Accurate description of noncova-lent interactions in large systems is challenging due to the require-ment of high-level electron corre-lation methods.The generalized energy-based fragmentation(GEBF)approach,in conjunc...Accurate description of noncova-lent interactions in large systems is challenging due to the require-ment of high-level electron corre-lation methods.The generalized energy-based fragmentation(GEBF)approach,in conjunc-tion with the domain-based local pair natural orbital(DLPNO)method,has been applied to assess the average binding energies(ABEs)of large benzene clus-ters,specifically(C6H6)13,at the coupled cluster singles and doubles with perturbative triples correction[CCSD(T)]level and the complete basis set(CBS)limit.Utilizing GEBF-DLPNO-CCSD(T)/CBS ABEs as benchmarks,various DFT functionals were evaluated.It was found that several functionals with empirical dispersion correction,including M06-2X-D3,B3LYP-D3(BJ),and PBE-D3(BJ),provide accurate descriptions of the ABEs for(C6H6)13 clusters.Additionally,the M06-2X-D3 functional was used to calculate the ABEs and relative stabili-ties of(C6H6)n clusters for n=11,12,13,14,and 15 revealing that the(C6H6)13 cluster ex-hibits the highest relative stability.These findings align with experimental evidence suggest-ing that n=13 is one of the magic numbers for benzene clusters(C6H6)n,with n≤30.展开更多
We propose a robust earthquake clustering method:the Bayesian Gaussian mixture model with nearest-neighbor distance(BGMM-NND)algorithm.Unlike the conventional nearest neighbor distance method,the BGMM-NND algorithm el...We propose a robust earthquake clustering method:the Bayesian Gaussian mixture model with nearest-neighbor distance(BGMM-NND)algorithm.Unlike the conventional nearest neighbor distance method,the BGMM-NND algorithm eliminates the need for hyperparameter tuning or reliance on fixed thresholds,offering enhanced flexibility for clustering across varied seismic scales.By integrating cumulative probability and BGMM with principal component analysis(PCA),the BGMM-NND algorithm effectively distinguishes between background and triggered earthquakes while maintaining the magnitude component and resolving the issue of excessively large spatial cluster domains.We apply the BGMM-NND algorithm to the Sichuan–Yunnan seismic catalog from 1971 to 2024,revealing notable variations in earthquake frequency,triggering characteristics,and recurrence patterns across different fault zones.Distinct clustering and triggering behaviors are identified along different segments of the Longmenshan Fault.Multiple seismic modes,namely,the short-distance mode,the medium-distance mode,the repeating-like mode,the uniform background mode,and the Wenchuan mode,are uncovered.The algorithm's flexibility and robust performance in earthquake clustering makes it a valuable tool for exploring seismicity characteristics,offering new insights into earthquake clustering and the spatiotemporal patterns of seismic activity.展开更多
文章以幂函数变换为研究对象,从背景值误差和还原误差的角度分析了幂函数变换对GM(1,1)模型建模精度的影响,论证了幂函数变换的GM(1,1)模型(PFNGM(1,1)模型)具有逼近无偏性,能在可忽略的误差范围内实现对白指数序列的预测无偏性。实例...文章以幂函数变换为研究对象,从背景值误差和还原误差的角度分析了幂函数变换对GM(1,1)模型建模精度的影响,论证了幂函数变换的GM(1,1)模型(PFNGM(1,1)模型)具有逼近无偏性,能在可忽略的误差范围内实现对白指数序列的预测无偏性。实例应用结果表明,其建模精度和预测效果均优于无偏GM(1,1)模型和离散GM(1,1)模型。为将适宜建模序列拓展至近似非齐次指数序列和季节波动序列,同时保留幂函数变换可以有效降低背景值误差对建模精度影响的优势,将幂函数变换与平移变换相结合构建了PFNGM(1,1)模型,将幂函数变换与季节性GM(1,1)模型(SGM(1,1)模型)相结合构建了PFSGM(1,1)模型。实例应用结果表明,PFNGM(1,1)模型的建模精度和预测效果均优于背景值改进的NGM(1,1, k )模型和ONGM(1,1, k,c )模型,PFSGM(1,1)模型的建模精度和预测效果均优于SGM(1,1)模型,验证了两种模型的有效性。展开更多
基金supported by the National Key R&D Program of China(No.2023YFB3712504)the National Natural Science Foundation of China(Nos.22273038,22073043,and 22033004)。
文摘Accurate description of noncova-lent interactions in large systems is challenging due to the require-ment of high-level electron corre-lation methods.The generalized energy-based fragmentation(GEBF)approach,in conjunc-tion with the domain-based local pair natural orbital(DLPNO)method,has been applied to assess the average binding energies(ABEs)of large benzene clus-ters,specifically(C6H6)13,at the coupled cluster singles and doubles with perturbative triples correction[CCSD(T)]level and the complete basis set(CBS)limit.Utilizing GEBF-DLPNO-CCSD(T)/CBS ABEs as benchmarks,various DFT functionals were evaluated.It was found that several functionals with empirical dispersion correction,including M06-2X-D3,B3LYP-D3(BJ),and PBE-D3(BJ),provide accurate descriptions of the ABEs for(C6H6)13 clusters.Additionally,the M06-2X-D3 functional was used to calculate the ABEs and relative stabili-ties of(C6H6)n clusters for n=11,12,13,14,and 15 revealing that the(C6H6)13 cluster ex-hibits the highest relative stability.These findings align with experimental evidence suggest-ing that n=13 is one of the magic numbers for benzene clusters(C6H6)n,with n≤30.
基金supported by the National Key Research and Development Program of China(Grant Nos.2021YFC3000705 and 2021YFC3000705-05)the National Natural Science Foundation of China(Grant No.42074049)the Youth Innovation Promotion Association of the Chinese Academy of Sciences(Grant No.2023471).
文摘We propose a robust earthquake clustering method:the Bayesian Gaussian mixture model with nearest-neighbor distance(BGMM-NND)algorithm.Unlike the conventional nearest neighbor distance method,the BGMM-NND algorithm eliminates the need for hyperparameter tuning or reliance on fixed thresholds,offering enhanced flexibility for clustering across varied seismic scales.By integrating cumulative probability and BGMM with principal component analysis(PCA),the BGMM-NND algorithm effectively distinguishes between background and triggered earthquakes while maintaining the magnitude component and resolving the issue of excessively large spatial cluster domains.We apply the BGMM-NND algorithm to the Sichuan–Yunnan seismic catalog from 1971 to 2024,revealing notable variations in earthquake frequency,triggering characteristics,and recurrence patterns across different fault zones.Distinct clustering and triggering behaviors are identified along different segments of the Longmenshan Fault.Multiple seismic modes,namely,the short-distance mode,the medium-distance mode,the repeating-like mode,the uniform background mode,and the Wenchuan mode,are uncovered.The algorithm's flexibility and robust performance in earthquake clustering makes it a valuable tool for exploring seismicity characteristics,offering new insights into earthquake clustering and the spatiotemporal patterns of seismic activity.
文摘文章以幂函数变换为研究对象,从背景值误差和还原误差的角度分析了幂函数变换对GM(1,1)模型建模精度的影响,论证了幂函数变换的GM(1,1)模型(PFNGM(1,1)模型)具有逼近无偏性,能在可忽略的误差范围内实现对白指数序列的预测无偏性。实例应用结果表明,其建模精度和预测效果均优于无偏GM(1,1)模型和离散GM(1,1)模型。为将适宜建模序列拓展至近似非齐次指数序列和季节波动序列,同时保留幂函数变换可以有效降低背景值误差对建模精度影响的优势,将幂函数变换与平移变换相结合构建了PFNGM(1,1)模型,将幂函数变换与季节性GM(1,1)模型(SGM(1,1)模型)相结合构建了PFSGM(1,1)模型。实例应用结果表明,PFNGM(1,1)模型的建模精度和预测效果均优于背景值改进的NGM(1,1, k )模型和ONGM(1,1, k,c )模型,PFSGM(1,1)模型的建模精度和预测效果均优于SGM(1,1)模型,验证了两种模型的有效性。