Geochemical survey data are essential across Earth Science disciplines but are often affected by noise,which can obscure important geological signals and compromise subsequent prediction and interpretation.Quantifying...Geochemical survey data are essential across Earth Science disciplines but are often affected by noise,which can obscure important geological signals and compromise subsequent prediction and interpretation.Quantifying prediction uncertainty is hence crucial for robust geoscientific decision-making.This study proposes a novel deep learning framework,the Spatially Constrained Variational Autoencoder(SC-VAE),for denoising geochemical survey data with integrated uncertainty quantification.The SC-VAE incorporates spatial regularization,which enforces spatial coherence by modeling inter-sample relationships directly within the latent space.The performance of the SC-VAE was systematically evaluated against a standard Variational Autoencoder(VAE)using geochemical data from the gold polymetallic district in the northwestern part of Sichuan Province,China.Both models were optimized using Bayesian optimization,with objective functions specifically designed to maintain essential geostatistical characteristics.Evaluation metrics include variogram analysis,quantitative measures of spatial interpolation accuracy,visual assessment of denoised maps,and statistical analysis of data distributions,as well as decomposition of uncertainties.Results show that the SC-VAE achieves superior noise suppression and better preservation of spatial structure compared to the standard VAE,as demonstrated by a significant reduction in the variogram nugget effect and an increased partial sill.The SC-VAE produces denoised maps with clearer anomaly delineation and more regularized data distributions,effectively mitigating outliers and reducing kurtosis.Additionally,it delivers improved interpolation accuracy and spatially explicit uncertainty estimates,facilitating more reliable and interpretable assessments of prediction confidence.The SC-VAE framework thus provides a robust,geostatistically informed solution for enhancing the quality and interpretability of geochemical data,with broad applicability in mineral exploration,environmental geochemistry,and other Earth Science domains.展开更多
The proliferation of intelligent,connected Internet of Things(IoT)devices facilitates data collection.However,task workers may be reluctant to participate in data collection due to privacy concerns,and task requesters...The proliferation of intelligent,connected Internet of Things(IoT)devices facilitates data collection.However,task workers may be reluctant to participate in data collection due to privacy concerns,and task requesters may be concerned about the validity of the collected data.Hence,it is vital to evaluate the quality of the data collected by the task workers while protecting privacy in spatial crowdsourcing(SC)data collection tasks with IoT.To this end,this paper proposes a privacy-preserving data reliability evaluation for SC in IoT,named PARE.First,we design a data uploading format using blockchain and Paillier homomorphic cryptosystem,providing unchangeable and traceable data while overcoming privacy concerns.Secondly,based on the uploaded data,we propose a method to determine the approximate correct value region without knowing the exact value.Finally,we offer a data filtering mechanism based on the Paillier cryptosystem using this value region.The evaluation and analysis results show that PARE outperforms the existing solution in terms of performance and privacy protection.展开更多
Background A task assigned to space exploration satellites involves detecting the physical environment within a certain space.However,space detection data are complex and abstract.These data are not conducive for rese...Background A task assigned to space exploration satellites involves detecting the physical environment within a certain space.However,space detection data are complex and abstract.These data are not conducive for researchers'visual perceptions of the evolution and interaction of events in the space environment.Methods A time-series dynamic data sampling method for large-scale space was proposed for sample detection data in space and time,and the corresponding relationships between data location features and other attribute features were established.A tone-mapping method based on statistical histogram equalization was proposed and applied to the final attribute feature data.The visualization process is optimized for rendering by merging materials,reducing the number of patches,and performing other operations.Results The results of sampling,feature extraction,and uniform visualization of the detection data of complex types,long duration spans,and uneven spatial distributions were obtained.The real-time visualization of large-scale spatial structures using augmented reality devices,particularly low-performance devices,was also investigated.Conclusions The proposed visualization system can reconstruct the three-dimensional structure of a large-scale space,express the structure and changes in the spatial environment using augmented reality,and assist in intuitively discovering spatial environmental events and evolutionary rules.展开更多
Spatial seismic vulnerability assessments are primally conducted at the community and grid level,using heuristic and empirical approaches.Building-based spatial statistical vulnerability models are rare because of dat...Spatial seismic vulnerability assessments are primally conducted at the community and grid level,using heuristic and empirical approaches.Building-based spatial statistical vulnerability models are rare because of data limitations.Generating open-access spatial inventories that document seismic damage and building attributes and test their effectiveness in assessing damage would promote the advancement of spatial vulnerability assessment.The 2022 Mw 6.7 Luding earthquake in the western Sichuan Province of China provides an opportunity to validate this approach.The local government urgently dispatched experts to survey building damage,marking all buildings with damage class stickers.In this work,we sampled 2889 buildings as GPS points and documented the damage classes and building attributes,including structure type,number of floors,and age.A polygon-based digital inventory was generated by digitizing the rooftops of the sampled buildings and importing the attributes.Statistical regressions were created by plotting damage against shaking intensity and PGA,and Random Forest modeling was carried out considering not only buildings and seismic parameters but also environmental factors.The result indicates that statistical regressions have notable uncertainties,and the Random Forest model shows a≥79%accuracy.Topographical factors showed notable importance in the Random Forest modeling.This work provides an open-access seismic building damage inventory and demonstrates its potential for damage prediction and vulnerability assessment.展开更多
Recently,ship detection technology has been applied extensively in the marine security monitoring field.However,achieving accurate marine ship detection still poses significant challenges due to factors such as varyin...Recently,ship detection technology has been applied extensively in the marine security monitoring field.However,achieving accurate marine ship detection still poses significant challenges due to factors such as varying scales,slightly occluded objects,uneven illumination,and sea clutter.To address these issues,we propose a novel ship detection approach,i.e.,the Twin Feature Pyramid Network and Data Augmentation(TFPN-DA),which mainly consists of three modules.First,to eliminate the negative effects of slightly occluded objects and uneven illumination,we propose the Spatial Attention within the Twin Feature Pyramid Network(SA-TFPN)method,which is based on spatial attention to reconstruct the feature pyramid.Second,the ROI Feature Module(ROIFM)is introduced into the SA-TFPN,which is used to enhance specific crucial details from multi-scale features for object regression and classification.Additionally,data augmentation strategies such as spatial affine transformation and noise processing,are developed to optimize the data sample distribution.A self-construct dataset is used to train the detection model,and the experiments conducted on the dataset demonstrate the effectiveness of our model.展开更多
With the globalization of the economy,maritime trade has surged,posing challenges in the supervision of marine vessel activities.An automatic identification system(AIS)is an effective means of shipping traffic service...With the globalization of the economy,maritime trade has surged,posing challenges in the supervision of marine vessel activities.An automatic identification system(AIS)is an effective means of shipping traffic service,but many uncertainties exist regarding its data quality.In this study,the AIS data from Haiyang(HY)series of satellites were used to assess the data quality,analyze the global ship trajectory distribution and update frequencies from 2019 to 2023.Through the analysis of maritime mobile service identity numbers,we identified 340185 unique vessels,80.1%of which adhered to the International Telecommunication Union standards.Approximately 49.7%of ships exhibit significant data gaps,and 1.1%show inconsistencies in their AIS data sources.In the central Pacific Ocean at low latitudes and along the coast of South America(30°-60°S),a heightened incidence of abnormal trajectories of ships has been consistently observed,particularly in areas associated with fishing activities.According to the spatial distribution of ship trajectories,AIS data exhibit numerous deficiencies,particularly in high-traffic regions such as the East China Sea and South China Sea.In contrast,ship trajectories in the polar regions,characterized by high latitudes,are relatively comprehensive.With the increased number of HY satellites equipped with AIS receivers,the quantity of trajectory points displays a growing trend,leading to increasingly complete trajectories.This trend highlights the significant potential of using AIS data acquired from HY satellites to increase the accuracy of vessel tracking.展开更多
The rapid advancement of artificial intelligence(AI)has significantly increased the computational load on data centers.AI-related computational activities consume considerable electricity and result in substantial car...The rapid advancement of artificial intelligence(AI)has significantly increased the computational load on data centers.AI-related computational activities consume considerable electricity and result in substantial carbon emissions.To mitigate these emissions,future data centers should be strategically planned and operated to fully utilize renewable energy resources while meeting growing computational demands.This paper aims to investigate how much carbon emission reduction can be achieved by using a carbonoriented demand response to guide the optimal planning and operation of data centers.A carbon-oriented data center planning model is proposed that considers the carbon-oriented demand response of the AI load.In the planning model,future operation simulations comprehensively coordinate the temporal‒spatial flexibility of computational loads and the quality of service(QoS).An empirical study based on the proposed models is conducted on real-world data from China.The results from the empirical analysis show that newly constructed data centers are recommended to be built in Gansu Province,Ningxia Hui Autonomous Region,Sichuan Province,Inner Mongolia Autonomous Region,and Qinghai Province,accounting for 57%of the total national increase in server capacity.33%of the computational load from Eastern China should be transferred to the West,which could reduce the overall load carbon emissions by 26%.展开更多
There are some limitations when we apply conventional methods to analyze the massive amounts of seismic data acquired with high-density spatial sampling since processors usually obtain the properties of raw data from ...There are some limitations when we apply conventional methods to analyze the massive amounts of seismic data acquired with high-density spatial sampling since processors usually obtain the properties of raw data from common shot gathers or other datasets located at certain points or along lines. We propose a novel method in this paper to observe seismic data on time slices from spatial subsets. The composition of a spatial subset and the unique character of orthogonal or oblique subsets are described and pre-stack subsets are shown by 3D visualization. In seismic data processing, spatial subsets can be used for the following aspects: (1) to check the trace distribution uniformity and regularity; (2) to observe the main features of ground-roll and linear noise; (3) to find abnormal traces from slices of datasets; and (4) to QC the results of pre-stack noise attenuation. The field data application shows that seismic data analysis in spatial subsets is an effective method that may lead to a better discrimination among various wavefields and help us obtain more information.展开更多
To improve the performance of the traditional map matching algorithms in freeway traffic state monitoring systems using the low logging frequency GPS (global positioning system) probe data, a map matching algorithm ...To improve the performance of the traditional map matching algorithms in freeway traffic state monitoring systems using the low logging frequency GPS (global positioning system) probe data, a map matching algorithm based on the Oracle spatial data model is proposed. The algorithm uses the Oracle road network data model to analyze the spatial relationships between massive GPS positioning points and freeway networks, builds an N-shortest path algorithm to find reasonable candidate routes between GPS positioning points efficiently, and uses the fuzzy logic inference system to determine the final matched traveling route. According to the implementation with field data from Los Angeles, the computation speed of the algorithm is about 135 GPS positioning points per second and the accuracy is 98.9%. The results demonstrate the effectiveness and accuracy of the proposed algorithm for mapping massive GPS positioning data onto freeway networks with complex geometric characteristics.展开更多
Clustering, in data mining, is a useful technique for discovering interesting data distributions and patterns in the underlying data, and has many application fields, such as statistical data analysis, pattern recogni...Clustering, in data mining, is a useful technique for discovering interesting data distributions and patterns in the underlying data, and has many application fields, such as statistical data analysis, pattern recognition, image processing, and etc. We combine sampling technique with DBSCAN algorithm to cluster large spatial databases, and two sampling based DBSCAN (SDBSCAN) algorithms are developed. One algorithm introduces sampling technique inside DBSCAN, and the other uses sampling procedure outside DBSCAN. Experimental results demonstrate that our algorithms are effective and efficient in clustering large scale spatial databases.展开更多
Eighty percent of big data are associated with spatial information,and thus are Big Spatial Data(BSD).BSD provides new and great opportunities to rework problems in urban and environmental sustainability with advanced...Eighty percent of big data are associated with spatial information,and thus are Big Spatial Data(BSD).BSD provides new and great opportunities to rework problems in urban and environmental sustainability with advanced BSD analytics.To fully leverage the advantages of BSD,it is integrated with conventional data(e.g.remote sensing images)and improved methods are developed.This paper introduces four case studies:(1)Detection of polycentric urban structures;(2)Evaluation of urban vibrancy;(3)Estimation of population exposure to PM2.5;and(4)Urban land-use classification via deep learning.The results provide evidence that integrated methods can harness the advantages of both traditional data and BSD.Meanwhile,they can also improve the effectiveness of big data itself.Finally,this study makes three key recommendations for the development of BSD with regards to data fusion,data and predicting analytics,and theoretical modeling.展开更多
A novel Hilbert-curve is introduced for parallel spatial data partitioning, with consideration of the huge-amount property of spatial information and the variable-length characteristic of vector data items. Based on t...A novel Hilbert-curve is introduced for parallel spatial data partitioning, with consideration of the huge-amount property of spatial information and the variable-length characteristic of vector data items. Based on the improved Hilbert curve, the algorithm can be designed to achieve almost-uniform spatial data partitioning among multiple disks in parallel spatial databases. Thus, the phenomenon of data imbalance can be significantly avoided and search and query efficiency can be enhanced.展开更多
China's continental deposition basins are characterized by complex geological structures and various reservoir lithologies. Therefore, high precision exploration methods are needed. High density spatial sampling is a...China's continental deposition basins are characterized by complex geological structures and various reservoir lithologies. Therefore, high precision exploration methods are needed. High density spatial sampling is a new technology to increase the accuracy of seismic exploration. We briefly discuss point source and receiver technology, analyze the high density spatial sampling in situ method, introduce the symmetric sampling principles presented by Gijs J. O. Vermeer, and discuss high density spatial sampling technology from the point of view of wave field continuity. We emphasize the analysis of the high density spatial sampling characteristics, including the high density first break advantages for investigation of near surface structure, improving static correction precision, the use of dense receiver spacing at short offsets to increase the effective coverage at shallow depth, and the accuracy of reflection imaging. Coherent noise is not aliased and the noise analysis precision and suppression increases as a result. High density spatial sampling enhances wave field continuity and the accuracy of various mathematical transforms, which benefits wave field separation. Finally, we point out that the difficult part of high density spatial sampling technology is the data processing. More research needs to be done on the methods of analyzing and processing huge amounts of seismic data.展开更多
There are hundreds of villages in the western mountainous area of Beijing,of which quite a few have a profound history and form the settlement culture in the western part of Beijing.Taking dozens of ancient villages i...There are hundreds of villages in the western mountainous area of Beijing,of which quite a few have a profound history and form the settlement culture in the western part of Beijing.Taking dozens of ancient villages in Mentougou District as the research sample,the village space as the research object,based on ASTER GDEM database and quantitative analysis tools such as Global Mapper and ArcGIS,this study analyzed from the perspectives of altitude,topography,slope direction,and building density distribution,made a quantitative study on the spatial distribution and plane structure of ancient villages so that the law of village space with the characteristics of western Beijing was summarized to supplement and improve the relevant achievements in the research field of ancient villages in western Beijing.展开更多
With the deepening informationization of Resources & Environment Remote Sensing geological survey conducted,some potential problems and deficiency are:(1) shortage of unified-planed running environment;(2) inconsi...With the deepening informationization of Resources & Environment Remote Sensing geological survey conducted,some potential problems and deficiency are:(1) shortage of unified-planed running environment;(2) inconsistent methods of data integration;and(3) disadvantages of different performing ways of data integration.This paper solves the above problems through overall planning and design,constructs unified running environment, consistent methods of data integration and system structure in order to advance the informationization展开更多
In order to provide a provincial spatial database, this paper presents a scheme for spatial database construction to meet the needs of China. The objective and overall technical route of spatial database construction ...In order to provide a provincial spatial database, this paper presents a scheme for spatial database construction to meet the needs of China. The objective and overall technical route of spatial database construction are described. The logical and physical database models are designed. Key issues are addressed, such as integration of multi-scale heterogeneous spatial databases, spatial data version management based on metadata and integrative management of map cartography and spatial database.展开更多
The advanced data mining technologies and the large quantities of remotely sensed Imagery provide a data mining opportunity with high potential for useful results. Extracting interesting patterns and rules from data s...The advanced data mining technologies and the large quantities of remotely sensed Imagery provide a data mining opportunity with high potential for useful results. Extracting interesting patterns and rules from data sets composed of images and associated ground data can be of importance in object identification, community planning, resource discovery and other areas. In this paper, a data field is presented to express the observed spatial objects and conduct behavior mining on them. First, most of the important aspects are discussed on behavior mining and its implications for the future of data mining. Furthermore, an ideal framework of the behavior mining system is proposed in the network environment. Second, the model of behavior mining is given on the observed spatial objects, including the objects described by the first feature data field and the main feature data field by means of the potential function. Finally, a case study about object identification in public is given and analyzed. The experimental results show that the new model is feasible in behavior mining.展开更多
The paper aims to present a concise overview of the current status of the national spatial data infrastructures(SDI)of the European Union(EU)member states combined with specific peculiarities for Bulgaria.Some major c...The paper aims to present a concise overview of the current status of the national spatial data infrastructures(SDI)of the European Union(EU)member states combined with specific peculiarities for Bulgaria.Some major challenges within the progress of the EU SDIs establishing,which is regulated by the European Directive INSPIRE(Infrastructure for spatial information in Europe)toward establishment of a SDI for environmental policies and activities,are marked out.Available comparative analyses of the main indicators for metadata,data-sets,and data services provided by EU member states are briefly discussed as a special attention is given to the Bulgarian progress.Recent achievements on accelerating the process of implementing the recommendations of the INSPIRE Directive in Bulgaria are outlined.展开更多
This paper presents a conceptual data model, the STA-model, for handling spatial, temporal and attribute aspects of objects in GIS. The model is developed on the basis of object-oriented modeling approach. This model ...This paper presents a conceptual data model, the STA-model, for handling spatial, temporal and attribute aspects of objects in GIS. The model is developed on the basis of object-oriented modeling approach. This model includes two major parts: (a) modeling the signal objects by STA-object elements, and (b) modeling relationships between STA-objects. As an example, the STA-model is applied for modeling land cover change data with spatial, temporal and attribute components.展开更多
Understanding the mechanisms and risks of forest fires by building a spatial prediction model is an important means of controlling forest fires.Non-fire point data are important training data for constructing a model,...Understanding the mechanisms and risks of forest fires by building a spatial prediction model is an important means of controlling forest fires.Non-fire point data are important training data for constructing a model,and their quality significantly impacts the prediction performance of the model.However,non-fire point data obtained using existing sampling methods generally suffer from low representativeness.Therefore,this study proposes a non-fire point data sampling method based on geographical similarity to improve the quality of non-fire point samples.The method is based on the idea that the less similar the geographical environment between a sample point and an already occurred fire point,the greater the confidence in being a non-fire point sample.Yunnan Province,China,with a high frequency of forest fires,was used as the study area.We compared the prediction performance of traditional sampling methods and the proposed method using three commonly used forest fire risk prediction models:logistic regression(LR),support vector machine(SVM),and random forest(RF).The results show that the modeling and prediction accuracies of the forest fire prediction models established based on the proposed sampling method are significantly improved compared with those of the traditional sampling method.Specifically,in 2010,the modeling and prediction accuracies improved by 19.1%and 32.8%,respectively,and in 2020,they improved by 13.1%and 24.3%,respectively.Therefore,we believe that collecting non-fire point samples based on the principle of geographical similarity is an effective way to improve the quality of forest fire samples,and thus enhance the prediction of forest fire risk.展开更多
基金supported by the National Natural Science Foundation of China(Nos.42530801,42425208)the Natural Science Foundation of Hubei Province(China)(No.2023AFA001)+1 种基金the MOST Special Fund from State Key Laboratory of Geological Processes and Mineral Resources,China University of Geosciences(No.MSFGPMR2025-401)the China Scholarship Council(No.202306410181)。
文摘Geochemical survey data are essential across Earth Science disciplines but are often affected by noise,which can obscure important geological signals and compromise subsequent prediction and interpretation.Quantifying prediction uncertainty is hence crucial for robust geoscientific decision-making.This study proposes a novel deep learning framework,the Spatially Constrained Variational Autoencoder(SC-VAE),for denoising geochemical survey data with integrated uncertainty quantification.The SC-VAE incorporates spatial regularization,which enforces spatial coherence by modeling inter-sample relationships directly within the latent space.The performance of the SC-VAE was systematically evaluated against a standard Variational Autoencoder(VAE)using geochemical data from the gold polymetallic district in the northwestern part of Sichuan Province,China.Both models were optimized using Bayesian optimization,with objective functions specifically designed to maintain essential geostatistical characteristics.Evaluation metrics include variogram analysis,quantitative measures of spatial interpolation accuracy,visual assessment of denoised maps,and statistical analysis of data distributions,as well as decomposition of uncertainties.Results show that the SC-VAE achieves superior noise suppression and better preservation of spatial structure compared to the standard VAE,as demonstrated by a significant reduction in the variogram nugget effect and an increased partial sill.The SC-VAE produces denoised maps with clearer anomaly delineation and more regularized data distributions,effectively mitigating outliers and reducing kurtosis.Additionally,it delivers improved interpolation accuracy and spatially explicit uncertainty estimates,facilitating more reliable and interpretable assessments of prediction confidence.The SC-VAE framework thus provides a robust,geostatistically informed solution for enhancing the quality and interpretability of geochemical data,with broad applicability in mineral exploration,environmental geochemistry,and other Earth Science domains.
基金This work was supported by the National Natural Science Foundation of China under Grant 62233003the National Key Research and Development Program of China under Grant 2020YFB1708602.
文摘The proliferation of intelligent,connected Internet of Things(IoT)devices facilitates data collection.However,task workers may be reluctant to participate in data collection due to privacy concerns,and task requesters may be concerned about the validity of the collected data.Hence,it is vital to evaluate the quality of the data collected by the task workers while protecting privacy in spatial crowdsourcing(SC)data collection tasks with IoT.To this end,this paper proposes a privacy-preserving data reliability evaluation for SC in IoT,named PARE.First,we design a data uploading format using blockchain and Paillier homomorphic cryptosystem,providing unchangeable and traceable data while overcoming privacy concerns.Secondly,based on the uploaded data,we propose a method to determine the approximate correct value region without knowing the exact value.Finally,we offer a data filtering mechanism based on the Paillier cryptosystem using this value region.The evaluation and analysis results show that PARE outperforms the existing solution in terms of performance and privacy protection.
文摘Background A task assigned to space exploration satellites involves detecting the physical environment within a certain space.However,space detection data are complex and abstract.These data are not conducive for researchers'visual perceptions of the evolution and interaction of events in the space environment.Methods A time-series dynamic data sampling method for large-scale space was proposed for sample detection data in space and time,and the corresponding relationships between data location features and other attribute features were established.A tone-mapping method based on statistical histogram equalization was proposed and applied to the final attribute feature data.The visualization process is optimized for rendering by merging materials,reducing the number of patches,and performing other operations.Results The results of sampling,feature extraction,and uniform visualization of the detection data of complex types,long duration spans,and uneven spatial distributions were obtained.The real-time visualization of large-scale spatial structures using augmented reality devices,particularly low-performance devices,was also investigated.Conclusions The proposed visualization system can reconstruct the three-dimensional structure of a large-scale space,express the structure and changes in the spatial environment using augmented reality,and assist in intuitively discovering spatial environmental events and evolutionary rules.
基金supported by Mission No. 9 "Geological Environment and Hazards" (2019QZKK0900) of "The Second Tibetan Plateau Scientific Expedition and Research" projectNational Natural Science Foundation of China (No.42101087)
文摘Spatial seismic vulnerability assessments are primally conducted at the community and grid level,using heuristic and empirical approaches.Building-based spatial statistical vulnerability models are rare because of data limitations.Generating open-access spatial inventories that document seismic damage and building attributes and test their effectiveness in assessing damage would promote the advancement of spatial vulnerability assessment.The 2022 Mw 6.7 Luding earthquake in the western Sichuan Province of China provides an opportunity to validate this approach.The local government urgently dispatched experts to survey building damage,marking all buildings with damage class stickers.In this work,we sampled 2889 buildings as GPS points and documented the damage classes and building attributes,including structure type,number of floors,and age.A polygon-based digital inventory was generated by digitizing the rooftops of the sampled buildings and importing the attributes.Statistical regressions were created by plotting damage against shaking intensity and PGA,and Random Forest modeling was carried out considering not only buildings and seismic parameters but also environmental factors.The result indicates that statistical regressions have notable uncertainties,and the Random Forest model shows a≥79%accuracy.Topographical factors showed notable importance in the Random Forest modeling.This work provides an open-access seismic building damage inventory and demonstrates its potential for damage prediction and vulnerability assessment.
文摘Recently,ship detection technology has been applied extensively in the marine security monitoring field.However,achieving accurate marine ship detection still poses significant challenges due to factors such as varying scales,slightly occluded objects,uneven illumination,and sea clutter.To address these issues,we propose a novel ship detection approach,i.e.,the Twin Feature Pyramid Network and Data Augmentation(TFPN-DA),which mainly consists of three modules.First,to eliminate the negative effects of slightly occluded objects and uneven illumination,we propose the Spatial Attention within the Twin Feature Pyramid Network(SA-TFPN)method,which is based on spatial attention to reconstruct the feature pyramid.Second,the ROI Feature Module(ROIFM)is introduced into the SA-TFPN,which is used to enhance specific crucial details from multi-scale features for object regression and classification.Additionally,data augmentation strategies such as spatial affine transformation and noise processing,are developed to optimize the data sample distribution.A self-construct dataset is used to train the detection model,and the experiments conducted on the dataset demonstrate the effectiveness of our model.
基金The National Key R&D Program of China under contract Nos 2021YFC2803305 and 2024YFC2816301the Fundamental Research Funds for the Central Universities of China under contract No.2042022dx0001.
文摘With the globalization of the economy,maritime trade has surged,posing challenges in the supervision of marine vessel activities.An automatic identification system(AIS)is an effective means of shipping traffic service,but many uncertainties exist regarding its data quality.In this study,the AIS data from Haiyang(HY)series of satellites were used to assess the data quality,analyze the global ship trajectory distribution and update frequencies from 2019 to 2023.Through the analysis of maritime mobile service identity numbers,we identified 340185 unique vessels,80.1%of which adhered to the International Telecommunication Union standards.Approximately 49.7%of ships exhibit significant data gaps,and 1.1%show inconsistencies in their AIS data sources.In the central Pacific Ocean at low latitudes and along the coast of South America(30°-60°S),a heightened incidence of abnormal trajectories of ships has been consistently observed,particularly in areas associated with fishing activities.According to the spatial distribution of ship trajectories,AIS data exhibit numerous deficiencies,particularly in high-traffic regions such as the East China Sea and South China Sea.In contrast,ship trajectories in the polar regions,characterized by high latitudes,are relatively comprehensive.With the increased number of HY satellites equipped with AIS receivers,the quantity of trajectory points displays a growing trend,leading to increasingly complete trajectories.This trend highlights the significant potential of using AIS data acquired from HY satellites to increase the accuracy of vessel tracking.
基金supported by the Scientific&Technical Project of the State Grid(5700--202490228A--1--1-ZN).
文摘The rapid advancement of artificial intelligence(AI)has significantly increased the computational load on data centers.AI-related computational activities consume considerable electricity and result in substantial carbon emissions.To mitigate these emissions,future data centers should be strategically planned and operated to fully utilize renewable energy resources while meeting growing computational demands.This paper aims to investigate how much carbon emission reduction can be achieved by using a carbonoriented demand response to guide the optimal planning and operation of data centers.A carbon-oriented data center planning model is proposed that considers the carbon-oriented demand response of the AI load.In the planning model,future operation simulations comprehensively coordinate the temporal‒spatial flexibility of computational loads and the quality of service(QoS).An empirical study based on the proposed models is conducted on real-world data from China.The results from the empirical analysis show that newly constructed data centers are recommended to be built in Gansu Province,Ningxia Hui Autonomous Region,Sichuan Province,Inner Mongolia Autonomous Region,and Qinghai Province,accounting for 57%of the total national increase in server capacity.33%of the computational load from Eastern China should be transferred to the West,which could reduce the overall load carbon emissions by 26%.
文摘There are some limitations when we apply conventional methods to analyze the massive amounts of seismic data acquired with high-density spatial sampling since processors usually obtain the properties of raw data from common shot gathers or other datasets located at certain points or along lines. We propose a novel method in this paper to observe seismic data on time slices from spatial subsets. The composition of a spatial subset and the unique character of orthogonal or oblique subsets are described and pre-stack subsets are shown by 3D visualization. In seismic data processing, spatial subsets can be used for the following aspects: (1) to check the trace distribution uniformity and regularity; (2) to observe the main features of ground-roll and linear noise; (3) to find abnormal traces from slices of datasets; and (4) to QC the results of pre-stack noise attenuation. The field data application shows that seismic data analysis in spatial subsets is an effective method that may lead to a better discrimination among various wavefields and help us obtain more information.
文摘To improve the performance of the traditional map matching algorithms in freeway traffic state monitoring systems using the low logging frequency GPS (global positioning system) probe data, a map matching algorithm based on the Oracle spatial data model is proposed. The algorithm uses the Oracle road network data model to analyze the spatial relationships between massive GPS positioning points and freeway networks, builds an N-shortest path algorithm to find reasonable candidate routes between GPS positioning points efficiently, and uses the fuzzy logic inference system to determine the final matched traveling route. According to the implementation with field data from Los Angeles, the computation speed of the algorithm is about 135 GPS positioning points per second and the accuracy is 98.9%. The results demonstrate the effectiveness and accuracy of the proposed algorithm for mapping massive GPS positioning data onto freeway networks with complex geometric characteristics.
基金Supported by the Open Researches Fund Program of L IESMARS(WKL(0 0 ) 0 30 2 )
文摘Clustering, in data mining, is a useful technique for discovering interesting data distributions and patterns in the underlying data, and has many application fields, such as statistical data analysis, pattern recognition, image processing, and etc. We combine sampling technique with DBSCAN algorithm to cluster large spatial databases, and two sampling based DBSCAN (SDBSCAN) algorithms are developed. One algorithm introduces sampling technique inside DBSCAN, and the other uses sampling procedure outside DBSCAN. Experimental results demonstrate that our algorithms are effective and efficient in clustering large scale spatial databases.
文摘Eighty percent of big data are associated with spatial information,and thus are Big Spatial Data(BSD).BSD provides new and great opportunities to rework problems in urban and environmental sustainability with advanced BSD analytics.To fully leverage the advantages of BSD,it is integrated with conventional data(e.g.remote sensing images)and improved methods are developed.This paper introduces four case studies:(1)Detection of polycentric urban structures;(2)Evaluation of urban vibrancy;(3)Estimation of population exposure to PM2.5;and(4)Urban land-use classification via deep learning.The results provide evidence that integrated methods can harness the advantages of both traditional data and BSD.Meanwhile,they can also improve the effectiveness of big data itself.Finally,this study makes three key recommendations for the development of BSD with regards to data fusion,data and predicting analytics,and theoretical modeling.
基金Funded by the National 863 Program of China (No. 2005AA113150), and the National Natural Science Foundation of China (No.40701158).
文摘A novel Hilbert-curve is introduced for parallel spatial data partitioning, with consideration of the huge-amount property of spatial information and the variable-length characteristic of vector data items. Based on the improved Hilbert curve, the algorithm can be designed to achieve almost-uniform spatial data partitioning among multiple disks in parallel spatial databases. Thus, the phenomenon of data imbalance can be significantly avoided and search and query efficiency can be enhanced.
文摘China's continental deposition basins are characterized by complex geological structures and various reservoir lithologies. Therefore, high precision exploration methods are needed. High density spatial sampling is a new technology to increase the accuracy of seismic exploration. We briefly discuss point source and receiver technology, analyze the high density spatial sampling in situ method, introduce the symmetric sampling principles presented by Gijs J. O. Vermeer, and discuss high density spatial sampling technology from the point of view of wave field continuity. We emphasize the analysis of the high density spatial sampling characteristics, including the high density first break advantages for investigation of near surface structure, improving static correction precision, the use of dense receiver spacing at short offsets to increase the effective coverage at shallow depth, and the accuracy of reflection imaging. Coherent noise is not aliased and the noise analysis precision and suppression increases as a result. High density spatial sampling enhances wave field continuity and the accuracy of various mathematical transforms, which benefits wave field separation. Finally, we point out that the difficult part of high density spatial sampling technology is the data processing. More research needs to be done on the methods of analyzing and processing huge amounts of seismic data.
基金Sponsored by National Natural Science Fund of China(51608007)Young Top-notch Talent Cultivation Project of North China University of Technology(2018)
文摘There are hundreds of villages in the western mountainous area of Beijing,of which quite a few have a profound history and form the settlement culture in the western part of Beijing.Taking dozens of ancient villages in Mentougou District as the research sample,the village space as the research object,based on ASTER GDEM database and quantitative analysis tools such as Global Mapper and ArcGIS,this study analyzed from the perspectives of altitude,topography,slope direction,and building density distribution,made a quantitative study on the spatial distribution and plane structure of ancient villages so that the law of village space with the characteristics of western Beijing was summarized to supplement and improve the relevant achievements in the research field of ancient villages in western Beijing.
文摘With the deepening informationization of Resources & Environment Remote Sensing geological survey conducted,some potential problems and deficiency are:(1) shortage of unified-planed running environment;(2) inconsistent methods of data integration;and(3) disadvantages of different performing ways of data integration.This paper solves the above problems through overall planning and design,constructs unified running environment, consistent methods of data integration and system structure in order to advance the informationization
基金Supported by the 863 High Technology Program of China (No. 2007AA12Z214), the National Natural Science Foundation of China (No. 40601083) and the National Key Basic Research and Development Program of China ( No. 2004CB318206).
文摘In order to provide a provincial spatial database, this paper presents a scheme for spatial database construction to meet the needs of China. The objective and overall technical route of spatial database construction are described. The logical and physical database models are designed. Key issues are addressed, such as integration of multi-scale heterogeneous spatial databases, spatial data version management based on metadata and integrative management of map cartography and spatial database.
基金Supported by the National 973 Program of China(No.2006CB701305,No.2007CB310804)the National Natural Science Fundation of China(No.60743001)+1 种基金the Best National Thesis Fundation (No.2005047)the National New Century Excellent Talent Fundation (No.NCET-06-0618)
文摘The advanced data mining technologies and the large quantities of remotely sensed Imagery provide a data mining opportunity with high potential for useful results. Extracting interesting patterns and rules from data sets composed of images and associated ground data can be of importance in object identification, community planning, resource discovery and other areas. In this paper, a data field is presented to express the observed spatial objects and conduct behavior mining on them. First, most of the important aspects are discussed on behavior mining and its implications for the future of data mining. Furthermore, an ideal framework of the behavior mining system is proposed in the network environment. Second, the model of behavior mining is given on the observed spatial objects, including the objects described by the first feature data field and the main feature data field by means of the potential function. Finally, a case study about object identification in public is given and analyzed. The experimental results show that the new model is feasible in behavior mining.
文摘The paper aims to present a concise overview of the current status of the national spatial data infrastructures(SDI)of the European Union(EU)member states combined with specific peculiarities for Bulgaria.Some major challenges within the progress of the EU SDIs establishing,which is regulated by the European Directive INSPIRE(Infrastructure for spatial information in Europe)toward establishment of a SDI for environmental policies and activities,are marked out.Available comparative analyses of the main indicators for metadata,data-sets,and data services provided by EU member states are briefly discussed as a special attention is given to the Bulgarian progress.Recent achievements on accelerating the process of implementing the recommendations of the INSPIRE Directive in Bulgaria are outlined.
文摘This paper presents a conceptual data model, the STA-model, for handling spatial, temporal and attribute aspects of objects in GIS. The model is developed on the basis of object-oriented modeling approach. This model includes two major parts: (a) modeling the signal objects by STA-object elements, and (b) modeling relationships between STA-objects. As an example, the STA-model is applied for modeling land cover change data with spatial, temporal and attribute components.
基金financially supported by the National Natural Science Fundation of China(Grant Nos.42161065 and 41461038)。
文摘Understanding the mechanisms and risks of forest fires by building a spatial prediction model is an important means of controlling forest fires.Non-fire point data are important training data for constructing a model,and their quality significantly impacts the prediction performance of the model.However,non-fire point data obtained using existing sampling methods generally suffer from low representativeness.Therefore,this study proposes a non-fire point data sampling method based on geographical similarity to improve the quality of non-fire point samples.The method is based on the idea that the less similar the geographical environment between a sample point and an already occurred fire point,the greater the confidence in being a non-fire point sample.Yunnan Province,China,with a high frequency of forest fires,was used as the study area.We compared the prediction performance of traditional sampling methods and the proposed method using three commonly used forest fire risk prediction models:logistic regression(LR),support vector machine(SVM),and random forest(RF).The results show that the modeling and prediction accuracies of the forest fire prediction models established based on the proposed sampling method are significantly improved compared with those of the traditional sampling method.Specifically,in 2010,the modeling and prediction accuracies improved by 19.1%and 32.8%,respectively,and in 2020,they improved by 13.1%and 24.3%,respectively.Therefore,we believe that collecting non-fire point samples based on the principle of geographical similarity is an effective way to improve the quality of forest fire samples,and thus enhance the prediction of forest fire risk.