为探究雨养和灌溉条件下氮肥后移对冬小麦面粉加工品质的影响及其谷蛋白形成机制,本研究选用强筋小麦品种中麦886(ZM886)和中筋小麦品种中麦30(ZM30)为试验材料,在雨养处理(W)和灌溉处理(D)条件下,总施氮量为210 kg hm^(-2)的基础上设置...为探究雨养和灌溉条件下氮肥后移对冬小麦面粉加工品质的影响及其谷蛋白形成机制,本研究选用强筋小麦品种中麦886(ZM886)和中筋小麦品种中麦30(ZM30)为试验材料,在雨养处理(W)和灌溉处理(D)条件下,总施氮量为210 kg hm^(-2)的基础上设置2个追氮处理:常规氮肥处理(N1:底肥50%+拔节肥50%)和氮肥后移处理(N2:底肥50%+拔节肥30%+孕穗肥20%),研究其对冬小麦籽粒谷蛋白大聚合体(GMP)形成和面粉加工品质的影响。试验结果表明,2小麦品种产量最大值均出现在WN2处理,其中ZM30在WN2处理下产量较其他处理平均提高12.36%(2021—2022年)和13.97%(2022—2023年),ZM886同期分别提高9.85%和18.31%。在花后10 d检测到籽粒中高分子量谷蛋白亚基(HMW-GS)和低分子量谷蛋白亚基(LMW-GS),ZM886在DN2处理下HMW-GS、LMW-GS、free-SH、-S-S-含量最高,ZM30则在WN2处理达到峰值。花后30 d检测到2小麦品种籽粒GMP的存在,ZM886在DN2下较其他处理增高5.40%~33.90%,ZM30在WN2下增高2.50%~14.70%,同时分别在2处理下增加了GMP大颗粒体积和表面积百分比,从而不同程度地提高面粉加工品质。小麦籽粒GMP含量与HMW-GS含量和LMW-GS含量呈正相关,ZM886籽粒GMP含量与面团形成时间和稳定时间呈正相关,但与产量呈负相关;ZM30籽粒GMP含量与产量呈极显著正相关,但与吸水率呈负相关。综上,本试验条件下,氮肥后移通过调控谷蛋白亚基合成,提升GMP含量,优化GMP粒径分布。因小麦产量而言,适宜的水氮配置为:灌溉处理下,氮肥施用底肥50%+拔节肥30%+孕穗肥20%;因小麦品质而言,适宜的水氮配置因品种类型而异:强筋小麦中麦886为在雨养处理下,氮肥施用底肥50%+拔节肥30%+孕穗肥20%,中筋小麦中麦30为在灌溉处理下,氮肥施用底肥50%+拔节肥30%+孕穗肥20%。展开更多
The study was carried out in the Tahoua region at the market gardening sites of the Taddis 1 and 2 valley. Small-scale pumping irrigation is one of the most interesting uses of solar energy. The objective of this stud...The study was carried out in the Tahoua region at the market gardening sites of the Taddis 1 and 2 valley. Small-scale pumping irrigation is one of the most interesting uses of solar energy. The objective of this study is to carry out a comparative analysis of two dewatering pumping systems (Solar Kit and GMP) for water mobilization on a certain number of criteria such as sustainable use, economic aspect and performance. To achieve this, the adapted methodology consisted first of all in the development of a data collection tool in the field. Then flow measurements, estimation of fuel consumption, pressure height, etc., were carried out. Thus, the data collection involved a sample of 120 irrigators who had to use the two (2) types of pumping systems. The collected data were analyzed and processed with appropriate software. The results of the study show that the two pumping systems studied have strengths and constraints. Thus, the solar pumping system has a significant investment cost, very low maintenance and a low operating cost. On the other hand, the system with a generator has a relatively low investment cost (25 to 30 times less than solar), but a relatively high operating, upkeep and maintenance cost. He adds that these assets and constraints must be taken into consideration when an investment is made. This study shows that 74% of producers use GMP compared to 26% who use the Solar Kit. But in practice, the Solar Kit is more reliable for producers from the point of view of planted area, environmental management and investment costs, supply of fuel and lubricant. These results indicate better performance of the solar pumping system compared to GMP at the study sites.展开更多
文摘为探究雨养和灌溉条件下氮肥后移对冬小麦面粉加工品质的影响及其谷蛋白形成机制,本研究选用强筋小麦品种中麦886(ZM886)和中筋小麦品种中麦30(ZM30)为试验材料,在雨养处理(W)和灌溉处理(D)条件下,总施氮量为210 kg hm^(-2)的基础上设置2个追氮处理:常规氮肥处理(N1:底肥50%+拔节肥50%)和氮肥后移处理(N2:底肥50%+拔节肥30%+孕穗肥20%),研究其对冬小麦籽粒谷蛋白大聚合体(GMP)形成和面粉加工品质的影响。试验结果表明,2小麦品种产量最大值均出现在WN2处理,其中ZM30在WN2处理下产量较其他处理平均提高12.36%(2021—2022年)和13.97%(2022—2023年),ZM886同期分别提高9.85%和18.31%。在花后10 d检测到籽粒中高分子量谷蛋白亚基(HMW-GS)和低分子量谷蛋白亚基(LMW-GS),ZM886在DN2处理下HMW-GS、LMW-GS、free-SH、-S-S-含量最高,ZM30则在WN2处理达到峰值。花后30 d检测到2小麦品种籽粒GMP的存在,ZM886在DN2下较其他处理增高5.40%~33.90%,ZM30在WN2下增高2.50%~14.70%,同时分别在2处理下增加了GMP大颗粒体积和表面积百分比,从而不同程度地提高面粉加工品质。小麦籽粒GMP含量与HMW-GS含量和LMW-GS含量呈正相关,ZM886籽粒GMP含量与面团形成时间和稳定时间呈正相关,但与产量呈负相关;ZM30籽粒GMP含量与产量呈极显著正相关,但与吸水率呈负相关。综上,本试验条件下,氮肥后移通过调控谷蛋白亚基合成,提升GMP含量,优化GMP粒径分布。因小麦产量而言,适宜的水氮配置为:灌溉处理下,氮肥施用底肥50%+拔节肥30%+孕穗肥20%;因小麦品质而言,适宜的水氮配置因品种类型而异:强筋小麦中麦886为在雨养处理下,氮肥施用底肥50%+拔节肥30%+孕穗肥20%,中筋小麦中麦30为在灌溉处理下,氮肥施用底肥50%+拔节肥30%+孕穗肥20%。
文摘The study was carried out in the Tahoua region at the market gardening sites of the Taddis 1 and 2 valley. Small-scale pumping irrigation is one of the most interesting uses of solar energy. The objective of this study is to carry out a comparative analysis of two dewatering pumping systems (Solar Kit and GMP) for water mobilization on a certain number of criteria such as sustainable use, economic aspect and performance. To achieve this, the adapted methodology consisted first of all in the development of a data collection tool in the field. Then flow measurements, estimation of fuel consumption, pressure height, etc., were carried out. Thus, the data collection involved a sample of 120 irrigators who had to use the two (2) types of pumping systems. The collected data were analyzed and processed with appropriate software. The results of the study show that the two pumping systems studied have strengths and constraints. Thus, the solar pumping system has a significant investment cost, very low maintenance and a low operating cost. On the other hand, the system with a generator has a relatively low investment cost (25 to 30 times less than solar), but a relatively high operating, upkeep and maintenance cost. He adds that these assets and constraints must be taken into consideration when an investment is made. This study shows that 74% of producers use GMP compared to 26% who use the Solar Kit. But in practice, the Solar Kit is more reliable for producers from the point of view of planted area, environmental management and investment costs, supply of fuel and lubricant. These results indicate better performance of the solar pumping system compared to GMP at the study sites.