Background:Bone tumors represent a significant clinical challenge characterized by high morbidity and complex therapeutic requirements.Although Astragali Radix(Huangqi)is recognized for its potential pharmacological b...Background:Bone tumors represent a significant clinical challenge characterized by high morbidity and complex therapeutic requirements.Although Astragali Radix(Huangqi)is recognized for its potential pharmacological benefits in cancer therapy,the specific molecular mechanisms and their influence on vitamin metabolism pathways in bone malignancies are not well defined.Methods:We conducted an integrated analysis of prognostic genes and survival outcomes in osteosarcoma,focusing on the expression of GPC2 and its correlation with tumor progression and patient survival rates.In order to explore the therapeutic relevance of 20 bioactive compounds extracted from Huangqi,molecular docking was performed to quantify their binding free energies to the GPC2 receptor,shedding light on their potential affinity and biological activity.Furthermore,the expression levels of GPC2 in tumor cells compared to normal cells were analyzed using qRT-PCR.Additionally,the effects of GPC2 overexpression and silencing on cellular viability,apoptotic response,and migratory capacity were systematically investigated.Results:In our study,GPC2 emerged as a significant prognostic gene,where high expression levels correlated with reduced overall survival.The molecular interactions between Astragalus components and the GPC2 receptor reveal compounds with strong affinity,suggesting their potential as effective targets.Furthermore,the overexpression of GPC2 enhanced tumor cell viability and migration,while its knockdown resulted in decreased cell viability and expanded apoptosis.Conclusion:This study demonstrates that Huangqi-derived components may exert anticancer effects by regulating the expression of the GPC2 gene within the vitamin metabolism pathway.These findings offer new insights into the therapeutic potential of traditional herbal medicine for improving bone tumor prognosis and provide a scientific foundation for future translational research.展开更多
文摘Background:Bone tumors represent a significant clinical challenge characterized by high morbidity and complex therapeutic requirements.Although Astragali Radix(Huangqi)is recognized for its potential pharmacological benefits in cancer therapy,the specific molecular mechanisms and their influence on vitamin metabolism pathways in bone malignancies are not well defined.Methods:We conducted an integrated analysis of prognostic genes and survival outcomes in osteosarcoma,focusing on the expression of GPC2 and its correlation with tumor progression and patient survival rates.In order to explore the therapeutic relevance of 20 bioactive compounds extracted from Huangqi,molecular docking was performed to quantify their binding free energies to the GPC2 receptor,shedding light on their potential affinity and biological activity.Furthermore,the expression levels of GPC2 in tumor cells compared to normal cells were analyzed using qRT-PCR.Additionally,the effects of GPC2 overexpression and silencing on cellular viability,apoptotic response,and migratory capacity were systematically investigated.Results:In our study,GPC2 emerged as a significant prognostic gene,where high expression levels correlated with reduced overall survival.The molecular interactions between Astragalus components and the GPC2 receptor reveal compounds with strong affinity,suggesting their potential as effective targets.Furthermore,the overexpression of GPC2 enhanced tumor cell viability and migration,while its knockdown resulted in decreased cell viability and expanded apoptosis.Conclusion:This study demonstrates that Huangqi-derived components may exert anticancer effects by regulating the expression of the GPC2 gene within the vitamin metabolism pathway.These findings offer new insights into the therapeutic potential of traditional herbal medicine for improving bone tumor prognosis and provide a scientific foundation for future translational research.