This work focuses on the evaluation of the seismic hazard for Romania using earthquake catalogues generated by a Monte Carlo approach. The seismicity of Romania can be attributed to the Vrancea intermediate-depth seis...This work focuses on the evaluation of the seismic hazard for Romania using earthquake catalogues generated by a Monte Carlo approach. The seismicity of Romania can be attributed to the Vrancea intermediate-depth seismic source and to 13 other crustal seismic sources. The recurrence times of large magnitude seismic events(both crustal and subcrustal), as well as the moment release rates are computed using simulated earthquake catalogues. The results show that the largest contribution to the overall moment release for the crustal seismic sources is from the seismic regions in Bulgaria, while the seismic regions in Romania contribute less than 5% of the overall moment release. In addition, the computations show that the moment release rate for the Vrancea subcrustal seismic source is about ten times larger than that of all the crustal seismic sources. Finally, the Monte Carlo approach is used to evaluate the seismic hazard for 20 cities in Romania with populations larger than 100,000 inhabitants. The results show some differences between the seismic hazard values obtained through Monte-Carlo simulation and those in the Romanian seismic design code P100-1/2013, notably for cities situated in the western part of Romania that are influenced by local crustal seismic sources.展开更多
The Ludian County of Yunnan Province in southwestern China was struck by an Ms6.5 earthquake on August 3, 2014, which was another destructive event following the Ms8.0 Wenchuan earthquake in 2008, Ms7.1 Yushu earthqua...The Ludian County of Yunnan Province in southwestern China was struck by an Ms6.5 earthquake on August 3, 2014, which was another destructive event following the Ms8.0 Wenchuan earthquake in 2008, Ms7.1 Yushu earthquake in 2010, and Ms7.0 Lushan earthquake in 2013. National Strong-Motion Observation Network System of China collected 74 strong motion recordings, which the maximum peak ground acceleration recorded by the 053LLT station in Longtoushan Town was 949 cm/s2 in E-W component. The observed PGAs and spectral ordinates were compared with ground-motion prediction equation in China and the NGA-West2 developed by Pacific Earthquake Engineering Researcher Center. This earthquake is considered as the first case for testing applicability of NGA-West2 in China. Results indicate that the observed PGAs and the 5 % damped pseudo-response spectral accelerations are significantly lower than the pre- dicted ones. The field survey around some typical strong motion stations verified that the earthquake damage was consistent with the official isoseismal by China Earthquake Administration.展开更多
When evaluating an area's seismic risk or resilience,it is necessary to use the spatial correlation to analyze the ground motion parameters of multiple sites together in an earthquake.These two large earthquakes i...When evaluating an area's seismic risk or resilience,it is necessary to use the spatial correlation to analyze the ground motion parameters of multiple sites together in an earthquake.These two large earthquakes in Türkiye provided the possibility for spatial correlation analysis of ground motion intensity measurements in this area.Based on the strong motion records provided by The Disaster and Emergency Management Authority of Türkiye(AFAD),this study uses the local ground motion prediction equation in Türkiye to give spatial correlation analysis of Intensity Measurements.This study gives an exponential model based on a semivariogram and compares it with the correlation model obtained from previous studies.展开更多
The high frequency decay parameter κ has been considered as one of the important parameters required in the simulation of earthquake strong ground motions necessary for the proper evaluation of seismic hazard of a re...The high frequency decay parameter κ has been considered as one of the important parameters required in the simulation of earthquake strong ground motions necessary for the proper evaluation of seismic hazard of a region. The present study estimated “κ” for the highly seismic active region of North East India. The spectral analysis of 598 accelerograms of 32 earthquakes has been done using [1] approach for this purpose. The average values of “κ” have been found to be 0.049, 0.047 and 0.040 for L-, T- and V-component respectively. The distance dependence of κ is not significant in the region. The κ 0 (κ at R = 0) for soft rock stations is found to be more than those of hard rock sites in consistent with other similar studies. The correlation between “κ” and earthquake magnitude at most of the stations for the region under study is not significant which indicates that κ depends on the site conditions in the region. The κ values estimated in the present study are useful for the evaluation of seismic hazard of the region.展开更多
A probabilistic seismic hazard analysis was performed to generate seismic hazard maps for Jamaica. The analysis was then conducted using a standard logic-tree approach that allowed systematically taking into account t...A probabilistic seismic hazard analysis was performed to generate seismic hazard maps for Jamaica. The analysis was then conducted using a standard logic-tree approach that allowed systematically taking into account the model-based (i.e., epistemic) uncertainty and its influence on the computed ground motion parameters. Hazard computations have been performed using a grid of sites with a space of 0.05 degrees. Two different computation methodologies have been adopted: the standard approach based on the definition of appropriate seismogenic sources and the zone-free approach, which overcomes the ambiguities related with the definition of the seismic sources solely reflecting the characteristics of the earthquake catalogue. A comprehensive and updated earthquake catalogue for Jamaica has been compiled for the years 1551-2010 and new empirical relationships amongst magnitudes Mze-Ms and Mw-mb have been developed for the region. Uniform hazard spectra and their uncertainty have been calculated for the horizontal component of ground motion for rock site conditions and five return periods (95, 475, 975, 2,475 and 4,975 years) and spectral accelerations for 34 structural periods ranging from 0 to 3 s, and 5% of critical damping. The spectral accelerations have been calculated to allow the definition of seismic hazard in Jamaica according to the International Building Code 2012. The disaggregation analysis for Kingston Metropolitan Area suggests that the magnitude-distance pair that contributes most to the hazard corresponds to events with M 7.8 and M 7.0 in the Enriquillo Plantain Garden Fault and the Jamaican Faults at a distance of 28 km and 18 km for short and long period structures respectively corresponding to 2,475 years return period. However, for long period structures, a substantial contribution is found for a M 8.2 at a distance of 198 km in the Oriente Fault Zone.展开更多
基金Romanian Ministry of Education and Scientific Research (MECS) under the Grant Number 72/2012
文摘This work focuses on the evaluation of the seismic hazard for Romania using earthquake catalogues generated by a Monte Carlo approach. The seismicity of Romania can be attributed to the Vrancea intermediate-depth seismic source and to 13 other crustal seismic sources. The recurrence times of large magnitude seismic events(both crustal and subcrustal), as well as the moment release rates are computed using simulated earthquake catalogues. The results show that the largest contribution to the overall moment release for the crustal seismic sources is from the seismic regions in Bulgaria, while the seismic regions in Romania contribute less than 5% of the overall moment release. In addition, the computations show that the moment release rate for the Vrancea subcrustal seismic source is about ten times larger than that of all the crustal seismic sources. Finally, the Monte Carlo approach is used to evaluate the seismic hazard for 20 cities in Romania with populations larger than 100,000 inhabitants. The results show some differences between the seismic hazard values obtained through Monte-Carlo simulation and those in the Romanian seismic design code P100-1/2013, notably for cities situated in the western part of Romania that are influenced by local crustal seismic sources.
基金supported by the Science Foundation of Institute of Engineering Mechanics, China Earthquake Administration (CEA) under Grant No. 2014B06the National Natural Science Foundation of China Nos. 51308515 and 51278473
文摘The Ludian County of Yunnan Province in southwestern China was struck by an Ms6.5 earthquake on August 3, 2014, which was another destructive event following the Ms8.0 Wenchuan earthquake in 2008, Ms7.1 Yushu earthquake in 2010, and Ms7.0 Lushan earthquake in 2013. National Strong-Motion Observation Network System of China collected 74 strong motion recordings, which the maximum peak ground acceleration recorded by the 053LLT station in Longtoushan Town was 949 cm/s2 in E-W component. The observed PGAs and spectral ordinates were compared with ground-motion prediction equation in China and the NGA-West2 developed by Pacific Earthquake Engineering Researcher Center. This earthquake is considered as the first case for testing applicability of NGA-West2 in China. Results indicate that the observed PGAs and the 5 % damped pseudo-response spectral accelerations are significantly lower than the pre- dicted ones. The field survey around some typical strong motion stations verified that the earthquake damage was consistent with the official isoseismal by China Earthquake Administration.
基金jointly supported by the National Natural Science Foundation of China U1901602,U2239252)the National Key R&D Program of China(No.2019YFE0115700)+1 种基金the Scientific Research Fund of Institute of Engineering Mechanics,China Earthquake Administration(Grant No.2021EEEVL0202)the Natural Science Foundation of Heilongjiang Province(LH2020E021)。
文摘When evaluating an area's seismic risk or resilience,it is necessary to use the spatial correlation to analyze the ground motion parameters of multiple sites together in an earthquake.These two large earthquakes in Türkiye provided the possibility for spatial correlation analysis of ground motion intensity measurements in this area.Based on the strong motion records provided by The Disaster and Emergency Management Authority of Türkiye(AFAD),this study uses the local ground motion prediction equation in Türkiye to give spatial correlation analysis of Intensity Measurements.This study gives an exponential model based on a semivariogram and compares it with the correlation model obtained from previous studies.
文摘The high frequency decay parameter κ has been considered as one of the important parameters required in the simulation of earthquake strong ground motions necessary for the proper evaluation of seismic hazard of a region. The present study estimated “κ” for the highly seismic active region of North East India. The spectral analysis of 598 accelerograms of 32 earthquakes has been done using [1] approach for this purpose. The average values of “κ” have been found to be 0.049, 0.047 and 0.040 for L-, T- and V-component respectively. The distance dependence of κ is not significant in the region. The κ 0 (κ at R = 0) for soft rock stations is found to be more than those of hard rock sites in consistent with other similar studies. The correlation between “κ” and earthquake magnitude at most of the stations for the region under study is not significant which indicates that κ depends on the site conditions in the region. The κ values estimated in the present study are useful for the evaluation of seismic hazard of the region.
文摘A probabilistic seismic hazard analysis was performed to generate seismic hazard maps for Jamaica. The analysis was then conducted using a standard logic-tree approach that allowed systematically taking into account the model-based (i.e., epistemic) uncertainty and its influence on the computed ground motion parameters. Hazard computations have been performed using a grid of sites with a space of 0.05 degrees. Two different computation methodologies have been adopted: the standard approach based on the definition of appropriate seismogenic sources and the zone-free approach, which overcomes the ambiguities related with the definition of the seismic sources solely reflecting the characteristics of the earthquake catalogue. A comprehensive and updated earthquake catalogue for Jamaica has been compiled for the years 1551-2010 and new empirical relationships amongst magnitudes Mze-Ms and Mw-mb have been developed for the region. Uniform hazard spectra and their uncertainty have been calculated for the horizontal component of ground motion for rock site conditions and five return periods (95, 475, 975, 2,475 and 4,975 years) and spectral accelerations for 34 structural periods ranging from 0 to 3 s, and 5% of critical damping. The spectral accelerations have been calculated to allow the definition of seismic hazard in Jamaica according to the International Building Code 2012. The disaggregation analysis for Kingston Metropolitan Area suggests that the magnitude-distance pair that contributes most to the hazard corresponds to events with M 7.8 and M 7.0 in the Enriquillo Plantain Garden Fault and the Jamaican Faults at a distance of 28 km and 18 km for short and long period structures respectively corresponding to 2,475 years return period. However, for long period structures, a substantial contribution is found for a M 8.2 at a distance of 198 km in the Oriente Fault Zone.