Karenia mikimotoi (Miyake & Kominami ex Oda) Hansen & Moestrup is associated with harmful algal blooms in temperate and subtropical zones of the world. The hemolytic substances produced by K. mikimotoi are thought...Karenia mikimotoi (Miyake & Kominami ex Oda) Hansen & Moestrup is associated with harmful algal blooms in temperate and subtropical zones of the world. The hemolytic substances produced by K. mikimotoi are thought to cause mortality in fishes and invertebrates. We evaluated the composition of the hemolytic toxin produced by K. mikimotoi cultured in the laboratory using thin-layer chromatography. In addition, we evaluated the effect of co-occuring algae (Prorocentrum donghaiense and Alexandrium tamarense) and the cladoceran grazer Moina mongoliea on hemolytic toxin production in K. mikimotoi. The hemolytic toxins from K. mikimotoi were a mixture of 2 liposaccharides and 1 lipid. Waterborne clues from P. donghaiense and A. tamarense inhibited the growth of K. mikimotoi but increased the production of hemolytic toxins. Conversely, K. mikimotoi strongly inhibited the growth of caged P. donghaiense and A. tamarense. In addition, the ingestion of K. mikimotoi by M. mongolica induced the production of hemolytic toxins in K. mikimotoi. Taken together, our results suggest that the presence of other microalgae and grazers may be as important as environmental factors for controlling the production of hemolytic substances. K. mikimotoi secreted allelochemicals other than unstable fatty acids with hemolytic activity. The production of hemolytic toxins in dinofiagellates was not only dependent on resource availability, but also on the risk of predation. Hemolytic toxins likely play an important role as chemical deterrents secreted by K. mikimotoi.展开更多
Many small Parks inKenyaare being fenced to control human-wildlife conflict. Some of these Parks have a diversity of large herbivores which might increase in density in the wake of fencing and subsequent compression o...Many small Parks inKenyaare being fenced to control human-wildlife conflict. Some of these Parks have a diversity of large herbivores which might increase in density in the wake of fencing and subsequent compression of their home ranges due to closure of their migratory routes. It is important to understand the consequences of such an increase on the structuring of insularised herbivore assemblages in such Parks. We studied seasonal resource segregation and niche breadth variation as mechanisms of coexistence in a high density grazer assemblage inLakeNakuruNational Parkwhich is small and completely fenced. Diet composition and habitat use were considered as variables of resource use. We predicted that overlap in resource use and niche breadth would be the smallest among grazers with similar body weights in the dry season which is the most resource limiting for grazers in East Africa. Our results were contrary to the predictions because of lack of seasonal differentiation in the overlap of diet composition and habitat use, and in niche breadth. Overlaps in resource use were consistently high during both the wet and dry seasons, and niche breadth contraction during the dry season was not possible probably because of lack of species-specific niches during the dry season. Our results suggest that there might be competitive interactions in this grazer assemblage which is an important parameter to consider in the management of the Park.展开更多
基金Supported by the National Natural Science Foundation of China(Nos.30970502,U0733006)the National Basic Research Program of China(973 Program)(No.2010CB428702)
文摘Karenia mikimotoi (Miyake & Kominami ex Oda) Hansen & Moestrup is associated with harmful algal blooms in temperate and subtropical zones of the world. The hemolytic substances produced by K. mikimotoi are thought to cause mortality in fishes and invertebrates. We evaluated the composition of the hemolytic toxin produced by K. mikimotoi cultured in the laboratory using thin-layer chromatography. In addition, we evaluated the effect of co-occuring algae (Prorocentrum donghaiense and Alexandrium tamarense) and the cladoceran grazer Moina mongoliea on hemolytic toxin production in K. mikimotoi. The hemolytic toxins from K. mikimotoi were a mixture of 2 liposaccharides and 1 lipid. Waterborne clues from P. donghaiense and A. tamarense inhibited the growth of K. mikimotoi but increased the production of hemolytic toxins. Conversely, K. mikimotoi strongly inhibited the growth of caged P. donghaiense and A. tamarense. In addition, the ingestion of K. mikimotoi by M. mongolica induced the production of hemolytic toxins in K. mikimotoi. Taken together, our results suggest that the presence of other microalgae and grazers may be as important as environmental factors for controlling the production of hemolytic substances. K. mikimotoi secreted allelochemicals other than unstable fatty acids with hemolytic activity. The production of hemolytic toxins in dinofiagellates was not only dependent on resource availability, but also on the risk of predation. Hemolytic toxins likely play an important role as chemical deterrents secreted by K. mikimotoi.
基金Kenya Wildlife Service for giving permission to conduct this study in Lake Nakuru National Park,and to the Netherlands Organisation for International Cooperation in Higher Education(NUFFIC)for funding the study
文摘Many small Parks inKenyaare being fenced to control human-wildlife conflict. Some of these Parks have a diversity of large herbivores which might increase in density in the wake of fencing and subsequent compression of their home ranges due to closure of their migratory routes. It is important to understand the consequences of such an increase on the structuring of insularised herbivore assemblages in such Parks. We studied seasonal resource segregation and niche breadth variation as mechanisms of coexistence in a high density grazer assemblage inLakeNakuruNational Parkwhich is small and completely fenced. Diet composition and habitat use were considered as variables of resource use. We predicted that overlap in resource use and niche breadth would be the smallest among grazers with similar body weights in the dry season which is the most resource limiting for grazers in East Africa. Our results were contrary to the predictions because of lack of seasonal differentiation in the overlap of diet composition and habitat use, and in niche breadth. Overlaps in resource use were consistently high during both the wet and dry seasons, and niche breadth contraction during the dry season was not possible probably because of lack of species-specific niches during the dry season. Our results suggest that there might be competitive interactions in this grazer assemblage which is an important parameter to consider in the management of the Park.