We theoretically investigate a cooling scheme assisted by a quantum well(QW)and coherent feedback within a hybrid optomechanical system.Although the exciton mode in the QW and the mechanical resonator(MR)are initially...We theoretically investigate a cooling scheme assisted by a quantum well(QW)and coherent feedback within a hybrid optomechanical system.Although the exciton mode in the QW and the mechanical resonator(MR)are initially uncoupled,their interaction via the microcavity field leads to an indirect exciton-mode–mechanical-mode coupling.The coherent feedback loop is applied by feeding back a fraction of the output field of the cavity through a controllable beam splitter to the cavity’s input mirror.It is shown that the cooling capability is enhanced by effectively suppressing the Stokes process through coupling with the QW.Furthermore,the effect of the anti-Stokes process is enhanced through the application of the coherent feedback loop.This particular system configuration enables cooling of the mechanical resonator even in the unresolved sideband regime(USR).This study has some important guiding significance in the field of quantum information processing.展开更多
In this paper, we consider the ground-states of the following M-coupled system:where p_(ij)+q_(ij)=2*:=2 N/(N-2)(N≥3). We prove the existence of ground-states to the M-coupled system. At the same time, we not only gi...In this paper, we consider the ground-states of the following M-coupled system:where p_(ij)+q_(ij)=2*:=2 N/(N-2)(N≥3). We prove the existence of ground-states to the M-coupled system. At the same time, we not only give out the characterization of the ground-states, but also study the number of the ground-states, containing the positive ground-states and the semi-trivial ground-states, which may be the first result studying the number of not only positive ground-states but also semi-trivial ground-states.展开更多
In this paper, we intend to consider a kind of nonlinear Klein-Gordon equation coupled with Born-Infeld theory. By using critical point theory and the method of Nehari manifold, we obtain two existing results of infin...In this paper, we intend to consider a kind of nonlinear Klein-Gordon equation coupled with Born-Infeld theory. By using critical point theory and the method of Nehari manifold, we obtain two existing results of infinitely many high-energy radial solutions and a ground-state solution for this kind of system, which improve and generalize some related results in the literature.展开更多
We present a perturbation study of the ground-state energy of the beryllium atom by incorporating double parameters in the atom's Hamiltonian. The eigenvalue of the Hamiltonian is then solved with a double-fold pertu...We present a perturbation study of the ground-state energy of the beryllium atom by incorporating double parameters in the atom's Hamiltonian. The eigenvalue of the Hamiltonian is then solved with a double-fold perturbation scheme,where the spin-spin interaction of electrons from different shells of the atom is also considered. Calculations show that the obtained ground-state energy is in satisfactory agreement with experiment. It is found that the Coulomb repulsion of the inner-shell electrons enhances the effective nuclear charge seen by the outer-shell electrons, and the shielding effect of the outer-shell electrons to the nucleus is also notable compared with that of the inner-shell electrons.展开更多
In the unresolved sideband regime,we propose a scheme for cooling mechanical resonator close to its ground state in a three-cavity optomechanical system,where the auxiliary cavities are indirectly connected with the m...In the unresolved sideband regime,we propose a scheme for cooling mechanical resonator close to its ground state in a three-cavity optomechanical system,where the auxiliary cavities are indirectly connected with the mechanical resonator through standard optomechanical subsystem.The standard optomechanical subsystem is driven by a strong pump laser field.With the help of the auxiliary cavities,the heating process is suppressed and the cooling process of the mechanical resonator is enhanced.More importantly,the average phonon number is much less than 1 in a larger range.This means that the mechanical resonator can be cooled down to its ground state.All these interesting features will significantly promote the physical realization of quantum effects in multi-cavity optomechanical systems.展开更多
We report in this paper the ground-state energy 2s^(2)^(1)S and total energies of doubly excited states 2p^(2)^(1)D,3d^(2)^(1)D,4f^(2)^(1)I of the Helium isoelectronic sequence from H-to Ca^(18+).Calculations are perf...We report in this paper the ground-state energy 2s^(2)^(1)S and total energies of doubly excited states 2p^(2)^(1)D,3d^(2)^(1)D,4f^(2)^(1)I of the Helium isoelectronic sequence from H-to Ca^(18+).Calculations are performed using the Modified Atomic Orbital Theory(MAOT)in the framework of a variational procedure.The purpose of this study required a mathematical development of the Hamiltonian applied to Slater-type wave function[1]combining with Hylleraas-type wave function[2].The study leads to analytical expressions which are carried out under special MAXIMA computational program.This first proposed MAOT variational procedure,leads to accurate results in good agreement as well as with available other theoretical results than experimental data.In the present work,a new correlated wave function is presented to express analytically the total energies for the 2s21S ground state and each doubly 2p^(2)^(1)D,3d^(2)^(1)D,4f^(2)^(1)I excited states in the He-like systems.The present accurate data may be a useful guideline for future experimental and theoretical studies in the(nI^(2))systems.展开更多
The geometric phase has become a fundamental concept in many fields of physics since it was revealed. Recently, the study of the geometric phase has attracted considerable attention in the context of quantum phase tra...The geometric phase has become a fundamental concept in many fields of physics since it was revealed. Recently, the study of the geometric phase has attracted considerable attention in the context of quantum phase transition, where the ground state properties of the system experience a dramatic change induced by a variation of an external parameter. In this work, we experimentally measure the ground-state geometric phase of the three-spin XY model by utilizing the nuclear magnetic resonance technique. The experimental results indicate that the geometric phase could be used as a fingerprint of the ground-state quantum phase transition of many-body systems.展开更多
Using the newly developed particle swarm optimization algorithm on crystal structural prediction, we predict a new class of boron nitride with stoicMometry of NB2 at ambient pressure, which belongs to the tetragonal 1...Using the newly developed particle swarm optimization algorithm on crystal structural prediction, we predict a new class of boron nitride with stoicMometry of NB2 at ambient pressure, which belongs to the tetragonal 14m2 space group. Then, its structure, elastic properties, electronic structure, and chemical bonding are investigated by first-principles calculations with the density functional theory. The phonon calculation and elastic constants confirm that the predicted NB2 is dynamically and mechanically stable, respectively. The large bulk modulus, large shear modulus, large Young's modulus, and small Poisson's ratio show that the 14m2 NB2 should be a new superhard material with a calculated theoretical Vickers hardness value of 66 GPa. Further analysis on density of states and electron localization function demonstrate that the strong B B and 13 N covalent bonds are the main reason for its high hardness in 14m2 NB2.展开更多
The new method proposed recently by Friedberg,Lee and Zhao is applied to the derivation of the atomic ground-state energy with the inclusion of the screening effect.The present results are compared with those obtained...The new method proposed recently by Friedberg,Lee and Zhao is applied to the derivation of the atomic ground-state energy with the inclusion of the screening effect.The present results are compared with those obtained in the pure Coulomb potential and by the variational approach.The overall good results are obtained with this new method.展开更多
Combining first-principles calculations with the particle swarm optimization (PSO) algorithm, we have explored the ground-state structure of Pd2N, whose structure is in debate although it is the first synthesized bi...Combining first-principles calculations with the particle swarm optimization (PSO) algorithm, we have explored the ground-state structure of Pd2N, whose structure is in debate although it is the first synthesized binary platinum group nitride. The ground-state structure is predicted to be tetragonal with space group P^-4m2, which is energetically more favorable than the previously proposed orthorhombic Co2N-type structure. The stability is confirmed by the subsequent calculations on the phonon dispersion curves and elastic constants. Furthermore, the calculated mechanical properties indicate that Pd2N has low incompressibility and is a common hard material.展开更多
We study the quantum coherence and ground-state phase transition of a four-chain Bose–Hubbard model with the long-range interaction. In a special four-chain Bose–Hubbard model,i.e., each chain only has one optical p...We study the quantum coherence and ground-state phase transition of a four-chain Bose–Hubbard model with the long-range interaction. In a special four-chain Bose–Hubbard model,i.e., each chain only has one optical potential, four types of the ground-state phases are discovered. The effects of the disorder, the on-site interaction and the long-range interaction on the quantum coherence are studied. For the system without the long-range interaction, the quantum coherence changes from one periodic oscillation to two periodic oscillations as the onsite interaction increases. By considering the long-range interaction, the quantum coherence goes back to one periodic oscillation again. The on-site interaction itself suppresses the quantum coherence, both the on-site interaction and long-range interaction together enhance the quantum coherence with the weak disorder. If the disorder strength is increased beyond a critical value,they start to suppress the quantum coherence. In a regular four-chain Bose–Hubbard model, i.e.,each chain has many optical potentials, the ground-state phase transitions are obtained by using the cluster Gutzwiller mean-field method. Exotic ground-state phases are found, i.e., superfluid phase, integer Mott insulator phase, supersolid phase and loophole insulator phase. The combination of the loophole insulator phase and the supersolid phase expands the lobes with the half-integer filling per site for the small ratio β = t_(‖)/t_(⊥).展开更多
The effects of the Dzyaloshinski-Moriya (DM) interaction on the ground-state properties of the anisotropic XY chain in a transverse field have been studied by means of correlation functions and entanglement. Differe...The effects of the Dzyaloshinski-Moriya (DM) interaction on the ground-state properties of the anisotropic XY chain in a transverse field have been studied by means of correlation functions and entanglement. Different from the case without the DM interaction, the excitation spectra ek of this model are not symmetrical in the momentum space and are not always positive. As a result, besides the ferromagnetic (FM) and the paramagnetic (PM) phases, a gapless chiral phase is induced. In the chiral phase, the von Neumann entropy is proportional to log2 L (L is the length of a subchain) with the coefficient A ~ 1/3, which is the same as that of the XY chain in a transverse field without the DM interaction for 7 = 0 and 0 〈 h 〈 1. And in the vicinity of the critical point between the chiral phase and the FM (or PM) phase, the behaviors of the nearest- neighbor concurrence and its derivative are like those for the anisotropy transition.展开更多
By means of improved ligand-field theory, the 'pure electronic'presure-induced shifts (PS's) and the PS's due to electron-phonon interaction (EPI) of the R_1, R_2,B_1, B_2, B_3, and R′_3 lines and the...By means of improved ligand-field theory, the 'pure electronic'presure-induced shifts (PS's) and the PS's due to electron-phonon interaction (EPI) of the R_1, R_2,B_1, B_2, B_3, and R′_3 lines and the ground-state zero-Geld-splitting of ruby have been uniformlycalculated. The calculation results are in very good agreement with all the experimental data. Atnormal pressure, ruby is a crystal with very strong crystal field. Thus, the admixture of ∣t_2~2(~3T_1)e~4T_2 】 and ∣t_2~(32)E> bases in the wavefunction of R_1 level of ruby is small at normalpressure, and it gradually decreases with increasing pressure, which causes the R_1-line PS of rubyto monotonously red shift with approximate linearity. The combined effect of the pure electronic PSof R_1 line and the PS of R_1 line due to EPI gives rise to the total PS of R_1 line. The analysesand comparisons among the features of R_1-line PS's of three laser crystals (ruby, GSGG:Cr~(3+) andGGG:Cr~(3+)) have been made, and the origin of their difference has been revealed.展开更多
We study the ground-state information of one-dimensional Heisenberg chain with alternating D-term. Given the ground-state phase diagram, the ground-state energy and the entanglement entropy are obtained by tensor-net ...We study the ground-state information of one-dimensional Heisenberg chain with alternating D-term. Given the ground-state phase diagram, the ground-state energy and the entanglement entropy are obtained by tensor-net work algorithm. The phase transition points are shown in the entanglement entropy figure. The results are agreed with the phase diagram.展开更多
We study the dynamic of scalar bosons in the presence of Aharonov-Bohm magnetic field. First, we give the differential equation that governs this dynamic. Secondly, we use variational techniques to show that the follo...We study the dynamic of scalar bosons in the presence of Aharonov-Bohm magnetic field. First, we give the differential equation that governs this dynamic. Secondly, we use variational techniques to show that the following Schrödinger-Newton equation: , where A is an Aharonov-Bohm magnetic potential, has a unique ground-state solution.展开更多
LiNiO_(2)(LNO)is a highly promising cathode material for lithium-ion batteries,but its performance is consistently limited by various stability issues.Lanthanide elements(Ln)possess all the necessary characteristics t...LiNiO_(2)(LNO)is a highly promising cathode material for lithium-ion batteries,but its performance is consistently limited by various stability issues.Lanthanide elements(Ln)possess all the necessary characteristics to serve as excellent dopants for modifying LNO.Experimental studies have demonstrated that Ln doping can effectively enhance the performance of high-nickel materials.However,the convergence issues in computational studies of systems containing Ln remain a significant challenge in the field,leading to a scarcity of computational research on LNO+Ln systems.In practical calculations,LNO+Ln models exhibit poor convergence and unstable convergence energies.We attribute this to the strong Coulomb interactions of the 4f electrons in Ln ions,which significantly affect the system’s energy,combined with their diverse electronic configurations that tend to produce multiple metastable states,resulting in a complex energy landscape.In our tests,we found a correlation between the specific values of the 4f electron magnetic moments of Ln ions and the convergence energy.The setting of the magnetic moment convergence parameters directly influences the model’s convergence quality and the energy of the converged state.Based on this,we developed a ground-state search method using the 4f electron magnetic moment values as a feature in the cutoff energy convergence plot.This method enables rapid and accurate calculations of LNO+Ln systems,significantly reducing computational resource consumption.Finally,we obtained the crystal and electronic structures of the ground state for the LNO+Ln(La-Gd)systems and calculated the Li/Ni disordering formation energy and oxygen vacancy formation energy.We discussed the results and analyzed the underlying mechanisms,revealing that the LNO+Ce model exhibits the feature of the most stable structure,the highest Li/Ni disordering formation energy,and the highest oxygen vacancy formation energy,making it a highly promising doping modification scheme for LNO.These findings are fully consistent with experimental conclusions on Ce-doped high-nickel materials.Our computational approach makes it possible to conduct purely computational studies on Ln-doped layered material systems,paving the way for further in-depth research in multiple directions.This work provides a reference for experimental studies on LNO+Ln systems,offers a solution to the computational challenges of lanthanide-doped systems,and holds significant importance for advancing the application of lanthanide elements in layered cathode materials.展开更多
We conduct a theoretical study on the properties of a bound polaron in a quantum well under an electric field using linear combination operator and unitary transformation methods, which are valid in the whole range of...We conduct a theoretical study on the properties of a bound polaron in a quantum well under an electric field using linear combination operator and unitary transformation methods, which are valid in the whole range of electron-LO phonon coupling. The changing relations between the ground-state energy of the bound polaron in the quantum well and the Coulomb bound potential, the electric field strength, and the well width are derived. The numerical results show that the ground-state energy increases with the increase of the electric field strength and the Coulomb bound potential and decreases as the well width increases.展开更多
The phonon dispersion relation of the commensurate quantum Frenkel-Kontorova model is studied by means of the time-dependent variational approach combined with a Hartree-type many-body trial wavefunction for the parti...The phonon dispersion relation of the commensurate quantum Frenkel-Kontorova model is studied by means of the time-dependent variational approach combined with a Hartree-type many-body trial wavefunction for the particles. The single-particle state is taken to be a frozen Jackiw-Kerman wavefunction. Under the condition of minimum uncertainty, equations of motion for the particle expectation values are derived to obtain the phonon dispersion relation. It is shown that the strength of the substrate potential and the phonon excitation gap are reduced due to the quantum fluctuations in comparison with those of the classical model. We also compare our results with those previously obtained by using the path-integral molecular dynamics.展开更多
This paper investigates the structures and stabilities of neutral GaTAs7 cluster and its ions in detail by using first-principles density functional theory. Many low energy structures of GaTAs7 cluster are found. It c...This paper investigates the structures and stabilities of neutral GaTAs7 cluster and its ions in detail by using first-principles density functional theory. Many low energy structures of GaTAs7 cluster are found. It confirms that the ground state structure of neutral GaTAs7 cluster is a pentagonal prism with four face atoms like a basket structure, as reported by previous works. The ground state structures of positive Ga7As7 cluster ions are different from that of the neutral cluster. These investigations suggest that Ga atoms occupy the capping positions more easily than As atoms. Mulliken population analyses also show that Ga atoms can lose or obtain charge more easily than As atoms. It finds that the neutral GaTAs7 cluster can become more stable by gaining one or two additional electrons but further more electrons would cause the decrease of binding energy. The ionisation energy increases with the increase of the number of the removed electrons. These calculated results indicate that the net magnetic moment of the neutral GaTAs7 cluster is zero because all electrons axe paired together in their respective moleculax orbits. But for the ionic GaTAs7 cluster with odd number of electrons, the net magnetic moment is 1.0 μB due to an unpaired electron.展开更多
The first(namely, inner) fission barriers for even-A N = 152 nuclei have been studied systematically in the framework of macroscopic-microscopic model by means of potential energy surface(PES) calculations in the thre...The first(namely, inner) fission barriers for even-A N = 152 nuclei have been studied systematically in the framework of macroscopic-microscopic model by means of potential energy surface(PES) calculations in the threedimensional(β_(2, γ), β_4) deformation space. Their collective properties, such as ground-state deformations, are compared with previous calculations and available observations, showing a consistent trend. In addition, it has been found that the microscopic shell correction energy plays an important role on surviving fission in these N = 152 deformed shell nuclei. The inclusion of non-axial symmetric degree of freedom γ will pull the fission barrier down more significantly with respect to the calculation involving in hexadecapole deformation β_4. Furthermore, the calculated Woods-Saxon(WS) single particle levels indicate that the large microscopic shell correction energies due to low level densities may be responsible for such a reduction on the inner fission barrier.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.62061028 and 62461035)the Key Project of Natural Science Foundation of Jiangxi Province(Grant No.20232ACB202003)+2 种基金the Finance Science and Technology Special“contract system”Project of Nanchang University Jiangxi Province(Grant No.ZBG20230418015)the Natural Science Foundation of Chongqing(Grant No.CSTB2024NSCQ-MSX0412)the Opening Project of Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology(Grant No.ammt2021A-4).
文摘We theoretically investigate a cooling scheme assisted by a quantum well(QW)and coherent feedback within a hybrid optomechanical system.Although the exciton mode in the QW and the mechanical resonator(MR)are initially uncoupled,their interaction via the microcavity field leads to an indirect exciton-mode–mechanical-mode coupling.The coherent feedback loop is applied by feeding back a fraction of the output field of the cavity through a controllable beam splitter to the cavity’s input mirror.It is shown that the cooling capability is enhanced by effectively suppressing the Stokes process through coupling with the QW.Furthermore,the effect of the anti-Stokes process is enhanced through the application of the coherent feedback loop.This particular system configuration enables cooling of the mechanical resonator even in the unresolved sideband regime(USR).This study has some important guiding significance in the field of quantum information processing.
基金supported by National Natural Science Foundation of China (Grant No. 11601194)PhD Start-Up Funds of Jiangsu University of Science and Technology (Grant Nos. 1052931601 and 1052921513)
文摘In this paper, we consider the ground-states of the following M-coupled system:where p_(ij)+q_(ij)=2*:=2 N/(N-2)(N≥3). We prove the existence of ground-states to the M-coupled system. At the same time, we not only give out the characterization of the ground-states, but also study the number of the ground-states, containing the positive ground-states and the semi-trivial ground-states, which may be the first result studying the number of not only positive ground-states but also semi-trivial ground-states.
文摘In this paper, we intend to consider a kind of nonlinear Klein-Gordon equation coupled with Born-Infeld theory. By using critical point theory and the method of Nehari manifold, we obtain two existing results of infinitely many high-energy radial solutions and a ground-state solution for this kind of system, which improve and generalize some related results in the literature.
基金Project supported by the National Natural Science Foundation of China(Grant No.11647071)the Natural Science Foundation of Jiangsu Province,China(Grant No.BK20160435)
文摘We present a perturbation study of the ground-state energy of the beryllium atom by incorporating double parameters in the atom's Hamiltonian. The eigenvalue of the Hamiltonian is then solved with a double-fold perturbation scheme,where the spin-spin interaction of electrons from different shells of the atom is also considered. Calculations show that the obtained ground-state energy is in satisfactory agreement with experiment. It is found that the Coulomb repulsion of the inner-shell electrons enhances the effective nuclear charge seen by the outer-shell electrons, and the shielding effect of the outer-shell electrons to the nucleus is also notable compared with that of the inner-shell electrons.
基金Project supported by the Research Fund of Tonghua Normal University(Grant No.202017ND)。
文摘In the unresolved sideband regime,we propose a scheme for cooling mechanical resonator close to its ground state in a three-cavity optomechanical system,where the auxiliary cavities are indirectly connected with the mechanical resonator through standard optomechanical subsystem.The standard optomechanical subsystem is driven by a strong pump laser field.With the help of the auxiliary cavities,the heating process is suppressed and the cooling process of the mechanical resonator is enhanced.More importantly,the average phonon number is much less than 1 in a larger range.This means that the mechanical resonator can be cooled down to its ground state.All these interesting features will significantly promote the physical realization of quantum effects in multi-cavity optomechanical systems.
文摘We report in this paper the ground-state energy 2s^(2)^(1)S and total energies of doubly excited states 2p^(2)^(1)D,3d^(2)^(1)D,4f^(2)^(1)I of the Helium isoelectronic sequence from H-to Ca^(18+).Calculations are performed using the Modified Atomic Orbital Theory(MAOT)in the framework of a variational procedure.The purpose of this study required a mathematical development of the Hamiltonian applied to Slater-type wave function[1]combining with Hylleraas-type wave function[2].The study leads to analytical expressions which are carried out under special MAXIMA computational program.This first proposed MAOT variational procedure,leads to accurate results in good agreement as well as with available other theoretical results than experimental data.In the present work,a new correlated wave function is presented to express analytically the total energies for the 2s21S ground state and each doubly 2p^(2)^(1)D,3d^(2)^(1)D,4f^(2)^(1)I excited states in the He-like systems.The present accurate data may be a useful guideline for future experimental and theoretical studies in the(nI^(2))systems.
基金Supported by the National Key Basic Research Program under Grant Nos 2013CB921800 and 2014CB848700the National Science Fund for Distinguished Young Scholars under Grant No 11425523+4 种基金the National Natural Science Foundation of China under Grant Nos 11375167,11227901,91021005 and 11575173the Strategic Priority Research Program(B)of the Chinese Academy of Sciences under Grant No XDB01030400the Research Fund for the Doctoral Program of Higher Education of China under Grant No 20113402110044the China Postdoctoral Science Foundationthe Fundamental Research Funds for the Central Universities
文摘The geometric phase has become a fundamental concept in many fields of physics since it was revealed. Recently, the study of the geometric phase has attracted considerable attention in the context of quantum phase transition, where the ground state properties of the system experience a dramatic change induced by a variation of an external parameter. In this work, we experimentally measure the ground-state geometric phase of the three-spin XY model by utilizing the nuclear magnetic resonance technique. The experimental results indicate that the geometric phase could be used as a fingerprint of the ground-state quantum phase transition of many-body systems.
基金Supported by the Natural Science Foundation of Henan Educational Committee under Grant No 2011A140006the Key Scientific and Technological Project of He'nan Province under Grant No 152102210307
文摘Using the newly developed particle swarm optimization algorithm on crystal structural prediction, we predict a new class of boron nitride with stoicMometry of NB2 at ambient pressure, which belongs to the tetragonal 14m2 space group. Then, its structure, elastic properties, electronic structure, and chemical bonding are investigated by first-principles calculations with the density functional theory. The phonon calculation and elastic constants confirm that the predicted NB2 is dynamically and mechanically stable, respectively. The large bulk modulus, large shear modulus, large Young's modulus, and small Poisson's ratio show that the 14m2 NB2 should be a new superhard material with a calculated theoretical Vickers hardness value of 66 GPa. Further analysis on density of states and electron localization function demonstrate that the strong B B and 13 N covalent bonds are the main reason for its high hardness in 14m2 NB2.
文摘The new method proposed recently by Friedberg,Lee and Zhao is applied to the derivation of the atomic ground-state energy with the inclusion of the screening effect.The present results are compared with those obtained in the pure Coulomb potential and by the variational approach.The overall good results are obtained with this new method.
基金Project supported by the Science Foundation of Baoji University of Arts and Sciences,China(Grants Nos.ZK11061,ZK11135,and ZK12048)the Natural Science Foundation of the Education Committee of Shaanxi Province,China(Grant Nos.2013JK0637 and 2013JK0638)the Natural Science Basic Research Plan in Shaanxi Province,China(Grant No.2013JQ1007)
文摘Combining first-principles calculations with the particle swarm optimization (PSO) algorithm, we have explored the ground-state structure of Pd2N, whose structure is in debate although it is the first synthesized binary platinum group nitride. The ground-state structure is predicted to be tetragonal with space group P^-4m2, which is energetically more favorable than the previously proposed orthorhombic Co2N-type structure. The stability is confirmed by the subsequent calculations on the phonon dispersion curves and elastic constants. Furthermore, the calculated mechanical properties indicate that Pd2N has low incompressibility and is a common hard material.
基金the NSF of China under Grant No.11904242the NSF of Hebei province under Grant No.A2019210280。
文摘We study the quantum coherence and ground-state phase transition of a four-chain Bose–Hubbard model with the long-range interaction. In a special four-chain Bose–Hubbard model,i.e., each chain only has one optical potential, four types of the ground-state phases are discovered. The effects of the disorder, the on-site interaction and the long-range interaction on the quantum coherence are studied. For the system without the long-range interaction, the quantum coherence changes from one periodic oscillation to two periodic oscillations as the onsite interaction increases. By considering the long-range interaction, the quantum coherence goes back to one periodic oscillation again. The on-site interaction itself suppresses the quantum coherence, both the on-site interaction and long-range interaction together enhance the quantum coherence with the weak disorder. If the disorder strength is increased beyond a critical value,they start to suppress the quantum coherence. In a regular four-chain Bose–Hubbard model, i.e.,each chain has many optical potentials, the ground-state phase transitions are obtained by using the cluster Gutzwiller mean-field method. Exotic ground-state phases are found, i.e., superfluid phase, integer Mott insulator phase, supersolid phase and loophole insulator phase. The combination of the loophole insulator phase and the supersolid phase expands the lobes with the half-integer filling per site for the small ratio β = t_(‖)/t_(⊥).
基金supported by the National Natural Science Foundation of China (Grant Nos. 11205090 and 11175087)the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (Grant No. 12KJB140008)
文摘The effects of the Dzyaloshinski-Moriya (DM) interaction on the ground-state properties of the anisotropic XY chain in a transverse field have been studied by means of correlation functions and entanglement. Different from the case without the DM interaction, the excitation spectra ek of this model are not symmetrical in the momentum space and are not always positive. As a result, besides the ferromagnetic (FM) and the paramagnetic (PM) phases, a gapless chiral phase is induced. In the chiral phase, the von Neumann entropy is proportional to log2 L (L is the length of a subchain) with the coefficient A ~ 1/3, which is the same as that of the XY chain in a transverse field without the DM interaction for 7 = 0 and 0 〈 h 〈 1. And in the vicinity of the critical point between the chiral phase and the FM (or PM) phase, the behaviors of the nearest- neighbor concurrence and its derivative are like those for the anisotropy transition.
文摘By means of improved ligand-field theory, the 'pure electronic'presure-induced shifts (PS's) and the PS's due to electron-phonon interaction (EPI) of the R_1, R_2,B_1, B_2, B_3, and R′_3 lines and the ground-state zero-Geld-splitting of ruby have been uniformlycalculated. The calculation results are in very good agreement with all the experimental data. Atnormal pressure, ruby is a crystal with very strong crystal field. Thus, the admixture of ∣t_2~2(~3T_1)e~4T_2 】 and ∣t_2~(32)E> bases in the wavefunction of R_1 level of ruby is small at normalpressure, and it gradually decreases with increasing pressure, which causes the R_1-line PS of rubyto monotonously red shift with approximate linearity. The combined effect of the pure electronic PSof R_1 line and the PS of R_1 line due to EPI gives rise to the total PS of R_1 line. The analysesand comparisons among the features of R_1-line PS's of three laser crystals (ruby, GSGG:Cr~(3+) andGGG:Cr~(3+)) have been made, and the origin of their difference has been revealed.
文摘We study the ground-state information of one-dimensional Heisenberg chain with alternating D-term. Given the ground-state phase diagram, the ground-state energy and the entanglement entropy are obtained by tensor-net work algorithm. The phase transition points are shown in the entanglement entropy figure. The results are agreed with the phase diagram.
文摘We study the dynamic of scalar bosons in the presence of Aharonov-Bohm magnetic field. First, we give the differential equation that governs this dynamic. Secondly, we use variational techniques to show that the following Schrödinger-Newton equation: , where A is an Aharonov-Bohm magnetic potential, has a unique ground-state solution.
基金supported by the National Natural Science Foundation of China(Nos.52272180,12426301).
文摘LiNiO_(2)(LNO)is a highly promising cathode material for lithium-ion batteries,but its performance is consistently limited by various stability issues.Lanthanide elements(Ln)possess all the necessary characteristics to serve as excellent dopants for modifying LNO.Experimental studies have demonstrated that Ln doping can effectively enhance the performance of high-nickel materials.However,the convergence issues in computational studies of systems containing Ln remain a significant challenge in the field,leading to a scarcity of computational research on LNO+Ln systems.In practical calculations,LNO+Ln models exhibit poor convergence and unstable convergence energies.We attribute this to the strong Coulomb interactions of the 4f electrons in Ln ions,which significantly affect the system’s energy,combined with their diverse electronic configurations that tend to produce multiple metastable states,resulting in a complex energy landscape.In our tests,we found a correlation between the specific values of the 4f electron magnetic moments of Ln ions and the convergence energy.The setting of the magnetic moment convergence parameters directly influences the model’s convergence quality and the energy of the converged state.Based on this,we developed a ground-state search method using the 4f electron magnetic moment values as a feature in the cutoff energy convergence plot.This method enables rapid and accurate calculations of LNO+Ln systems,significantly reducing computational resource consumption.Finally,we obtained the crystal and electronic structures of the ground state for the LNO+Ln(La-Gd)systems and calculated the Li/Ni disordering formation energy and oxygen vacancy formation energy.We discussed the results and analyzed the underlying mechanisms,revealing that the LNO+Ce model exhibits the feature of the most stable structure,the highest Li/Ni disordering formation energy,and the highest oxygen vacancy formation energy,making it a highly promising doping modification scheme for LNO.These findings are fully consistent with experimental conclusions on Ce-doped high-nickel materials.Our computational approach makes it possible to conduct purely computational studies on Ln-doped layered material systems,paving the way for further in-depth research in multiple directions.This work provides a reference for experimental studies on LNO+Ln systems,offers a solution to the computational challenges of lanthanide-doped systems,and holds significant importance for advancing the application of lanthanide elements in layered cathode materials.
文摘We conduct a theoretical study on the properties of a bound polaron in a quantum well under an electric field using linear combination operator and unitary transformation methods, which are valid in the whole range of electron-LO phonon coupling. The changing relations between the ground-state energy of the bound polaron in the quantum well and the Coulomb bound potential, the electric field strength, and the well width are derived. The numerical results show that the ground-state energy increases with the increase of the electric field strength and the Coulomb bound potential and decreases as the well width increases.
文摘The phonon dispersion relation of the commensurate quantum Frenkel-Kontorova model is studied by means of the time-dependent variational approach combined with a Hartree-type many-body trial wavefunction for the particles. The single-particle state is taken to be a frozen Jackiw-Kerman wavefunction. Under the condition of minimum uncertainty, equations of motion for the particle expectation values are derived to obtain the phonon dispersion relation. It is shown that the strength of the substrate potential and the phonon excitation gap are reduced due to the quantum fluctuations in comparison with those of the classical model. We also compare our results with those previously obtained by using the path-integral molecular dynamics.
基金supported by the Foundation for the Author of National Excellent Doctoral Dissertation of China (Grant No. 200320)the National Natural Science Foundation of China (Grant No.10674039)
文摘This paper investigates the structures and stabilities of neutral GaTAs7 cluster and its ions in detail by using first-principles density functional theory. Many low energy structures of GaTAs7 cluster are found. It confirms that the ground state structure of neutral GaTAs7 cluster is a pentagonal prism with four face atoms like a basket structure, as reported by previous works. The ground state structures of positive Ga7As7 cluster ions are different from that of the neutral cluster. These investigations suggest that Ga atoms occupy the capping positions more easily than As atoms. Mulliken population analyses also show that Ga atoms can lose or obtain charge more easily than As atoms. It finds that the neutral GaTAs7 cluster can become more stable by gaining one or two additional electrons but further more electrons would cause the decrease of binding energy. The ionisation energy increases with the increase of the number of the removed electrons. These calculated results indicate that the net magnetic moment of the neutral GaTAs7 cluster is zero because all electrons axe paired together in their respective moleculax orbits. But for the ionic GaTAs7 cluster with odd number of electrons, the net magnetic moment is 1.0 μB due to an unpaired electron.
基金Supported by the National Natural Science Foundation of China under Grant No.11675148the Project of Youth Backbone Teachers of Colleges and Universities of Henan Province under Grant No.2017GGJS008+2 种基金the Foundation and Advanced Technology Research Program of Henan Province under Grant No.162300410222the Outstanding Young Talent Research Fund of Zhengzhou University under Grant No.1521317002the Physics Research and Development Program of Zhengzhou University under Grant No.32410017
文摘The first(namely, inner) fission barriers for even-A N = 152 nuclei have been studied systematically in the framework of macroscopic-microscopic model by means of potential energy surface(PES) calculations in the threedimensional(β_(2, γ), β_4) deformation space. Their collective properties, such as ground-state deformations, are compared with previous calculations and available observations, showing a consistent trend. In addition, it has been found that the microscopic shell correction energy plays an important role on surviving fission in these N = 152 deformed shell nuclei. The inclusion of non-axial symmetric degree of freedom γ will pull the fission barrier down more significantly with respect to the calculation involving in hexadecapole deformation β_4. Furthermore, the calculated Woods-Saxon(WS) single particle levels indicate that the large microscopic shell correction energies due to low level densities may be responsible for such a reduction on the inner fission barrier.