期刊文献+
共找到7,821篇文章
< 1 2 250 >
每页显示 20 50 100
Spatially Constrained Variational Autoencoder for Geochemical Data Denoising and Uncertainty Quantification
1
作者 Dazheng Huang Renguang Zuo +1 位作者 Jian Wang Raimon Tolosana-Delgado 《Journal of Earth Science》 2025年第5期2317-2336,共20页
Geochemical survey data are essential across Earth Science disciplines but are often affected by noise,which can obscure important geological signals and compromise subsequent prediction and interpretation.Quantifying... Geochemical survey data are essential across Earth Science disciplines but are often affected by noise,which can obscure important geological signals and compromise subsequent prediction and interpretation.Quantifying prediction uncertainty is hence crucial for robust geoscientific decision-making.This study proposes a novel deep learning framework,the Spatially Constrained Variational Autoencoder(SC-VAE),for denoising geochemical survey data with integrated uncertainty quantification.The SC-VAE incorporates spatial regularization,which enforces spatial coherence by modeling inter-sample relationships directly within the latent space.The performance of the SC-VAE was systematically evaluated against a standard Variational Autoencoder(VAE)using geochemical data from the gold polymetallic district in the northwestern part of Sichuan Province,China.Both models were optimized using Bayesian optimization,with objective functions specifically designed to maintain essential geostatistical characteristics.Evaluation metrics include variogram analysis,quantitative measures of spatial interpolation accuracy,visual assessment of denoised maps,and statistical analysis of data distributions,as well as decomposition of uncertainties.Results show that the SC-VAE achieves superior noise suppression and better preservation of spatial structure compared to the standard VAE,as demonstrated by a significant reduction in the variogram nugget effect and an increased partial sill.The SC-VAE produces denoised maps with clearer anomaly delineation and more regularized data distributions,effectively mitigating outliers and reducing kurtosis.Additionally,it delivers improved interpolation accuracy and spatially explicit uncertainty estimates,facilitating more reliable and interpretable assessments of prediction confidence.The SC-VAE framework thus provides a robust,geostatistically informed solution for enhancing the quality and interpretability of geochemical data,with broad applicability in mineral exploration,environmental geochemistry,and other Earth Science domains. 展开更多
关键词 geochemical data denoising spatially constrained variational autoencoder GEOSTATISTICS bayesian optimization uncertainty analysis GEOCHEMISTRY
原文传递
PARE:Privacy-Preserving Data Reliability Evaluation for Spatial Crowdsourcing in Internet of Things
2
作者 Peicong He Yang Xin Yixian Yang 《Computers, Materials & Continua》 SCIE EI 2024年第8期3067-3084,共18页
The proliferation of intelligent,connected Internet of Things(IoT)devices facilitates data collection.However,task workers may be reluctant to participate in data collection due to privacy concerns,and task requesters... The proliferation of intelligent,connected Internet of Things(IoT)devices facilitates data collection.However,task workers may be reluctant to participate in data collection due to privacy concerns,and task requesters may be concerned about the validity of the collected data.Hence,it is vital to evaluate the quality of the data collected by the task workers while protecting privacy in spatial crowdsourcing(SC)data collection tasks with IoT.To this end,this paper proposes a privacy-preserving data reliability evaluation for SC in IoT,named PARE.First,we design a data uploading format using blockchain and Paillier homomorphic cryptosystem,providing unchangeable and traceable data while overcoming privacy concerns.Secondly,based on the uploaded data,we propose a method to determine the approximate correct value region without knowing the exact value.Finally,we offer a data filtering mechanism based on the Paillier cryptosystem using this value region.The evaluation and analysis results show that PARE outperforms the existing solution in terms of performance and privacy protection. 展开更多
关键词 spatial crowdsourcing PRIVACY-PRESERVING data evaluation IOT blockchain
在线阅读 下载PDF
Large-scale spatial data visualization method based on augmented reality
3
作者 Xiaoning QIAO Wenming XIE +4 位作者 Xiaodong PENG Guangyun LI Dalin LI Yingyi GUO Jingyi REN 《虚拟现实与智能硬件(中英文)》 EI 2024年第2期132-147,共16页
Background A task assigned to space exploration satellites involves detecting the physical environment within a certain space.However,space detection data are complex and abstract.These data are not conducive for rese... Background A task assigned to space exploration satellites involves detecting the physical environment within a certain space.However,space detection data are complex and abstract.These data are not conducive for researchers'visual perceptions of the evolution and interaction of events in the space environment.Methods A time-series dynamic data sampling method for large-scale space was proposed for sample detection data in space and time,and the corresponding relationships between data location features and other attribute features were established.A tone-mapping method based on statistical histogram equalization was proposed and applied to the final attribute feature data.The visualization process is optimized for rendering by merging materials,reducing the number of patches,and performing other operations.Results The results of sampling,feature extraction,and uniform visualization of the detection data of complex types,long duration spans,and uneven spatial distributions were obtained.The real-time visualization of large-scale spatial structures using augmented reality devices,particularly low-performance devices,was also investigated.Conclusions The proposed visualization system can reconstruct the three-dimensional structure of a large-scale space,express the structure and changes in the spatial environment using augmented reality,and assist in intuitively discovering spatial environmental events and evolutionary rules. 展开更多
关键词 Large-scale spatial data analysis Visual analysis technology Augmented reality 3D reconstruction Space environment
在线阅读 下载PDF
A spatial building damage inventory of the 2022 Luding Earthquake and its preliminary vulnerability analysis
4
作者 TANG Chenxiao FENG Xuan 《Journal of Mountain Science》 2025年第5期1691-1706,共16页
Spatial seismic vulnerability assessments are primally conducted at the community and grid level,using heuristic and empirical approaches.Building-based spatial statistical vulnerability models are rare because of dat... Spatial seismic vulnerability assessments are primally conducted at the community and grid level,using heuristic and empirical approaches.Building-based spatial statistical vulnerability models are rare because of data limitations.Generating open-access spatial inventories that document seismic damage and building attributes and test their effectiveness in assessing damage would promote the advancement of spatial vulnerability assessment.The 2022 Mw 6.7 Luding earthquake in the western Sichuan Province of China provides an opportunity to validate this approach.The local government urgently dispatched experts to survey building damage,marking all buildings with damage class stickers.In this work,we sampled 2889 buildings as GPS points and documented the damage classes and building attributes,including structure type,number of floors,and age.A polygon-based digital inventory was generated by digitizing the rooftops of the sampled buildings and importing the attributes.Statistical regressions were created by plotting damage against shaking intensity and PGA,and Random Forest modeling was carried out considering not only buildings and seismic parameters but also environmental factors.The result indicates that statistical regressions have notable uncertainties,and the Random Forest model shows a≥79%accuracy.Topographical factors showed notable importance in the Random Forest modeling.This work provides an open-access seismic building damage inventory and demonstrates its potential for damage prediction and vulnerability assessment. 展开更多
关键词 EARTHQUAKE VULNERABILITY Building damage Building performance spatial data
原文传递
Marine Ship Detection Based on Twin Feature Pyramid Network and Spatial Attention
5
作者 Huagang Jin Yu Zhou 《Computers, Materials & Continua》 2025年第10期751-768,共18页
Recently,ship detection technology has been applied extensively in the marine security monitoring field.However,achieving accurate marine ship detection still poses significant challenges due to factors such as varyin... Recently,ship detection technology has been applied extensively in the marine security monitoring field.However,achieving accurate marine ship detection still poses significant challenges due to factors such as varying scales,slightly occluded objects,uneven illumination,and sea clutter.To address these issues,we propose a novel ship detection approach,i.e.,the Twin Feature Pyramid Network and Data Augmentation(TFPN-DA),which mainly consists of three modules.First,to eliminate the negative effects of slightly occluded objects and uneven illumination,we propose the Spatial Attention within the Twin Feature Pyramid Network(SA-TFPN)method,which is based on spatial attention to reconstruct the feature pyramid.Second,the ROI Feature Module(ROIFM)is introduced into the SA-TFPN,which is used to enhance specific crucial details from multi-scale features for object regression and classification.Additionally,data augmentation strategies such as spatial affine transformation and noise processing,are developed to optimize the data sample distribution.A self-construct dataset is used to train the detection model,and the experiments conducted on the dataset demonstrate the effectiveness of our model. 展开更多
关键词 Marine ship detection deep learning FPN faster-RCNN spatial attention data augmentation
在线阅读 下载PDF
Quality analysis of AIS data derived from Haiyang(HY)series satellites
6
作者 Xi Ding Songtao Ai +3 位作者 Jiajun Ling Meng Cui Jiachun An Lei Huang 《Acta Oceanologica Sinica》 2025年第7期187-202,共16页
With the globalization of the economy,maritime trade has surged,posing challenges in the supervision of marine vessel activities.An automatic identification system(AIS)is an effective means of shipping traffic service... With the globalization of the economy,maritime trade has surged,posing challenges in the supervision of marine vessel activities.An automatic identification system(AIS)is an effective means of shipping traffic service,but many uncertainties exist regarding its data quality.In this study,the AIS data from Haiyang(HY)series of satellites were used to assess the data quality,analyze the global ship trajectory distribution and update frequencies from 2019 to 2023.Through the analysis of maritime mobile service identity numbers,we identified 340185 unique vessels,80.1%of which adhered to the International Telecommunication Union standards.Approximately 49.7%of ships exhibit significant data gaps,and 1.1%show inconsistencies in their AIS data sources.In the central Pacific Ocean at low latitudes and along the coast of South America(30°-60°S),a heightened incidence of abnormal trajectories of ships has been consistently observed,particularly in areas associated with fishing activities.According to the spatial distribution of ship trajectories,AIS data exhibit numerous deficiencies,particularly in high-traffic regions such as the East China Sea and South China Sea.In contrast,ship trajectories in the polar regions,characterized by high latitudes,are relatively comprehensive.With the increased number of HY satellites equipped with AIS receivers,the quantity of trajectory points displays a growing trend,leading to increasingly complete trajectories.This trend highlights the significant potential of using AIS data acquired from HY satellites to increase the accuracy of vessel tracking. 展开更多
关键词 AIS ship trajectory data quality spatial distribution Haiyang(HY)satellite
在线阅读 下载PDF
Estimating the carbon emission reduction potential of using carbonoriented demand response for data centers:A case study in China
7
作者 Bojun Du Hongyang Jia +3 位作者 Yaowang Li Ershun Du Ning Zhang Dong Liang 《iEnergy》 2025年第1期54-64,共11页
The rapid advancement of artificial intelligence(AI)has significantly increased the computational load on data centers.AI-related computational activities consume considerable electricity and result in substantial car... The rapid advancement of artificial intelligence(AI)has significantly increased the computational load on data centers.AI-related computational activities consume considerable electricity and result in substantial carbon emissions.To mitigate these emissions,future data centers should be strategically planned and operated to fully utilize renewable energy resources while meeting growing computational demands.This paper aims to investigate how much carbon emission reduction can be achieved by using a carbonoriented demand response to guide the optimal planning and operation of data centers.A carbon-oriented data center planning model is proposed that considers the carbon-oriented demand response of the AI load.In the planning model,future operation simulations comprehensively coordinate the temporal‒spatial flexibility of computational loads and the quality of service(QoS).An empirical study based on the proposed models is conducted on real-world data from China.The results from the empirical analysis show that newly constructed data centers are recommended to be built in Gansu Province,Ningxia Hui Autonomous Region,Sichuan Province,Inner Mongolia Autonomous Region,and Qinghai Province,accounting for 57%of the total national increase in server capacity.33%of the computational load from Eastern China should be transferred to the West,which could reduce the overall load carbon emissions by 26%. 展开更多
关键词 data center temporal and spatial flexibility carbon-oriented demand response carbon reduction planning and operation simulation
在线阅读 下载PDF
Seismic data analysis based on spatial subsets 被引量:2
8
作者 蔡希玲 刘学伟 +2 位作者 李虹 钱宇明 吕英梅 《Applied Geophysics》 SCIE CSCD 2009年第4期384-392,395,共10页
There are some limitations when we apply conventional methods to analyze the massive amounts of seismic data acquired with high-density spatial sampling since processors usually obtain the properties of raw data from ... There are some limitations when we apply conventional methods to analyze the massive amounts of seismic data acquired with high-density spatial sampling since processors usually obtain the properties of raw data from common shot gathers or other datasets located at certain points or along lines. We propose a novel method in this paper to observe seismic data on time slices from spatial subsets. The composition of a spatial subset and the unique character of orthogonal or oblique subsets are described and pre-stack subsets are shown by 3D visualization. In seismic data processing, spatial subsets can be used for the following aspects: (1) to check the trace distribution uniformity and regularity; (2) to observe the main features of ground-roll and linear noise; (3) to find abnormal traces from slices of datasets; and (4) to QC the results of pre-stack noise attenuation. The field data application shows that seismic data analysis in spatial subsets is an effective method that may lead to a better discrimination among various wavefields and help us obtain more information. 展开更多
关键词 spatial subset 3D visualization high density sampling noise attenuation data analysis
在线阅读 下载PDF
GPS probe map matching algorithm based on spatial data model 被引量:1
9
作者 王卫 过秀成 侯佳 《Journal of Southeast University(English Edition)》 EI CAS 2010年第3期461-465,共5页
To improve the performance of the traditional map matching algorithms in freeway traffic state monitoring systems using the low logging frequency GPS (global positioning system) probe data, a map matching algorithm ... To improve the performance of the traditional map matching algorithms in freeway traffic state monitoring systems using the low logging frequency GPS (global positioning system) probe data, a map matching algorithm based on the Oracle spatial data model is proposed. The algorithm uses the Oracle road network data model to analyze the spatial relationships between massive GPS positioning points and freeway networks, builds an N-shortest path algorithm to find reasonable candidate routes between GPS positioning points efficiently, and uses the fuzzy logic inference system to determine the final matched traveling route. According to the implementation with field data from Los Angeles, the computation speed of the algorithm is about 135 GPS positioning points per second and the accuracy is 98.9%. The results demonstrate the effectiveness and accuracy of the proposed algorithm for mapping massive GPS positioning data onto freeway networks with complex geometric characteristics. 展开更多
关键词 GPS probe map matching A-star algorithm fuzzy logic Oracle spatial data model
在线阅读 下载PDF
Scaling up the DBSCAN Algorithm for Clustering Large Spatial Databases Based on Sampling Technique 被引量:9
10
作者 Guan Ji hong 1, Zhou Shui geng 2, Bian Fu ling 3, He Yan xiang 1 1. School of Computer, Wuhan University, Wuhan 430072, China 2.State Key Laboratory of Software Engineering, Wuhan University, Wuhan 430072, China 3.College of Remote Sensin 《Wuhan University Journal of Natural Sciences》 CAS 2001年第Z1期467-473,共7页
Clustering, in data mining, is a useful technique for discovering interesting data distributions and patterns in the underlying data, and has many application fields, such as statistical data analysis, pattern recogni... Clustering, in data mining, is a useful technique for discovering interesting data distributions and patterns in the underlying data, and has many application fields, such as statistical data analysis, pattern recognition, image processing, and etc. We combine sampling technique with DBSCAN algorithm to cluster large spatial databases, and two sampling based DBSCAN (SDBSCAN) algorithms are developed. One algorithm introduces sampling technique inside DBSCAN, and the other uses sampling procedure outside DBSCAN. Experimental results demonstrate that our algorithms are effective and efficient in clustering large scale spatial databases. 展开更多
关键词 spatial databases data mining CLUSTERING sampling DBSCAN algorithm
在线阅读 下载PDF
Big spatial data for urban and environmental sustainability 被引量:5
11
作者 Bo Huang Jionghua Wang 《Geo-Spatial Information Science》 SCIE CSCD 2020年第2期125-140,共16页
Eighty percent of big data are associated with spatial information,and thus are Big Spatial Data(BSD).BSD provides new and great opportunities to rework problems in urban and environmental sustainability with advanced... Eighty percent of big data are associated with spatial information,and thus are Big Spatial Data(BSD).BSD provides new and great opportunities to rework problems in urban and environmental sustainability with advanced BSD analytics.To fully leverage the advantages of BSD,it is integrated with conventional data(e.g.remote sensing images)and improved methods are developed.This paper introduces four case studies:(1)Detection of polycentric urban structures;(2)Evaluation of urban vibrancy;(3)Estimation of population exposure to PM2.5;and(4)Urban land-use classification via deep learning.The results provide evidence that integrated methods can harness the advantages of both traditional data and BSD.Meanwhile,they can also improve the effectiveness of big data itself.Finally,this study makes three key recommendations for the development of BSD with regards to data fusion,data and predicting analytics,and theoretical modeling. 展开更多
关键词 BIG spatial data ANALYTICS review spatial modeling data FUSION
原文传递
An Improved Hilbert Curve for Parallel Spatial Data Partitioning 被引量:7
12
作者 MENG Lingkui HUANG Changqing ZHAO Chunyu LIN Zhiyong 《Geo-Spatial Information Science》 2007年第4期282-286,共5页
A novel Hilbert-curve is introduced for parallel spatial data partitioning, with consideration of the huge-amount property of spatial information and the variable-length characteristic of vector data items. Based on t... A novel Hilbert-curve is introduced for parallel spatial data partitioning, with consideration of the huge-amount property of spatial information and the variable-length characteristic of vector data items. Based on the improved Hilbert curve, the algorithm can be designed to achieve almost-uniform spatial data partitioning among multiple disks in parallel spatial databases. Thus, the phenomenon of data imbalance can be significantly avoided and search and query efficiency can be enhanced. 展开更多
关键词 parallel spatial database spatial data partitioning data imbalance Hilbert curve
在线阅读 下载PDF
Characteristics analysis on high density spatial sampling seismic data 被引量:12
13
作者 Cai Xiling Liu Xuewei +1 位作者 Deng Chunyan Lv Yingme 《Applied Geophysics》 SCIE CSCD 2006年第1期48-54,共7页
China's continental deposition basins are characterized by complex geological structures and various reservoir lithologies. Therefore, high precision exploration methods are needed. High density spatial sampling is a... China's continental deposition basins are characterized by complex geological structures and various reservoir lithologies. Therefore, high precision exploration methods are needed. High density spatial sampling is a new technology to increase the accuracy of seismic exploration. We briefly discuss point source and receiver technology, analyze the high density spatial sampling in situ method, introduce the symmetric sampling principles presented by Gijs J. O. Vermeer, and discuss high density spatial sampling technology from the point of view of wave field continuity. We emphasize the analysis of the high density spatial sampling characteristics, including the high density first break advantages for investigation of near surface structure, improving static correction precision, the use of dense receiver spacing at short offsets to increase the effective coverage at shallow depth, and the accuracy of reflection imaging. Coherent noise is not aliased and the noise analysis precision and suppression increases as a result. High density spatial sampling enhances wave field continuity and the accuracy of various mathematical transforms, which benefits wave field separation. Finally, we point out that the difficult part of high density spatial sampling technology is the data processing. More research needs to be done on the methods of analyzing and processing huge amounts of seismic data. 展开更多
关键词 high density spatial sampling symmetric sampling static correction noise suppression wave field separation and data processing.
在线阅读 下载PDF
Spatial Characteristics of Ancient Villages in Western Beijing Based on ASTER GDEM Data 被引量:3
14
作者 YUAN Lin HAN Weichu 《Journal of Landscape Research》 2018年第5期128-134,共7页
There are hundreds of villages in the western mountainous area of Beijing,of which quite a few have a profound history and form the settlement culture in the western part of Beijing.Taking dozens of ancient villages i... There are hundreds of villages in the western mountainous area of Beijing,of which quite a few have a profound history and form the settlement culture in the western part of Beijing.Taking dozens of ancient villages in Mentougou District as the research sample,the village space as the research object,based on ASTER GDEM database and quantitative analysis tools such as Global Mapper and ArcGIS,this study analyzed from the perspectives of altitude,topography,slope direction,and building density distribution,made a quantitative study on the spatial distribution and plane structure of ancient villages so that the law of village space with the characteristics of western Beijing was summarized to supplement and improve the relevant achievements in the research field of ancient villages in western Beijing. 展开更多
关键词 ANCIENT VILLAGES WESTERN BEIJING spatial characteristics ASTER GDEM data GIS
在线阅读 下载PDF
Unified Platform About Information Issuing,Integration and Management of Meta-Database and Spatial-Database Based on Geology Metadata Standard 被引量:1
15
作者 Tao Xue,Mingguang Diao School of Software,China University of Geosciences(Beijing),Beijing 100083,China. 《地学前缘》 EI CAS CSCD 北大核心 2009年第S1期288-288,共1页
With the deepening informationization of Resources & Environment Remote Sensing geological survey conducted,some potential problems and deficiency are:(1) shortage of unified-planed running environment;(2) inconsi... With the deepening informationization of Resources & Environment Remote Sensing geological survey conducted,some potential problems and deficiency are:(1) shortage of unified-planed running environment;(2) inconsistent methods of data integration;and(3) disadvantages of different performing ways of data integration.This paper solves the above problems through overall planning and design,constructs unified running environment, consistent methods of data integration and system structure in order to advance the informationization 展开更多
关键词 METAdata spatial dataBASE data INTEGRATION RESOURCES & environment remote sensing
在线阅读 下载PDF
A Construction Schema for Provincial Spatial Database of China 被引量:2
16
作者 WANG Yandong GONG Jianya 《Geo-Spatial Information Science》 2009年第1期25-32,共8页
In order to provide a provincial spatial database, this paper presents a scheme for spatial database construction to meet the needs of China. The objective and overall technical route of spatial database construction ... In order to provide a provincial spatial database, this paper presents a scheme for spatial database construction to meet the needs of China. The objective and overall technical route of spatial database construction are described. The logical and physical database models are designed. Key issues are addressed, such as integration of multi-scale heterogeneous spatial databases, spatial data version management based on metadata and integrative management of map cartography and spatial database. 展开更多
关键词 spatial data dataBASE CONSTRUCTION PROVINCIAL
原文传递
Behavior Mining of Spatial Objects with Data Field 被引量:2
17
作者 王树良 伍爵博 +2 位作者 程峰 金红 曾寔 《Geo-Spatial Information Science》 2009年第3期202-211,共10页
The advanced data mining technologies and the large quantities of remotely sensed Imagery provide a data mining opportunity with high potential for useful results. Extracting interesting patterns and rules from data s... The advanced data mining technologies and the large quantities of remotely sensed Imagery provide a data mining opportunity with high potential for useful results. Extracting interesting patterns and rules from data sets composed of images and associated ground data can be of importance in object identification, community planning, resource discovery and other areas. In this paper, a data field is presented to express the observed spatial objects and conduct behavior mining on them. First, most of the important aspects are discussed on behavior mining and its implications for the future of data mining. Furthermore, an ideal framework of the behavior mining system is proposed in the network environment. Second, the model of behavior mining is given on the observed spatial objects, including the objects described by the first feature data field and the main feature data field by means of the potential function. Finally, a case study about object identification in public is given and analyzed. The experimental results show that the new model is feasible in behavior mining. 展开更多
关键词 behavior mining data field spatial object identification spatial data mining
原文传递
A brief overview of current status of European spatial data infrastructures-relevant developments and perspectives for Bulgaria 被引量:2
18
作者 Lyubka Pashova Temenoujka Bandrova 《Geo-Spatial Information Science》 SCIE EI CSCD 2017年第2期97-108,共12页
The paper aims to present a concise overview of the current status of the national spatial data infrastructures(SDI)of the European Union(EU)member states combined with specific peculiarities for Bulgaria.Some major c... The paper aims to present a concise overview of the current status of the national spatial data infrastructures(SDI)of the European Union(EU)member states combined with specific peculiarities for Bulgaria.Some major challenges within the progress of the EU SDIs establishing,which is regulated by the European Directive INSPIRE(Infrastructure for spatial information in Europe)toward establishment of a SDI for environmental policies and activities,are marked out.Available comparative analyses of the main indicators for metadata,data-sets,and data services provided by EU member states are briefly discussed as a special attention is given to the Bulgarian progress.Recent achievements on accelerating the process of implementing the recommendations of the INSPIRE Directive in Bulgaria are outlined. 展开更多
关键词 spatial data infrastructure(SDI) INSPIRE Directive geospatial information Bulgaria
原文传递
DEVELOPMENT OF A GIS DATA MODEL WITH SPATIAL,TEMPORAL AND ATTRIBUTE COMPONENTS BASED ON OBJECT-ORIENTED APPROACH 被引量:2
19
作者 SHI Wenzhong ZHANG Minwen 《Geo-Spatial Information Science》 2000年第1期17-23,共7页
This paper presents a conceptual data model, the STA-model, for handling spatial, temporal and attribute aspects of objects in GIS. The model is developed on the basis of object-oriented modeling approach. This model ... This paper presents a conceptual data model, the STA-model, for handling spatial, temporal and attribute aspects of objects in GIS. The model is developed on the basis of object-oriented modeling approach. This model includes two major parts: (a) modeling the signal objects by STA-object elements, and (b) modeling relationships between STA-objects. As an example, the STA-model is applied for modeling land cover change data with spatial, temporal and attribute components. 展开更多
关键词 OBJECT-ORIENTATION GIS data modeling spatial temporal and attribute model
在线阅读 下载PDF
A geographical similarity-based sampling method of non-fire point data for spatial prediction of forest fires 被引量:1
20
作者 Quanli Xu Wenhui Li +1 位作者 Jing Liu Xiao Wang 《Forest Ecosystems》 SCIE CSCD 2023年第2期195-214,共20页
Understanding the mechanisms and risks of forest fires by building a spatial prediction model is an important means of controlling forest fires.Non-fire point data are important training data for constructing a model,... Understanding the mechanisms and risks of forest fires by building a spatial prediction model is an important means of controlling forest fires.Non-fire point data are important training data for constructing a model,and their quality significantly impacts the prediction performance of the model.However,non-fire point data obtained using existing sampling methods generally suffer from low representativeness.Therefore,this study proposes a non-fire point data sampling method based on geographical similarity to improve the quality of non-fire point samples.The method is based on the idea that the less similar the geographical environment between a sample point and an already occurred fire point,the greater the confidence in being a non-fire point sample.Yunnan Province,China,with a high frequency of forest fires,was used as the study area.We compared the prediction performance of traditional sampling methods and the proposed method using three commonly used forest fire risk prediction models:logistic regression(LR),support vector machine(SVM),and random forest(RF).The results show that the modeling and prediction accuracies of the forest fire prediction models established based on the proposed sampling method are significantly improved compared with those of the traditional sampling method.Specifically,in 2010,the modeling and prediction accuracies improved by 19.1%and 32.8%,respectively,and in 2020,they improved by 13.1%and 24.3%,respectively.Therefore,we believe that collecting non-fire point samples based on the principle of geographical similarity is an effective way to improve the quality of forest fire samples,and thus enhance the prediction of forest fire risk. 展开更多
关键词 spatial prediction of forest fires data-driven models Geographic similarity Non-fire point data data confidence
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部