Previous studies have often focused on monitoring grassland growth as the primary target of remote sensing investigations on grassland ecological restoration in the northern Tibetan Plateau,overlooking the crucial rol...Previous studies have often focused on monitoring grassland growth as the primary target of remote sensing investigations on grassland ecological restoration in the northern Tibetan Plateau,overlooking the crucial role played by gravel in the ecological restoration of these grasslands.This study utilizes supervised classification and segmentation techniques based on machine learning to extract gravel morphology profiles from field-sampled plot images and calculate their characteristic parameters.Employing a multivariate linear approach combined with Principal Component Analysis(PCA),a model for inferring gravel characteristic parameters is constructed.Statistical features,particle size characteristics,and spatial distribution patterns of gravel are analyzed.Results reveal that gravel predominantly exhibit sub-rounded shapes,with 80%classified as fine gravel.The coefficients of determination(R2)between gravel particle size and coverage,perimeter,and area are 0.444,0.724,and 0.557,respectively,indicating linear relationships.The cumulative contribution rate of the top five remote sensing factors is 95.44%,with the first geological factor contributing 77.64%,collectively reflecting the primary information of the 20 factors used.Modeling shows that areas with larger gravel particle sizes correspond to increased perimeter and coverage.Gravels in the Nagqu Prefecture of northern Xizang have a particle size range of 4-8 mm,primarily comprising fine gravel which accounts for 94.61%.These findings provide a scientific basis for extracting gravel characteristic parameters and understanding their spatial distribution variations in the northern Tibetan Plateau.展开更多
The influence of rockbolt pretension on bolting has not been well addressed,despite its critical importance in drift support systems.In this study,laboratory and numerical simulations of gravel bolting are conducted t...The influence of rockbolt pretension on bolting has not been well addressed,despite its critical importance in drift support systems.In this study,laboratory and numerical simulations of gravel bolting are conducted to investigate the effects of varying rockbolt pretensions.The simulations are developed using the particle flow code(PFC3D),enabling detailed analysis of contact forces between gravel particles under low and high rockbolt pretensions.The results indicate that bolted gravel can maintain stability even without pretension,though bearing capacity is significantly enhanced under high pretension.Two distinct bolting behaviors are identified:a pressure arch structure is formed under low pretension,while high pretension creates a compression zone characterized by intensified particle interlocking and superior load-bearing capacity.Based on these findings,a concept for drift support is proposed,integrating rockbolts and cables to stabilize both shallow and deep rocks.This study advances our understanding of bolting behaviors and provides theoretical guidance for designing effective drift support systems in practical applications.展开更多
Based on the characteristics of wind-sand movement in the gravel desert area along the GolmudKorla Railway,this study employs numerical simulation,wind tunnel and field measurement methods to investigate the wind-sand...Based on the characteristics of wind-sand movement in the gravel desert area along the GolmudKorla Railway,this study employs numerical simulation,wind tunnel and field measurement methods to investigate the wind-sand protection mechanisms and effectiveness of various sand control measures for the Golmud-Korla Railway.Results reveal that wind-sand flow is significantly influenced by sand barrier with notable fluctuations in wind speed observed around these barriers.In the region of 0H to 5H(H is the height of the sand barrier model)downstream the barrier,where turbulent flow disturbances are particularly intense,substantial modifications to the airflow patterns were observed.Among the three types of sand barriers tested,the horizontal wind speed fluctuations on the leeward side of the reed bundle sand barrier are the most pronounced,with the lowest wind speed attenuation coefficient reaching 0.29.Within a specific range of wind speeds,the effective protective width of a sand barrier is negatively correlated with the upstream wind speed.The reed bundle sand barrier demonstrates the largest average protection width,followed by the highdensity polyethylene(HDPE)board sand barrier,while the metal mesh sand barrier provides the smallest protection.In the gravel desert area of southern Xinjiang,the sand trapping efficiency of the reed bundle and HDPE board barriers reaches 93.85%and 96.42%,respectively,with annual maximum accumulated sand volume of 3.342 m3/m and 3.73 m3/m.Both barriers demonstrate excellent wind-sand protection effects.From an environmental sustainability and operating lifetime perspective,a three-dimensional wind-sand control system composed of two or three reed bundle sand barriers is recommended for the Golmud-Korla Railway area.This endeavor would provide valuable insights and guidance for wind-sand disaster prevention and control in the gravel desert areas.展开更多
[Objective] The research aimed to explore the most suitable gravel cover- ing thickness for selenium sand melon in arid region of central Ningxia. [Method] The natural gravel, which was from Nanshantai Region in Zhong...[Objective] The research aimed to explore the most suitable gravel cover- ing thickness for selenium sand melon in arid region of central Ningxia. [Method] The natural gravel, which was from Nanshantai Region in Zhongwei City, Ningxia, was acted as test materials to study the effects of different thicknesses of gravel covering on daily evaporation using evaporator overall weighing method. [Result] The daily evaporation capacity order of the gravel covering thickness was as follows: CK〉HI(5 cm)〉 H2(8 cm)〉 H3(10 cm)〉 H4(15 cm). Meanwhile, with the increase of test days, the difference of cumulative evaporation capacity between H3 (10 cm) and H4 (15 cm) decreased gradually. Soil evaporation capacity reduced at the pow- er function with the increase of gravel covering thickness, and the decision coeffi- cient of the fitted curve reached to 0.925 5. [Conclusion] With the increase of gravel covering thickness, evaporation capacity of soil reduced gradually, and the soil water content increased gradually. Gravel covering could effectively reduce the evapora- tion. The thicker of covering, the more obvious inhibition effect on evaporation. The thickness of covering should increase moderately to prevent moisture loss from e- vaporation. Gravel inhibition effect on the evaporation wasn't obvious when the gravel covering thickness reached more than 10 cm. 10 cm gravel covering was the most appropriate thickness for local natural condition. The soil evaporation capacity along with the change of gravel covering could be simulated with power function e- quation Y=at^b.展开更多
Soil microbial flora and influencing factors of soil microbes in soil and gravel-sand mixed layer( SGSML),roots denseness layer( RDL),eluviate layer( EL) and calcium accumulation layer( CAL) in gravel-sand mul...Soil microbial flora and influencing factors of soil microbes in soil and gravel-sand mixed layer( SGSML),roots denseness layer( RDL),eluviate layer( EL) and calcium accumulation layer( CAL) in gravel-sand mulched fields( GSMFs) with different gravel mulched years( 1,6,12,19 and 25 years) were studied. The results showed that in the composition of soil microbes in the GSMFs,the quantity of bacteria was the largest,followed by actinomycetes,while the number of fungi was the smallest. The total quantity of soil microorganisms in the GSMFs dropped rapidly with the increase of soil depth,which was related to the sudden decrease in the quantity of bacteria. The number of microbes in the RDL was larger than that in the SGSML with few roots due to the effects of root distribution. The number of bacteria and actinomycete in the growing season was larger than that in the non-growing season,while the quantity of fungi in the growing season was smaller than that in the non-growing season. The quantity of bacteria and fungi was the largest in the GSMFs which had been mulched with gravel for 6-12 years. With the increase of mulching time,the GSMFs aged gradually,so their quantity reduced gradually. The quantity of actinomycetes was the smallest in the GSMFs which had been mulched with gravel for 6-12 years and increased with the increase of mulching time. The number of soil microbes in the GSMFs had a good correlation with soil moisture content,p H and mulching time. Soil total carbon content was an important factor restricting the quantity of soil microbes in the GSMFs.展开更多
为准确地得到γ射线的辐射剂量,对G(E)函数法和Gravel算法处理能谱-剂量的转换效果进行了研究。根据实际应用需求,采取蒙特卡罗方法模拟获取了?50 mm×50 mm NaI(Tl)探测器的Gravel法响应矩阵,并使用Matlab得到探测器的G(E)函数。使...为准确地得到γ射线的辐射剂量,对G(E)函数法和Gravel算法处理能谱-剂量的转换效果进行了研究。根据实际应用需求,采取蒙特卡罗方法模拟获取了?50 mm×50 mm NaI(Tl)探测器的Gravel法响应矩阵,并使用Matlab得到探测器的G(E)函数。使用NaI(Tl)探测器和多道谱仪系统测量标准源的能谱,分别使用G(E)法和Gravel法计算剂量值并与理论值进行比较,同时在计算过程中总结对比了两种方法的特点。展开更多
In order to find an economic and effective water control method for horizontal wells in deep sea bottom-water gas reservoirs,we prepared modified coated gravel.Based on this,wear resistance,temperature resistance and ...In order to find an economic and effective water control method for horizontal wells in deep sea bottom-water gas reservoirs,we prepared modified coated gravel.Based on this,wear resistance,temperature resistance and water plugging capacity(WPC)tests were carried out on the coated gravel.Then,experiments were carried out using the 3D simulation device for the development of large-scale bottom-water gas reservoirs to compare the development effects of horizontal wells packed with conventional gravel and coated gravel in deepsea bottom-water gas reservoirs.And the following research results were obtained.First,the upper limit of temperature resistance of the gravel coating is 240℃ and the gravel packing speed can reach 4.48 m/s,which is 8 times the average flow velocity of gravel packing in actual open hole sections.Second,as the permeability of the coated gravel packing layer increases,its WPC gets weak.When the permeability is lower than 1500 mD and the displacement pressure difference is lower than 0.6 MPa,the WPC of the coated gravel packing layer is between 0.17 and 0.68.Third,the coated gravel layer functions as gas permeability and water plugging,so the horizontal well technology with coated gravel packing can reduce the flow capacity of water phase breaking into the dominant flow passage,so as to delay the rise of water production of gas well and prolong the gas production time.In this way,the gas recovery factor of bottom-water gas reservoir can be increased effectively.In conclusion,this technology has the function of spontaneous selective water plugging,i.e.,“water plugging in case of water and gas permeability in case of gas”,and its technical and economic advantages are remarkable,which can provide a new idea for the water-control development of deepsea bottom-water gas reservoirs.展开更多
Gravel-sand mulch has been used for centuries to conserve water in the Loess Plateau of north- western China. In this study, we assessed the influence of long-term (1996-2012) gravel-sand mulching of cultiv- ated so...Gravel-sand mulch has been used for centuries to conserve water in the Loess Plateau of north- western China. In this study, we assessed the influence of long-term (1996-2012) gravel-sand mulching of cultiv- ated soils on total organic carbon (TOC), light fraction organic carbon (LFOC), microbial biomass carbon (MBC), total organic nitrogen (TON), particulate organic carbon (POC), mineral-associated organic carbon (MOC), perma- nganate-oxidizable carbon (KMnO4-C), and non-KMnO4-C at 0-60 cm depths. Mulching durations were 7, 11 and 16 years, with a non-mulched control. Compared to the control, there was no significant and consistently positive effect of the mulch on TOC, POC, MOC, KMnO4-C and non-KMnO4-C before 11 years of mulching, and these organic C fractions generally decreased significantly by 16 years. LFOC, TON and MBC to at a 0-20 cm depth in- creased with increasing mulching duration until 11 years, and then these fractions decreased significantly between 11 and 16 years, reaching values comparable to or lower than those in the control. KMnO4-C was most strongly correlated with the labile soil C fractions. Our findings suggest that although gravel-sand mulch may conserve soil moisture, it may also lead to long-term decreases in labile soil organic C fractions and total organic N in the study area. The addition of manure or composted manure would be a good choice to reverse the soil deterioration that occurs after 11 years by increasing the inputs of organic matter.展开更多
Fine round gravel soil is widely employed in the subgrade of high and thawing. The lower the fines content in fine round gravel soil, but compaction difficulty increases. This study is to obtain the speed railways in ...Fine round gravel soil is widely employed in the subgrade of high and thawing. The lower the fines content in fine round gravel soil, but compaction difficulty increases. This study is to obtain the speed railways in cold regions to prevent frost heaving the smaller the quantities of frost heaving and thawing, optimum fines content and limited frost heaving and thawing. The fine round gravel soil filling (FRGSF) used in the Harbin-Qiqihaer Passenger Dedicated Line is taken as the study object. Influence of fines content on optimum water content, maximum dry density and frost heaving properties of FRGSF were studied by means of compaction and frost heaving tests. Results show that the maximum dry density of the FRGSF increases first and then decreases with an increase of fines content, namely there is an optimum fines content for easy compaction. The method of surface-vibratory instrument is fit for coarse-grained soils, and wet state of coarse-grained soil is in favor of compaction. Considering the relationship of fines content with maximum dry density and the frost heaving ratio of FRGSF, the fines content should be limited to within the range of 9%-10%, so that the frost heaving ratio is less than 1%, and the FRGSF is easily compacted. Water supply is proved to be an important factor influencing the amount of frost heaving of FRGSF. We also conclude that in the field, it is imperative to control waterproofing and drainage measures.展开更多
Cemented backfill used in deep mines would inevitably be exposed to the ambient temperature of 20−60℃in the next few decades.In this paper,two types of cemented gravel sand backfills,cemented rod-mill sand backfill(C...Cemented backfill used in deep mines would inevitably be exposed to the ambient temperature of 20−60℃in the next few decades.In this paper,two types of cemented gravel sand backfills,cemented rod-mill sand backfill(CRB)and cemented gobi sand backfill(CGB),were prepared and cured at various temperatures(20,40,60℃)and ages(3,7,28 d),and the effects of temperature and age on the physico-mechanical properties of CRB and CGB were investigated based on laboratory tests.Results show that:1)the effects of temperature and age on the physico-mechanical properties of backfills mainly depend on the amount of hydration products and the refinement of cementation structures.The temperature has a more significant effect on thermal expansibility and ultrasonic performance at early ages.2)The facilitating effect of temperature and age on the compressive strength of CGB is higher than that on CRB.With the increase of temperature,the compressive failure modes changed from X-conjugate shear failure to tensile failure,and the integrity of specimens was significantly improved.3)Similarly,the shear performance of CGB is generally better than that of CRB.The temperature has a weaker effect on shear strength than age,but the shear deformation and shear plane morphology are closely related to temperature.展开更多
The triggering mechanisms of debris flows were explored in the field using artificial rainfall experiments in two gullies, Dawazi Gully and Aizi Gully, in Yunnan and Sichuan Provinces, China,respectively. The soils at...The triggering mechanisms of debris flows were explored in the field using artificial rainfall experiments in two gullies, Dawazi Gully and Aizi Gully, in Yunnan and Sichuan Provinces, China,respectively. The soils at both sites are bare, loose and cohesive gravel-dominated. The results of a direct shear test, rheological test and back-analysis using soil mass stability calculations indicate that the mechanisms responsible for triggering debris flows involved the decreases in static and dynamic resistance of the soil. The triggering processes can be divided into 7 stages: rainfall infiltration, generation of excess runoff, high pore water pressure, surface erosion, soil creep, soil slipping, debris flow triggering and debris flow increment. In addition, two critical steps are evident:(i) During the process of the soil mass changing from a static to a mobile state, its cohesion decreased sharply(e.g., the cohesion of the soil mass in Dawazi Gully decreased from 0.520 to0.090 k Pa, a decrease of 83%). This would have reduced the soil strength and the kinetic energy during slipping, eventually triggered the debris flow.(ii) When the soil mass began to slip, the velocity and the volume increment of the debris flow fluctuated as a result of the interaction of soil resistance and the sliding force. The displaced soil mass from the source area of the slope resulted in the deposition of a volume of soil more than 7-8 times greater than that in the source area.展开更多
The influence of the overlying clay on the progression of piping in the sandy gravel foundation of water-retaining structures is often neglected. In order to study this influence, an experimental investigation was con...The influence of the overlying clay on the progression of piping in the sandy gravel foundation of water-retaining structures is often neglected. In order to study this influence, an experimental investigation was conducted on a laboratory-scale model. It was discovered that the critical hydraulic gradient and the area of the piping tunnel increase when the overlying clay thickens. With a thicker clay layer, erosion of the sandy gravel below the clay layer occurs later, but, once the erosion starts, the erosion rate is very high and the average velocity of water seeping through the cross-section of the sandy gravel increases rapidly due to the low deformability of the thick clay layer. Furthermore, it was found that the progression of piping is a complicated and iterative process involving erosion of fine particles, clogging of pores, and flushing of the clogged pores. Two types of erosion have been identified in the progression of piping: one causes the tunnel to advance upstream, and the other increases the depth of the tunnel. The results show that the overlying clay is an important factor when evaluating piping in sandy gravel foundations of water-retaining structures.展开更多
The immersed tube tunnel section of the Shenzhen-Zhongshan Link exhibits complex geological conditions and high back sludge strength. The tunnel cushion adopts the gravel and flaky stone combined cushion. The major in...The immersed tube tunnel section of the Shenzhen-Zhongshan Link exhibits complex geological conditions and high back sludge strength. The tunnel cushion adopts the gravel and flaky stone combined cushion. The major influencing factors of the mechanical deformation characteristics of the gravel and flaky stone composite cushion are studied through a physical model experiment. The following results are reported.(1) The load–settlement curves of the flaky stone cushion become more compact with a dense increment under the design load. These curves can be regarded as nonlinear mechanical characteristics. The load–settlement curves of the gravel cushion and the gravel and flaky stone composite cushion exhibit the characteristics of a two-stage linear change.(2) The flatness of the top of flaky stone cushion considerably affects settlement and secant modulus. The flatness of the top of flaky stone should be ensured during construction.(3) Gradation and thickness exert no evident effect on the compressibility of a cushion. The preloading pressure caused by the construction height difference of the cushion materials plays an important role in improving the initial stiffness of a cushion and reducing initial settlement and overall settlement.(4) This study investigates the preloading under 30 kPa of the 0.7-m flaky stone and 1.0-m gravel combination cushion. It recommends the following secant modulus values: 48.89 MPa for the section of 0–30 kPa and 10.47 MPa for the section of 30–110 kPa.展开更多
Synchronous chip seal is an advanced road constructing technology, and the gravel coverage rate is an important indicator of the construction quality. In this paper, a novel approach for gravel coverage rate measureme...Synchronous chip seal is an advanced road constructing technology, and the gravel coverage rate is an important indicator of the construction quality. In this paper, a novel approach for gravel coverage rate measurement is proposed based on deep learning. Convolutional neural network(CNN) is used to segment the image of ground covered with gravels, and the gravel coverage rate is computed by the percentage of gravel pixels in the segmented image. The gravel coverage rate dataset for model training and testing is built. The performance of fully convolutional neural network(FCN) and U-Net model in the dataset is tested. A better model named GravelNet is constructed based on U-Net. The scaled exponential linear unit(SELU) is employed in the GravelNet to replace the popular combination of rectified linear unit(ReLU) and batch normalization(BN). Data augmentation and alpha dropout are performed to reduce overfitting. The experimental results demonstrate the effectiveness and accuracy of our proposed method. Our trained GravelNet achieves the mean gravel coverage rate error of 0.35% on test dataset.展开更多
The primary objective of this paper was to study the mechanical properties and durability of the cement stabilized gravel by different compact method. The influence of rubber particle content on mechanical properties ...The primary objective of this paper was to study the mechanical properties and durability of the cement stabilized gravel by different compact method. The influence of rubber particle content on mechanical properties of samples was studied by compaction tests and freezing thawing recycle tests. Pore structure and fractal characteristic of mixture were analyzed quantitatively using mercury intrusion porosimetry (MIP). X-ray diffraction (XRD) was adopted to identify the composition phases. The morphology analysis in micro scale and elemental analysis of samples were carried out by scanning electron microscope (SEM). The optimum compressive strengths of rubber cement stabilized gravel (RCSG) with static compaction method and with vibratory compaction method were obtained by controlling compaction degree and vibration time, respectively. From the compaction tests, the vibratory compaction method is preferred compared with the static compaction method as better compressive strength can be improved by about 340%-360%. Besides, test results also reveal that compressive strength of samples with vibratory compaction method or static compaction method will decrease with the rubber particle bulk content increasing. The freezing thawing recycle tests indicate that freezing thawing resistance has been improved (frozen stability coefficient K has been increased from 0.89 to 0.97) by the addition of rubber particles. MIP tests show that the mean pore diameter and porosity of mixture have been increased from 70 to 250 nm and 9% to 24% respectively, with the rubber particles content increasing. Component analysis shows that the calcium silicate hydrate (CSH) is the predominant hydrate product with or without the addition of rubber particles.展开更多
Field investigations following the 2008 Ms8.0 Wenchuan earthquake identified 118 liquefaction sites, most of which are underlain by gravelly sediment in the Chengdu Plain and adjacent Mianyang area, in the Sichuan Pro...Field investigations following the 2008 Ms8.0 Wenchuan earthquake identified 118 liquefaction sites, most of which are underlain by gravelly sediment in the Chengdu Plain and adjacent Mianyang area, in the Sichuan Province. Gravel sediment in the Sichuan province is widely distributed; hence it is necessary to develop a method for prediction and evaluation of gravel liquefaction behavior. Based on liquefaction investigation data and in-situ testing, and with reference to existing procedures for sandy soil liquefaction evaluation, a fundamental procedure for gravel liquefaction evaluation using dynamic penetration tests (DPT) is proposed along with a corresponding model and calculation formula. The procedure contains two stages, i.e., pre-determination and re-determination. Pre-determination excludes impossible liquefiable or non-liquefiable soils, and re-determination explores a DPT-based critical N120 blows calculation model. Pre-determination includes three criteria, i.e., geological age, gravel contents, gravel sediment depths and water tables. The re-determination model consists of five parameters, i.e., DPT reference values, gravel contents, gravel sediment depths, water tables and seismic intensities. A normalization method is used for DPT reference values and an optimization method is used for the gravel sediment depth coefficient and water table coefficient. The gravel liquefaction evaluation method proposed herein is simple and takes most influencing factors on gravel sediment liquefaction into account.展开更多
Three-dimensional unmanned aerial vehicle(UAV)oblique photogrammetric data were used to infer mountainous gravel braided river lithofacies,lithofacies associations and architectural elements.Hierarchical architecture ...Three-dimensional unmanned aerial vehicle(UAV)oblique photogrammetric data were used to infer mountainous gravel braided river lithofacies,lithofacies associations and architectural elements.Hierarchical architecture and lithofacies associations with detailed lithofacies characterizations were comprehensively described to document the architectural model,architectural element scale and gravel particle scale.(1)Nine lithofacies(i.e.,Gmm,Gcm,Gcc,Gci,Gcl,Ss,Sm,Fsm and Fl)were identified and classified as gravel,sand and fine matrix deposits.These are typical depositional features of a mountainous dryland gravel-braided river.(2)Three architectural elements were identified,including channel(CH),gravel bar(GB)and overbank(OB).CH can be further divided into flow channel and abandoned channel,while GB consists of Central Gravel bar(CGB)and Margin Gravel bar(MGB).(3)The gravel bar is the key architectural element of the gravel braided river,with its geological attributes.The dimensions of GBs and their particles are various,but exhibit good relationships with each other.The grain size of GB decreases downstream,but the dimensions of GB do not.The bank erosion affects the GB dimensions,whereas channel incision and water flow velocity influence the grain size of GB.The conclusions can be applied to the dryland gravel braided river studies in tectonically active areas.展开更多
To study the relationship between grouting effect and grouting factors, three factors (seven parameters) directionless pressure and small cycle grouting model experiment on sandy gravel was done, which was designed ...To study the relationship between grouting effect and grouting factors, three factors (seven parameters) directionless pressure and small cycle grouting model experiment on sandy gravel was done, which was designed according to uniform design method. And regressing was applied to analysis of the test data. The two models test results indicate that when the diffusing radius of grout changes from 26 to 51 cm, the grouted sandy gravel compressing strength changes from 2.13 to 12.30 MPa; the relationship between diffusing radius(R) and water cement ratio(m), permeability coefficient(k), grouting pressure(p), grouting time(t) is R=19.953m^0.121k^0.429p^0.412t^0.437; the relationship between compressing strength(P) and porosity(n), water cement ratio, grouting pressure, grouting time is P =0.984n^0.517m6-1.488p^0.118t^0.031. So the porosity of sandy gravel, the permeability coefficient of sandy gravel, grouting pressure, grouting time, water cement ratio are main factors to influence the grouting effect. The grouting pressure is the main factor to influence grouting diffusing radius, and the water cement ratio is the main factor to influence grouted sandy gravel compressing strength.展开更多
The shape,size and coverage of gravels have significant impacts on aeolian sand transport.This study provided an understanding of aeolian transport over the gravel mulching surfaces at different wind velocities by mea...The shape,size and coverage of gravels have significant impacts on aeolian sand transport.This study provided an understanding of aeolian transport over the gravel mulching surfaces at different wind velocities by means of a mobile wind tunnel simulation.The tested gravel coverage increased from 5% to 80%,with a progressive increment of 5%.The gravels used in the experiments have three sizes in diameter.Wind velocities were measured using 10 sand-proof pitot-static probes,and mean velocity fields were obtained and discussed.The results showed that mean velocity fields obtained over different gravel mulches were similar.The analysis of wind speed patterns revealed an inherent link between gravel mulches and mean airflow characteristics on the gravel surfaces.The optimal gravel coverage is considered to be the critical level above or below which aeolian transport characteristics differ strongly.According to the present study,the optimal gravel coverage was found to be around 30% or 40%.Threshold velocity linearly increased with gravel coverage.Sand transport rate first increased with height above the wind tunnel floor(Hf),reaching a peak at some midpoint,and then decreased.展开更多
The calculation of residual settlement of bidirectional reinforced composite foundation, which is composed of geocell cushion over gravel piles, was studied. The geocell cushion was modeled as a thin flexible plate wi...The calculation of residual settlement of bidirectional reinforced composite foundation, which is composed of geocell cushion over gravel piles, was studied. The geocell cushion was modeled as a thin flexible plate with large deflection. Based on the Kirchhoff hypothesis, the governing differential equations and boundary conditions of the deformation of geocell cushion under working load were founded using von Karman method and solved by Galerkin method. On theses bases, the gravel piles and inter-pile soils were assumed as Winkler ground with variable spring stiffness so as to execute the approximate calculation of the residual settlement of the bidirectional reinforced composite foundation. The calculation method was verified by two laboratory experiments concerning settlement of embankments. One experiment was with just geocell cushion installed to treat the soft clay under embankments; another one was with both geocell cushion and gravel piles installed. The results show that the calculated settlement curve and the maximum settlement are closed to the observed ones.展开更多
基金funded by the Major R&D and Achievement Transformation Projects of Xizang(CGZH2024000416)Science and Technology Program of Xizang(XZ202402ZD0001)Major R&D and Achievement Transformation Projects of Qinghai(2022-QY-224)。
文摘Previous studies have often focused on monitoring grassland growth as the primary target of remote sensing investigations on grassland ecological restoration in the northern Tibetan Plateau,overlooking the crucial role played by gravel in the ecological restoration of these grasslands.This study utilizes supervised classification and segmentation techniques based on machine learning to extract gravel morphology profiles from field-sampled plot images and calculate their characteristic parameters.Employing a multivariate linear approach combined with Principal Component Analysis(PCA),a model for inferring gravel characteristic parameters is constructed.Statistical features,particle size characteristics,and spatial distribution patterns of gravel are analyzed.Results reveal that gravel predominantly exhibit sub-rounded shapes,with 80%classified as fine gravel.The coefficients of determination(R2)between gravel particle size and coverage,perimeter,and area are 0.444,0.724,and 0.557,respectively,indicating linear relationships.The cumulative contribution rate of the top five remote sensing factors is 95.44%,with the first geological factor contributing 77.64%,collectively reflecting the primary information of the 20 factors used.Modeling shows that areas with larger gravel particle sizes correspond to increased perimeter and coverage.Gravels in the Nagqu Prefecture of northern Xizang have a particle size range of 4-8 mm,primarily comprising fine gravel which accounts for 94.61%.These findings provide a scientific basis for extracting gravel characteristic parameters and understanding their spatial distribution variations in the northern Tibetan Plateau.
基金supported by the National Natural Science Foundation of China(Grant Nos.52274124,52274123)funding of the Coal Mining and Designing Department,Tiandi Science&Technology Co.,Ltd.(Grant No.2022-2-TD-QN008).
文摘The influence of rockbolt pretension on bolting has not been well addressed,despite its critical importance in drift support systems.In this study,laboratory and numerical simulations of gravel bolting are conducted to investigate the effects of varying rockbolt pretensions.The simulations are developed using the particle flow code(PFC3D),enabling detailed analysis of contact forces between gravel particles under low and high rockbolt pretensions.The results indicate that bolted gravel can maintain stability even without pretension,though bearing capacity is significantly enhanced under high pretension.Two distinct bolting behaviors are identified:a pressure arch structure is formed under low pretension,while high pretension creates a compression zone characterized by intensified particle interlocking and superior load-bearing capacity.Based on these findings,a concept for drift support is proposed,integrating rockbolts and cables to stabilize both shallow and deep rocks.This study advances our understanding of bolting behaviors and provides theoretical guidance for designing effective drift support systems in practical applications.
基金financially supported by Gansu Province Science and Technology Program Funding(25YFFA005)the Science and Technology Research and Development Program of China Railway Corporation(2017G004-E)the Natural Science Foundation of Gansu Province,China(23JRRE0741)。
文摘Based on the characteristics of wind-sand movement in the gravel desert area along the GolmudKorla Railway,this study employs numerical simulation,wind tunnel and field measurement methods to investigate the wind-sand protection mechanisms and effectiveness of various sand control measures for the Golmud-Korla Railway.Results reveal that wind-sand flow is significantly influenced by sand barrier with notable fluctuations in wind speed observed around these barriers.In the region of 0H to 5H(H is the height of the sand barrier model)downstream the barrier,where turbulent flow disturbances are particularly intense,substantial modifications to the airflow patterns were observed.Among the three types of sand barriers tested,the horizontal wind speed fluctuations on the leeward side of the reed bundle sand barrier are the most pronounced,with the lowest wind speed attenuation coefficient reaching 0.29.Within a specific range of wind speeds,the effective protective width of a sand barrier is negatively correlated with the upstream wind speed.The reed bundle sand barrier demonstrates the largest average protection width,followed by the highdensity polyethylene(HDPE)board sand barrier,while the metal mesh sand barrier provides the smallest protection.In the gravel desert area of southern Xinjiang,the sand trapping efficiency of the reed bundle and HDPE board barriers reaches 93.85%and 96.42%,respectively,with annual maximum accumulated sand volume of 3.342 m3/m and 3.73 m3/m.Both barriers demonstrate excellent wind-sand protection effects.From an environmental sustainability and operating lifetime perspective,a three-dimensional wind-sand control system composed of two or three reed bundle sand barriers is recommended for the Golmud-Korla Railway area.This endeavor would provide valuable insights and guidance for wind-sand disaster prevention and control in the gravel desert areas.
基金Supported by Natural Science Research Foundation Item of Ningxia University,China(ZR1208)Science and Technology Research Item of Ningxia Colleges and Universities,China(NGY2014065)~~
文摘[Objective] The research aimed to explore the most suitable gravel cover- ing thickness for selenium sand melon in arid region of central Ningxia. [Method] The natural gravel, which was from Nanshantai Region in Zhongwei City, Ningxia, was acted as test materials to study the effects of different thicknesses of gravel covering on daily evaporation using evaporator overall weighing method. [Result] The daily evaporation capacity order of the gravel covering thickness was as follows: CK〉HI(5 cm)〉 H2(8 cm)〉 H3(10 cm)〉 H4(15 cm). Meanwhile, with the increase of test days, the difference of cumulative evaporation capacity between H3 (10 cm) and H4 (15 cm) decreased gradually. Soil evaporation capacity reduced at the pow- er function with the increase of gravel covering thickness, and the decision coeffi- cient of the fitted curve reached to 0.925 5. [Conclusion] With the increase of gravel covering thickness, evaporation capacity of soil reduced gradually, and the soil water content increased gradually. Gravel covering could effectively reduce the evapora- tion. The thicker of covering, the more obvious inhibition effect on evaporation. The thickness of covering should increase moderately to prevent moisture loss from e- vaporation. Gravel inhibition effect on the evaporation wasn't obvious when the gravel covering thickness reached more than 10 cm. 10 cm gravel covering was the most appropriate thickness for local natural condition. The soil evaporation capacity along with the change of gravel covering could be simulated with power function e- quation Y=at^b.
基金Supported by Sheng Tongsheng Science and Technology Innovation Foundation of Gansu Agricultural University(GSAU-STS-1427)Open Foundation for Breeding Base of National Key Laboratory Co-founded by Gansu Province+1 种基金the Ministry of Science and Technology-Gansu Provincial Key Lab of Aridland Crop Science(GSCS-2012-14)National Natural Science Foundation of China(31560356)
文摘Soil microbial flora and influencing factors of soil microbes in soil and gravel-sand mixed layer( SGSML),roots denseness layer( RDL),eluviate layer( EL) and calcium accumulation layer( CAL) in gravel-sand mulched fields( GSMFs) with different gravel mulched years( 1,6,12,19 and 25 years) were studied. The results showed that in the composition of soil microbes in the GSMFs,the quantity of bacteria was the largest,followed by actinomycetes,while the number of fungi was the smallest. The total quantity of soil microorganisms in the GSMFs dropped rapidly with the increase of soil depth,which was related to the sudden decrease in the quantity of bacteria. The number of microbes in the RDL was larger than that in the SGSML with few roots due to the effects of root distribution. The number of bacteria and actinomycete in the growing season was larger than that in the non-growing season,while the quantity of fungi in the growing season was smaller than that in the non-growing season. The quantity of bacteria and fungi was the largest in the GSMFs which had been mulched with gravel for 6-12 years. With the increase of mulching time,the GSMFs aged gradually,so their quantity reduced gradually. The quantity of actinomycetes was the smallest in the GSMFs which had been mulched with gravel for 6-12 years and increased with the increase of mulching time. The number of soil microbes in the GSMFs had a good correlation with soil moisture content,p H and mulching time. Soil total carbon content was an important factor restricting the quantity of soil microbes in the GSMFs.
文摘为准确地得到γ射线的辐射剂量,对G(E)函数法和Gravel算法处理能谱-剂量的转换效果进行了研究。根据实际应用需求,采取蒙特卡罗方法模拟获取了?50 mm×50 mm NaI(Tl)探测器的Gravel法响应矩阵,并使用Matlab得到探测器的G(E)函数。使用NaI(Tl)探测器和多道谱仪系统测量标准源的能谱,分别使用G(E)法和Gravel法计算剂量值并与理论值进行比较,同时在计算过程中总结对比了两种方法的特点。
基金Project supported by Scientific and Technological Project of CNOOC(China)Limited“Study on Key Drilling and Completion Technologies for Deepwater Development Well”(No.:CNOOC-KJ 135 ZDXM 05 LTD 01 SHENHAI 2016).
文摘In order to find an economic and effective water control method for horizontal wells in deep sea bottom-water gas reservoirs,we prepared modified coated gravel.Based on this,wear resistance,temperature resistance and water plugging capacity(WPC)tests were carried out on the coated gravel.Then,experiments were carried out using the 3D simulation device for the development of large-scale bottom-water gas reservoirs to compare the development effects of horizontal wells packed with conventional gravel and coated gravel in deepsea bottom-water gas reservoirs.And the following research results were obtained.First,the upper limit of temperature resistance of the gravel coating is 240℃ and the gravel packing speed can reach 4.48 m/s,which is 8 times the average flow velocity of gravel packing in actual open hole sections.Second,as the permeability of the coated gravel packing layer increases,its WPC gets weak.When the permeability is lower than 1500 mD and the displacement pressure difference is lower than 0.6 MPa,the WPC of the coated gravel packing layer is between 0.17 and 0.68.Third,the coated gravel layer functions as gas permeability and water plugging,so the horizontal well technology with coated gravel packing can reduce the flow capacity of water phase breaking into the dominant flow passage,so as to delay the rise of water production of gas well and prolong the gas production time.In this way,the gas recovery factor of bottom-water gas reservoir can be increased effectively.In conclusion,this technology has the function of spontaneous selective water plugging,i.e.,“water plugging in case of water and gas permeability in case of gas”,and its technical and economic advantages are remarkable,which can provide a new idea for the water-control development of deepsea bottom-water gas reservoirs.
基金provided by the Office of Agricultural Program, Chinese Academy of Sciences (kscx2-ewb-1-8)the National Natural Science Foundation of China (41171027)
文摘Gravel-sand mulch has been used for centuries to conserve water in the Loess Plateau of north- western China. In this study, we assessed the influence of long-term (1996-2012) gravel-sand mulching of cultiv- ated soils on total organic carbon (TOC), light fraction organic carbon (LFOC), microbial biomass carbon (MBC), total organic nitrogen (TON), particulate organic carbon (POC), mineral-associated organic carbon (MOC), perma- nganate-oxidizable carbon (KMnO4-C), and non-KMnO4-C at 0-60 cm depths. Mulching durations were 7, 11 and 16 years, with a non-mulched control. Compared to the control, there was no significant and consistently positive effect of the mulch on TOC, POC, MOC, KMnO4-C and non-KMnO4-C before 11 years of mulching, and these organic C fractions generally decreased significantly by 16 years. LFOC, TON and MBC to at a 0-20 cm depth in- creased with increasing mulching duration until 11 years, and then these fractions decreased significantly between 11 and 16 years, reaching values comparable to or lower than those in the control. KMnO4-C was most strongly correlated with the labile soil C fractions. Our findings suggest that although gravel-sand mulch may conserve soil moisture, it may also lead to long-term decreases in labile soil organic C fractions and total organic N in the study area. The addition of manure or composted manure would be a good choice to reverse the soil deterioration that occurs after 11 years by increasing the inputs of organic matter.
基金funded by the National Key Technology Support Program of China under Grant No. 2012BAG05B00the National Natural Science Foundation (NSFC) of China under Grant No. 51208320 and No. 51171281
文摘Fine round gravel soil is widely employed in the subgrade of high and thawing. The lower the fines content in fine round gravel soil, but compaction difficulty increases. This study is to obtain the speed railways in cold regions to prevent frost heaving the smaller the quantities of frost heaving and thawing, optimum fines content and limited frost heaving and thawing. The fine round gravel soil filling (FRGSF) used in the Harbin-Qiqihaer Passenger Dedicated Line is taken as the study object. Influence of fines content on optimum water content, maximum dry density and frost heaving properties of FRGSF were studied by means of compaction and frost heaving tests. Results show that the maximum dry density of the FRGSF increases first and then decreases with an increase of fines content, namely there is an optimum fines content for easy compaction. The method of surface-vibratory instrument is fit for coarse-grained soils, and wet state of coarse-grained soil is in favor of compaction. Considering the relationship of fines content with maximum dry density and the frost heaving ratio of FRGSF, the fines content should be limited to within the range of 9%-10%, so that the frost heaving ratio is less than 1%, and the FRGSF is easily compacted. Water supply is proved to be an important factor influencing the amount of frost heaving of FRGSF. We also conclude that in the field, it is imperative to control waterproofing and drainage measures.
基金Project(P2018G045)supported by the Science&Technology Research and Development Program of China RailwayProject(2018CFA013)supported by the Hubei Provincial Natural Science Foundation Innovation Group,China+1 种基金Project(KFJ-STS-QYZD-174)supported by the Science and Technology Service Network Initiative of the Chinese Academy of SciencesProject(51709257)supported by the National Natural Science Foundation of China。
文摘Cemented backfill used in deep mines would inevitably be exposed to the ambient temperature of 20−60℃in the next few decades.In this paper,two types of cemented gravel sand backfills,cemented rod-mill sand backfill(CRB)and cemented gobi sand backfill(CGB),were prepared and cured at various temperatures(20,40,60℃)and ages(3,7,28 d),and the effects of temperature and age on the physico-mechanical properties of CRB and CGB were investigated based on laboratory tests.Results show that:1)the effects of temperature and age on the physico-mechanical properties of backfills mainly depend on the amount of hydration products and the refinement of cementation structures.The temperature has a more significant effect on thermal expansibility and ultrasonic performance at early ages.2)The facilitating effect of temperature and age on the compressive strength of CGB is higher than that on CRB.With the increase of temperature,the compressive failure modes changed from X-conjugate shear failure to tensile failure,and the integrity of specimens was significantly improved.3)Similarly,the shear performance of CGB is generally better than that of CRB.The temperature has a weaker effect on shear strength than age,but the shear deformation and shear plane morphology are closely related to temperature.
基金supported by the National Natural Science Foundation of China(Grant No.41190084Grant No.41671112+2 种基金Grant No.41661134012)the Technology Program of Housing and Urban-Rural Development of P.R.China(Grant No.2015-K6-016)the key projects of Education Department of Sichuan Province,China(Grant No.15ZA0053)
文摘The triggering mechanisms of debris flows were explored in the field using artificial rainfall experiments in two gullies, Dawazi Gully and Aizi Gully, in Yunnan and Sichuan Provinces, China,respectively. The soils at both sites are bare, loose and cohesive gravel-dominated. The results of a direct shear test, rheological test and back-analysis using soil mass stability calculations indicate that the mechanisms responsible for triggering debris flows involved the decreases in static and dynamic resistance of the soil. The triggering processes can be divided into 7 stages: rainfall infiltration, generation of excess runoff, high pore water pressure, surface erosion, soil creep, soil slipping, debris flow triggering and debris flow increment. In addition, two critical steps are evident:(i) During the process of the soil mass changing from a static to a mobile state, its cohesion decreased sharply(e.g., the cohesion of the soil mass in Dawazi Gully decreased from 0.520 to0.090 k Pa, a decrease of 83%). This would have reduced the soil strength and the kinetic energy during slipping, eventually triggered the debris flow.(ii) When the soil mass began to slip, the velocity and the volume increment of the debris flow fluctuated as a result of the interaction of soil resistance and the sliding force. The displaced soil mass from the source area of the slope resulted in the deposition of a volume of soil more than 7-8 times greater than that in the source area.
基金supported by the 973 Program of China(Grant No.2012CB417005)the Postgraduate Research and Innovation Plan Project in Jiangsu Province(Grant No.CXZZ13_0243)
文摘The influence of the overlying clay on the progression of piping in the sandy gravel foundation of water-retaining structures is often neglected. In order to study this influence, an experimental investigation was conducted on a laboratory-scale model. It was discovered that the critical hydraulic gradient and the area of the piping tunnel increase when the overlying clay thickens. With a thicker clay layer, erosion of the sandy gravel below the clay layer occurs later, but, once the erosion starts, the erosion rate is very high and the average velocity of water seeping through the cross-section of the sandy gravel increases rapidly due to the low deformability of the thick clay layer. Furthermore, it was found that the progression of piping is a complicated and iterative process involving erosion of fine particles, clogging of pores, and flushing of the clogged pores. Two types of erosion have been identified in the progression of piping: one causes the tunnel to advance upstream, and the other increases the depth of the tunnel. The results show that the overlying clay is an important factor when evaluating piping in sandy gravel foundations of water-retaining structures.
基金supported by the National Key Research and Development Program of China(Nos.2018YFC0809600 and 2018YFC0809602)。
文摘The immersed tube tunnel section of the Shenzhen-Zhongshan Link exhibits complex geological conditions and high back sludge strength. The tunnel cushion adopts the gravel and flaky stone combined cushion. The major influencing factors of the mechanical deformation characteristics of the gravel and flaky stone composite cushion are studied through a physical model experiment. The following results are reported.(1) The load–settlement curves of the flaky stone cushion become more compact with a dense increment under the design load. These curves can be regarded as nonlinear mechanical characteristics. The load–settlement curves of the gravel cushion and the gravel and flaky stone composite cushion exhibit the characteristics of a two-stage linear change.(2) The flatness of the top of flaky stone cushion considerably affects settlement and secant modulus. The flatness of the top of flaky stone should be ensured during construction.(3) Gradation and thickness exert no evident effect on the compressibility of a cushion. The preloading pressure caused by the construction height difference of the cushion materials plays an important role in improving the initial stiffness of a cushion and reducing initial settlement and overall settlement.(4) This study investigates the preloading under 30 kPa of the 0.7-m flaky stone and 1.0-m gravel combination cushion. It recommends the following secant modulus values: 48.89 MPa for the section of 0–30 kPa and 10.47 MPa for the section of 30–110 kPa.
基金supported by the National Natural Science Foundation of China(No.61571402)
文摘Synchronous chip seal is an advanced road constructing technology, and the gravel coverage rate is an important indicator of the construction quality. In this paper, a novel approach for gravel coverage rate measurement is proposed based on deep learning. Convolutional neural network(CNN) is used to segment the image of ground covered with gravels, and the gravel coverage rate is computed by the percentage of gravel pixels in the segmented image. The gravel coverage rate dataset for model training and testing is built. The performance of fully convolutional neural network(FCN) and U-Net model in the dataset is tested. A better model named GravelNet is constructed based on U-Net. The scaled exponential linear unit(SELU) is employed in the GravelNet to replace the popular combination of rectified linear unit(ReLU) and batch normalization(BN). Data augmentation and alpha dropout are performed to reduce overfitting. The experimental results demonstrate the effectiveness and accuracy of our proposed method. Our trained GravelNet achieves the mean gravel coverage rate error of 0.35% on test dataset.
基金Funded by the National Natural Science Foundation of China(No.51008076)
文摘The primary objective of this paper was to study the mechanical properties and durability of the cement stabilized gravel by different compact method. The influence of rubber particle content on mechanical properties of samples was studied by compaction tests and freezing thawing recycle tests. Pore structure and fractal characteristic of mixture were analyzed quantitatively using mercury intrusion porosimetry (MIP). X-ray diffraction (XRD) was adopted to identify the composition phases. The morphology analysis in micro scale and elemental analysis of samples were carried out by scanning electron microscope (SEM). The optimum compressive strengths of rubber cement stabilized gravel (RCSG) with static compaction method and with vibratory compaction method were obtained by controlling compaction degree and vibration time, respectively. From the compaction tests, the vibratory compaction method is preferred compared with the static compaction method as better compressive strength can be improved by about 340%-360%. Besides, test results also reveal that compressive strength of samples with vibratory compaction method or static compaction method will decrease with the rubber particle bulk content increasing. The freezing thawing recycle tests indicate that freezing thawing resistance has been improved (frozen stability coefficient K has been increased from 0.89 to 0.97) by the addition of rubber particles. MIP tests show that the mean pore diameter and porosity of mixture have been increased from 70 to 250 nm and 9% to 24% respectively, with the rubber particles content increasing. Component analysis shows that the calcium silicate hydrate (CSH) is the predominant hydrate product with or without the addition of rubber particles.
基金Fundamental Research Funds of Institute of Engineering Mechanics Under Grant No.2009B01 and No.200708001National Natural Science Foundation of China Under Grant No.90715017International Corporation Project of Science and Technology Administration of China Under Grant No.2009DFA71720
文摘Field investigations following the 2008 Ms8.0 Wenchuan earthquake identified 118 liquefaction sites, most of which are underlain by gravelly sediment in the Chengdu Plain and adjacent Mianyang area, in the Sichuan Province. Gravel sediment in the Sichuan province is widely distributed; hence it is necessary to develop a method for prediction and evaluation of gravel liquefaction behavior. Based on liquefaction investigation data and in-situ testing, and with reference to existing procedures for sandy soil liquefaction evaluation, a fundamental procedure for gravel liquefaction evaluation using dynamic penetration tests (DPT) is proposed along with a corresponding model and calculation formula. The procedure contains two stages, i.e., pre-determination and re-determination. Pre-determination excludes impossible liquefiable or non-liquefiable soils, and re-determination explores a DPT-based critical N120 blows calculation model. Pre-determination includes three criteria, i.e., geological age, gravel contents, gravel sediment depths and water tables. The re-determination model consists of five parameters, i.e., DPT reference values, gravel contents, gravel sediment depths, water tables and seismic intensities. A normalization method is used for DPT reference values and an optimization method is used for the gravel sediment depth coefficient and water table coefficient. The gravel liquefaction evaluation method proposed herein is simple and takes most influencing factors on gravel sediment liquefaction into account.
基金supported by the National Science and Technology Major Project(Grant No.2017ZX05008-006004-002)the National Natural Science Foundation of China(Grant Nos.41502126 and 41902155)the Open Foundation of Top Disciplines in Yangtze University(Grant No.2019KFJJ0818022)。
文摘Three-dimensional unmanned aerial vehicle(UAV)oblique photogrammetric data were used to infer mountainous gravel braided river lithofacies,lithofacies associations and architectural elements.Hierarchical architecture and lithofacies associations with detailed lithofacies characterizations were comprehensively described to document the architectural model,architectural element scale and gravel particle scale.(1)Nine lithofacies(i.e.,Gmm,Gcm,Gcc,Gci,Gcl,Ss,Sm,Fsm and Fl)were identified and classified as gravel,sand and fine matrix deposits.These are typical depositional features of a mountainous dryland gravel-braided river.(2)Three architectural elements were identified,including channel(CH),gravel bar(GB)and overbank(OB).CH can be further divided into flow channel and abandoned channel,while GB consists of Central Gravel bar(CGB)and Margin Gravel bar(MGB).(3)The gravel bar is the key architectural element of the gravel braided river,with its geological attributes.The dimensions of GBs and their particles are various,but exhibit good relationships with each other.The grain size of GB decreases downstream,but the dimensions of GB do not.The bank erosion affects the GB dimensions,whereas channel incision and water flow velocity influence the grain size of GB.The conclusions can be applied to the dryland gravel braided river studies in tectonically active areas.
基金Foundation item: Project(40372124) supported by the National Natural Science of China project(05R214145) supported by Postdoctor Research Foundation of Chinaproject(B308) supported by Shanghai Leading Academic Discipline
文摘To study the relationship between grouting effect and grouting factors, three factors (seven parameters) directionless pressure and small cycle grouting model experiment on sandy gravel was done, which was designed according to uniform design method. And regressing was applied to analysis of the test data. The two models test results indicate that when the diffusing radius of grout changes from 26 to 51 cm, the grouted sandy gravel compressing strength changes from 2.13 to 12.30 MPa; the relationship between diffusing radius(R) and water cement ratio(m), permeability coefficient(k), grouting pressure(p), grouting time(t) is R=19.953m^0.121k^0.429p^0.412t^0.437; the relationship between compressing strength(P) and porosity(n), water cement ratio, grouting pressure, grouting time is P =0.984n^0.517m6-1.488p^0.118t^0.031. So the porosity of sandy gravel, the permeability coefficient of sandy gravel, grouting pressure, grouting time, water cement ratio are main factors to influence the grouting effect. The grouting pressure is the main factor to influence grouting diffusing radius, and the water cement ratio is the main factor to influence grouted sandy gravel compressing strength.
基金supported by the Key Program of Knowledge Innovation Project of the Chinese Academy of Sciences(KZCX2-EW-313)the National Basic Research Program of China (2012CB026105)the National Natural Science Foundation of China (41371027)
文摘The shape,size and coverage of gravels have significant impacts on aeolian sand transport.This study provided an understanding of aeolian transport over the gravel mulching surfaces at different wind velocities by means of a mobile wind tunnel simulation.The tested gravel coverage increased from 5% to 80%,with a progressive increment of 5%.The gravels used in the experiments have three sizes in diameter.Wind velocities were measured using 10 sand-proof pitot-static probes,and mean velocity fields were obtained and discussed.The results showed that mean velocity fields obtained over different gravel mulches were similar.The analysis of wind speed patterns revealed an inherent link between gravel mulches and mean airflow characteristics on the gravel surfaces.The optimal gravel coverage is considered to be the critical level above or below which aeolian transport characteristics differ strongly.According to the present study,the optimal gravel coverage was found to be around 30% or 40%.Threshold velocity linearly increased with gravel coverage.Sand transport rate first increased with height above the wind tunnel floor(Hf),reaching a peak at some midpoint,and then decreased.
文摘The calculation of residual settlement of bidirectional reinforced composite foundation, which is composed of geocell cushion over gravel piles, was studied. The geocell cushion was modeled as a thin flexible plate with large deflection. Based on the Kirchhoff hypothesis, the governing differential equations and boundary conditions of the deformation of geocell cushion under working load were founded using von Karman method and solved by Galerkin method. On theses bases, the gravel piles and inter-pile soils were assumed as Winkler ground with variable spring stiffness so as to execute the approximate calculation of the residual settlement of the bidirectional reinforced composite foundation. The calculation method was verified by two laboratory experiments concerning settlement of embankments. One experiment was with just geocell cushion installed to treat the soft clay under embankments; another one was with both geocell cushion and gravel piles installed. The results show that the calculated settlement curve and the maximum settlement are closed to the observed ones.