiments are conducted by using a visualized transparent single-fracture replica with plane roughness.Image processing and analysis are performed to investigate the thermo–hydro–mechanical coupling effect on the grouting diffusion under coal mine flowing water conditions.The results show that higher ambient temperature leads to shorter initial gel time of chemical grout and leads to a better relative sealing efficiency in the case of a lower flow rate.However,with a higher water flow rate,the relative sealing efficiency is gradually reduced under higher temperature conditions.The grouting pressure,the seepage pressure,and the temperature are measured.The results reveal that the seepage pressure shows a positive correlation with the grouting pressure,while the temperature change shows a negative correlation with the seepage pressure and the grouting pressure.The“equivalent grouting point offset”effect of grouting shows an eccentric elliptical diffusion with larger grouting distance and width under lower temperature conditions. 展开更多
关键词 a single-fracture replica dynamic water flow grout diffusion sealing efficiency water inrush
原文传递
Experimental Study on Additional Stress Induced by Grouting with Polyurethane-Modified Cementitious Materials under Confined Conditions
17
作者 Qizhi Chen Wensheng Cheng +3 位作者 Baoping Zou Bowen Kong Yansheng Deng Xu Long 《Journal of Polymer Materials》 2025年第2期463-475,共13页
The rapid development of urban rail transit has posed increasing construction and operational challenges for metro tunnels,often leading to structural damage.Grouting technology using cement-based materials is widely ... The rapid development of urban rail transit has posed increasing construction and operational challenges for metro tunnels,often leading to structural damage.Grouting technology using cement-based materials is widely applied to address issues such as seepage,leakage,and alignment correction in shield tunnels.This study investigates the additional stress induced by grouting in silty soil layers,using cement-based grouts with different water-to-cement ratios and polyurethane-modified cement-based materials.Results show that additional stress decreases with depth and is more influenced by horizontal distance from the grouting point.In staged grouting,the first injection phase contributes about 50%of the peak additional stress.A lower water-to-cement ratio(e.g.,0.6)increases additional stress but reduces grout flowability,while a higher ratio improves diffusion but increases the risk of grout loss.(≥1.0)The polyurethane-modified cement-based material enhances stress transfer performance,increasing peak additional stress by approximately 10%.These findings provide theoretical guidance for optimizing material selection and grouting design in metro tunnel repair within silty soil layers. 展开更多
关键词 Metro tunnel grouting technology polyurethane-modified cement-based material water-to-cement ratio additional stress silty soil layer
在线阅读 下载PDF
Research on the Performance and Diffusion Behavior of Geopolymer Grouting Material Made from Coal Roof Bottom Ash
18
作者 Xinxin Yu Haibo Zhang +1 位作者 Yu Liu Fengshun Zhang 《Journal of Architectural Research and Development》 2025年第1期8-20,共13页
As the cost of grouting treatment for water control in coal roofs during underground coal mining continues to rise,coupled with the accumulation of industrial solid waste resulting from rapid economic development in C... As the cost of grouting treatment for water control in coal roofs during underground coal mining continues to rise,coupled with the accumulation of industrial solid waste resulting from rapid economic development in China,the ecological environment is facing severe challenges.To address these issues,this study,based on a high water-to-cement ratio,uses mine overburden(OB)and furnace bottom ash(FBA)as the primary raw materials,with sodium silicate as the modifier,to develop a new type of geopolymer grouting material with high stability and compressive strength for coal roof water control.Additionally,COMSOL software was used to numerically simulate the diffusion process of the grout slurry in fractures under dynamic water flow.The results indicate that,with a sodium silicate modulus of 1.5 and a dosage of 4%,the stability of the slurry increased by 26.2%,and the 28-day compressive strength improved by 130.98%.Numerical simulations further show that the diffusion process of the slurry is closely related to slurry viscosity,grouting pressure,and grouting time and that the diffusion pattern in the fractures is similar to that of ultra-fine cement slurry.This study provides a theoretical basis for coal mine roof grouting water control projects. 展开更多
关键词 Coal mine top grouting Regional management Numerical simulation Comprehensive utilization Solid waste
在线阅读 下载PDF
Characterization of load-bearing and failure properties of fractured rock masses reinforced by negative pressure grouting
19
作者 Juejing Fang Ke Yang +4 位作者 Farhad Aslani Xin Lyu Xiang He Guiquan Li Jiqiang Zhang 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第7期4261-4272,共12页
Grouting injection is a vital technique for addressing the challenges of high stress and significant deformation in the surrounding rock during deep mining operations,playing a crucial role in promoting green and low-... Grouting injection is a vital technique for addressing the challenges of high stress and significant deformation in the surrounding rock during deep mining operations,playing a crucial role in promoting green and low-carbon extraction methodologies.In this study,grouting reinforcement processes were examined by conducting grouting experiments on a fractured rock with varying negative pressures(0-100 kPa),followed by uniaxial compression testing of the grout-reinforced bodies.This investigation explored the diffusion patterns of grout under negative pressure and established a constitutive model of damage-bearing capacity for bodies reinforced by negative pressure grouting.It further studied the enhancement effect of negative pressure on the load-bearing capacity of the reinforced bodies and analyzed the instability mechanism of damage and failure in these bodies.The results indicated that the diffusion of grout under negative pressure is influenced by four types of forces,which alter the extent of grout diffusion within the fractured rock mass.Introducing a damage constitutive model that serially connects pore and framework elements characterizes the damage and failure behavior of groutreinforced bodies under different negative pressures.As the negative pressure increases,changes in porosity,water-to-cement ratio,and admixture quantity occur in the grout-reinforced specimens,with the strength mean curve showing a trend of first increasing and then decreasing,reaching a threshold at a negative pressure of 60 kPa.With increasing negative pressure,the negative pressure damage variable decreases and then increases,and the stronger the interfacial microelement connections caused by the negative pressure,the greater the bearing capacity,ultimately manifesting in different failure modes. 展开更多
关键词 grout reinforcement Mechanical properties Constitutive model
在线阅读 下载PDF
Weakening Mechanism of Sulfate Ions on Grouting Composites in the Strong Weathering Rock of Submarine Tunnels in a Dynamic Seawater Environment
20
作者 LI Peng WANG Cheng-qian +3 位作者 LIU Yong SHENG Yu-ming SUN Yue HE Ling-yao 《China Ocean Engineering》 2025年第3期518-528,共11页
Grouting represents a reliable method for strengthening fractured rock masses and preventing seawater infiltration in subsea tunnel engineering. However, grouting composites are continuously subjected to harsh marine ... Grouting represents a reliable method for strengthening fractured rock masses and preventing seawater infiltration in subsea tunnel engineering. However, grouting composites are continuously subjected to harsh marine environments,experiencing both chemical and physical effects from high-concentration erosive seawater ions, elevated water pressure, and complex flow fields. This multi-factor erosion deterioration diminishes the waterproofing capabilities of grouting composites and threatens the service life of subsea tunnel linings. To investigate the erosion deteriortion mechanism induced by sulfate, erosion weakening experiments were conducted using a seawater flow simulation device. The research examined the compressive strength and permeability coefficient of grouting composites under different erosion durations, water-cement ratios, and grouting pressures. In the later stages of the experiment, the strength of grouting composites in the static water erosion control group(SEG) and dynamic water erosion group(DEG) decreased by 31.2% and 18.8%, respectively, compared to the freshwater control group(FG). Futhermore, the permeability coefficient exhibited significant increases. Subsequent microscopic analyses of the eroded grouting composites were performed. This research elucidated the erosion-weakening mechanism of grouting composites subjected to sulfate-induced degradation in complex marine environments. The study emphasizes the critical role of erosion resistance and durability in design and implementation. From practical perspective, this work establishes a foundation for developing enhanced strategies to improve the long-term performance and integrity of grouting composites in subsea tunnel applications. 展开更多
关键词 subsea tunnel grouting composite erosion of sulfate ions dynamic water environment
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部