Background:Lung cancer is one of the deadliest cancers worldwide,creating a pressing need to develop novel drugs that inhibit oncogenic signaling pathways.Numerous studies have shown that berberine(BBR)has anti–lung ...Background:Lung cancer is one of the deadliest cancers worldwide,creating a pressing need to develop novel drugs that inhibit oncogenic signaling pathways.Numerous studies have shown that berberine(BBR)has anti–lung cancer potential.We aimed to explore the anti–lung cancer effect of BBR and related mechanisms by targeting the glycogen synthase kinase 3β(GSK3β)/β-catenin pathway.Methods:Lung adenocarcinoma(LUAD)cells A549 and NCI-H1975 were treated with BBR.Results:Our results showed that BBR inhibited cell proliferation by decreasing c-Myc levels and induced cel cycle arrest in the G0/G1 phase by lowering cyclin D1 levels.BBR induced apoptosis by upregulating cleaved caspase 3 levels.BBR inhibited cell migration and invasion by decreasing N-cadherin levels.Furthermore,BBR upregulated the expression of GSK3βprotein and phospho-β-catenin proteins in the cytoplasm,while decreasing the expression ofβ-catenin protein.Next,LUAD cel s were exposed to CHIR-99021(a GSK3βinhibitor).This treatment led to an increase in c-Myc,cyclin D1,andβ-catenin levels at specific concentrations.BBR partially reversed the effects of CHIR-99021.Finally,LUAD cells were treated with CHIR-99021(4μmoL/L)combined with BBR(30 and 60μmoL/L)for 24 h.The expression of programmed death ligand 1(PD-L1)was assessed by Western blot analysis.Jurkat T cells and A549 cel s were cocultured for 24 h to examine the lactate dehydrogenase release rate.Results suggested that BBR suppressed the expression of PD-L1 and heightened the immune lethality of T cells.Conclusions:BBR suppressed the proliferative activity of LUAD cell lines A549 and NCI-H1975 in vitro,induced cell cycle arrest and cancer cel apoptosis in the G0/G1 stage,and repressed the migration and invasion of cancer cells.BBR reduced the PD-L1 protein expression and enhanced T-cell–mediated cytotoxicity.These effects appear to be related to BBR's regulation of the GSK3β/β-catenin pathway.展开更多
Glycogen storage diseases(GSDs)are a group of inherited disorders caused by genetic defects in various enzymes involved in glycogen production or breakdown.Hepatic GSDs often have overlapping clinical features,making ...Glycogen storage diseases(GSDs)are a group of inherited disorders caused by genetic defects in various enzymes involved in glycogen production or breakdown.Hepatic GSDs often have overlapping clinical features,making subtyping or prognostication difficult.With the availability and advancement of next-generation sequencing,definitive molecular diagnosis is now available for most patients,with newer variants being increasingly identified.Molecular diagnosis could help in systematic follow-up,anticipating complications and prognostications.However,the mutations reported in the published literature display wide variations across racial and geographical groups.Hence,natural history,long-term outcome,and genotype-phenotypic correlation studies in patients with various hepatic GSDs are needed for a deeper understanding.Considering the emerging evidence of genetic profiling of patients with hepatic GSDs,including the recent study by Vanduangden et al,this editorial aims to review the various clinical subtypes,the spectrum of genetic mutations,and genotype-phenotype correlations for various hepatic GSDs.展开更多
Background:This study aimed to determine the effect of different carbohydrate(CHO)doses on exercise capacity in patients with McArdle disease—the paradigm of“exercise intolerance”,characterized by complete muscle g...Background:This study aimed to determine the effect of different carbohydrate(CHO)doses on exercise capacity in patients with McArdle disease—the paradigm of“exercise intolerance”,characterized by complete muscle glycogen unavailability—and to determine whether higher exogenous glucose levels affect metabolic responses at the McArdle muscle cell(in vitro)level.Methods:Patients with McArdle disease(n=8)and healthy controls(n=9)underwent a 12-min submaximal cycling constant-load bout followed by a maximal ramp test 15 min after ingesting a non-caloric placebo.In a randomized,double-blinded,cross-over design,patients repeated the tests after consuming either 75 g or 150 g of CHO(glucose:fructose=2:1).Cardiorespiratory,biochemical,perceptual,and electromyographic(EMG)variables were assessed.Additionally,glucose uptake and lactate appearance were studied in vitro in wild-type and McArdle mouse myotubes cultured with increasing glucose concentrations(0.35,1.00,4.50,and 10.00 g/L).Results:Compared with controls,patients showed the“classical”second-wind phenomenon(after prior disproportionate tachycardia,myalgia,and excess electromyographic activity during submaximal exercise,all p<0.05)and an impaired endurance exercise capacity(-51%ventilatory threshold and55%peak power output,both p<0.001).Regardless of the CHO dose(p<0.05 for both doses compared with the placebo),CHO intake increased blood glucose and lactate levels,decreased fat oxidation rates,and attenuated the second wind in the patients.However,only the higher dose increased ventilatory threshold(+27%,p=0.010)and peak power output(+18%,p=0.007).In vitro analyses revealed no differences in lactate levels across glucose concentrations in wild-type myotubes,whereas a doseresponse effect was observed in McArdle myotubes.Conclusion:CHO intake exerts beneficial effects on exercise capacity in McArdle disease,a condition associated with total muscle glycogen unavailability.Some of these benefits are dose dependent.展开更多
Glycogen serves as the principal energy reserve for metabolic processes in aquatic shellfish and substantially contributes to the flavor and quality of oysters.The Jinjiang oyster(Crassostrea ariakensis)is an economic...Glycogen serves as the principal energy reserve for metabolic processes in aquatic shellfish and substantially contributes to the flavor and quality of oysters.The Jinjiang oyster(Crassostrea ariakensis)is an economically and ecologically important species in China.In the present study,RNA sequencing(RNA-seq)and assay for transposase-accessible chromatin using sequencing(ATAC-seq)were performed to investigate gene expression and chromatin accessibility variations in oysters with different glycogen contents.Analysis identified 9483 differentially expressed genes(DEGs)and 7215 genes with significantly differential chromatin accessibility(DCAGs)were obtained,with an overlap of 2600 genes between them.Notably,a significant proportion of these genes were enriched in pathways related to glycogen metabolism,including“Glycogen metabolic process”and“Starch and sucrose metabolism”.In addition,genome-wide association study(GWAS)identified 526 single nucleotide polymorphism(SNP)loci associated with glycogen content.These loci corresponded to 241 genes,63 of which were categorized as both DEGs and DCAGs.This study enriches basic research data and provides insights into the molecular mechanisms underlying the regulation of glycogen metabolism in C.ariakensis.展开更多
Glycogen metabolism plays a key role in the development of hepatoellular carcinoma(HCC),but the function of glycogen metabolism genes in the tumor microenvironment(TME)is still to be elucidated.Single cell RNA-seq dat...Glycogen metabolism plays a key role in the development of hepatoellular carcinoma(HCC),but the function of glycogen metabolism genes in the tumor microenvironment(TME)is still to be elucidated.Single cell RNA-seq data were obtained from ten HCC tumor samples totaling 64,545 cells and 65 glycogen metabolism genes were analyzed bya nonnegative matrix factorization(NMF).The prognosis and immune response of new glycogen TME cell dusters were predicted by using HCC and immunotherapy cohorts from public databases.HOC single cell analysis was divided into fibroblasts,NT T cells,macrophages,endothelial clls,and B cells,which were separately divided into new cell clusters by glycogen metabolism gene annotation.Pseudo temporal trajectory analysis demonstrated the temporal differentiation trajectory of different glycogen subtype cell dusters.Cellular communication analysis revealed extensive interactions between endothelial cells with glycogen metabolizing TME cell.related subtypes and diferent glycogen subtype cell clusters.SCENIC analysis of transcription factors upstream of TME cell clusters with different glycogen metabolism.In addition,TME cell dusters of glycogen metabolism were found to be enriched in expression in CAF subtypes,CD8 depleted,M1,and M2 types.Bulk seq analysis showed the prognostic signifcance of glycogen metabolism.mediated TME cell dusters in HCC,while a significant immune response was found in the immunotherapy cohort in patients treated with immune checkpoint blockade(ICB),especially for CAFs,T cells,and macrophages In summary,our study reveals for the first time that glycogen metabolism mediates intercellular communication in the hepatocellular carcinoma microenvironment while elucidating the anti-tumor mechanisms and immune prognostic responses of different subtypes of cell dusters.展开更多
General anesthesia severely affects the metabolites in the brain.Glycogen,principally stored in astrocytes and providing the short-term delivery of substrates to neurons,has been implicated as an affected molecule.How...General anesthesia severely affects the metabolites in the brain.Glycogen,principally stored in astrocytes and providing the short-term delivery of substrates to neurons,has been implicated as an affected molecule.However,whether glycogen plays a pivotal role in modulating anesthesia-arousal remains unclear.Here,we demonstrated that isoflurane-anesthetized mice exhibited dynamic changes in the glycogen levels in various brain regions.Glycogen synthase(GS)and glycogen phosphorylase(GP),key enzymes of glycogen metabolism,showed increased activity after isoflurane exposure.Upon blocking glycogenolysis with 1,4-dideoxy-1,4-imino-Darabinitol(DAB),a GP antagonist,we found a prolonged time of emergence from anesthesia and an enhancedδfrequency in the EEG(electroencephalogram).In addition,augmented expression of glycogenolysis genes in glycogen phosphorylase,brain(Pygb)knock-in(PygbH11/H11)mice resulted in delayed induction of anesthesia,a shortened emergence time,and a lower ratio of EEG-δ.Our findings revealed a role of brain glycogen in regulating anesthesiaarousal,providing a potential target for modulating anesthesia.展开更多
Hepatic glycogenosis(HG) in type 1 diabetes is a underrecognized complication. Mauriac firstly described the syndrome characterized by hepatomegaly with altered liver enzymes, growth impairment, delay puberty and Cush...Hepatic glycogenosis(HG) in type 1 diabetes is a underrecognized complication. Mauriac firstly described the syndrome characterized by hepatomegaly with altered liver enzymes, growth impairment, delay puberty and Cushingoid features, during childhood. HG in adulthood is characterized by the liver disorder(with circulating aminotransferase increase) in the presence of poor glycemic control(elevation of glycated hemoglobin, Hb A1 c levels). The advances in the comprehension of the metabolic pathways driving to the hepatic glycogen deposition point out the role of glucose transporters and insulin mediated activations of glucokinase and glycogen synthase, with inhibition of glucose-6-phosphatase. The differential diagnosis of HG consists in the exclusion of causes of liver damage(infectious, metabolic, obstructive and autoimmune disease). The imaging study(ultrasonography and/or radiological examinations) gives information about the liver alterations(hepatomegaly), but the diagnosis needs to be confirmed by the liver biopsy. The main treatment of HG is the amelioration of glycemic control that is usu-ally accompanied by the reversal of the liver disorder. In selected cases, more aggressive treatment options(transplantation) have been successfully reported.展开更多
AIM: To investigate the molecular signaling mechanism by which the plant-derived, pentacyclic triterpene maslinic acid(MA) exerts anti-diabetic effects. METHOD: HepG2 cells were stimulated with various concentrations ...AIM: To investigate the molecular signaling mechanism by which the plant-derived, pentacyclic triterpene maslinic acid(MA) exerts anti-diabetic effects. METHOD: HepG2 cells were stimulated with various concentrations of MA. The effects of MA on glycogen phosphorylase a(GPa) activity and the cellular glycogen content were measured. Western blot analyses were performed with anti-insulin receptor β(IRβ), protein kinase B(also known as Akt), and glycogen synthase kinase-3β(GSK3β) antibodies. Activation status of the insulin pathway was investigated using phospho-IRβ, as well as phospho-Akt, and phospho-GSK3β antibodies. The specific PI3-kinase inhibitor wortmannin was added to the cells to analyze the Akt expression. Enzyme-linked immunosorbent assay(ELISA) was used to measure the effect of MA on IRβ auto-phosphorylation. Furthermore, the effect of MA on glycogen metabolism was investigated in C57BL/6J mice fed with a high-fat diet(HFD). RESULTS: The results showed that MA exerts anti-diabetic effects by increasing glycogen content and inhibiting glycogen phosphorylase activity in HepG2 cells. Furthermore, MA was shown to induce the phosphorylation level of IRβ-subunit, Akt, and GSK3β. The MA-induced activation of Akt appeared to be specific, since it could be blocked by wortmannin. Finally, MA treatment of mice fed with a high-fat diet reduced the model-associated adiposity and insulin resistance, and increased the accumulated hepatic glycogen content. CONCLUSION: The results suggested that maslinic acid modulates glycogen metabolism by enhancing the insulin signaling pathway and inhibiting glycogen phosphorylase.展开更多
Background: Glycogenic hepatopathy(GH) is a disorder associated with uncontrolled diabetes mellitus,most commonly type 1, expressed as right upper quadrant abdominal pain, hepatomegaly and increased liver enzymes. The...Background: Glycogenic hepatopathy(GH) is a disorder associated with uncontrolled diabetes mellitus,most commonly type 1, expressed as right upper quadrant abdominal pain, hepatomegaly and increased liver enzymes. The diagnosis may be difficult, because laboratory and imaging tests are not pathognomonic. Although GH may be suggested based on clinical presentation and imaging studies, the gold standard for diagnosis is a liver biopsy, showing a significant accumulation of glycogen within the hepatocytes. GH may be diagnosed also after elevated liver enzymes in routine blood tests. GH usually regresses after tight glycemic control. Progression to end-stage liver disease has never been reported. This review aims to increase the awareness to this disease, to suggest a pathway for investigation that may reduce the use of unnecessary tests, especially invasive ones.Data sources: A Pub Med database search(up to July 1, 2017) was done with the words "glycogenic hepatopathy", "hepatic glycogenosis", "liver glycogenosis" and "diabetes mellitus-associated glycogen storage hepatopathy". Articles in which diabetes mellitus-associated liver glycogen accumulation was described were included in this review.Results: A total of 47 articles were found, describing 126 patients with GH. Hepatocellular disturbance was more profound than cholestatic disturbance. No synthetic failure was reported.Conclusions: GH may be diagnosed conservatively, based on corroborating medical history, physical examination, laboratory tests, imaging studies and response to treatment, even without liver biopsy. In case of doubt about the diagnosis or lack of clinical response to treatment, a liver biopsy may be considered.There is no role for noninvasive tests like fibroscan or fibrotest for the diagnosis of GH or for differentiation of this situation from nonalcoholic fatty liver disease.展开更多
The changes and correlations of muscle pH, glycogen, lactic acid and in- tramuscular fat oxidation in Duroc pigs 10 d after their slaughter, and the effects of different storage temperature and time on Duroc muscle pH...The changes and correlations of muscle pH, glycogen, lactic acid and in- tramuscular fat oxidation in Duroc pigs 10 d after their slaughter, and the effects of different storage temperature and time on Duroc muscle pH value, water loss rate, glycogen, lactic acid and 2-thiobarbituric acid (TBA) were studied. The results showed that during the 10 h after the slaughter, the pH value was decreased rapid- ly, the lactic acid content was increased significantly, while the glycogen and TBA contents were remained stable. At the storage temperature of 4 ℃, storage time showed no significant effects on Duroc muscle pH value and glycogen, lactic acid and TBA contents. At the storage temperature of -20 ℃, storage temperature had significant effects on pH value, while no significant effects on other indicators. The correlation analysis demonstrated that during the 10 h after the slaughter, the TBA content was negatively related to glycogen content (P〈0.05), but positively related to lactic content (P〈0.05); the pH value was negatively related to lactic acid content (P〈0.05). At the storage temperature of 4 ℃, the TBA content was negatively relat- ed to water loss rate (P〈0.01) and lactic acid content (P〈0.05); the water loss rate was positively related to pH value (P〈0.01) and lactic acid content (P〈0.05). At the storage temperature of -20 ℃, the TBA content was negatively related to pH value (P〈0.01) and positively related to water loss rate (P〈0.05); the water loss rate was negatively related to pH value (P〈0.01) and lactic acid content (P〈0.05).展开更多
Glycogen storage diseases (GSD) are inherited metabolic disorders of glycogen metabolism. Different hormones, including insulin, glucagon, and cortisol regulate the relationship of glycolysis, gluconeogenesis and gl...Glycogen storage diseases (GSD) are inherited metabolic disorders of glycogen metabolism. Different hormones, including insulin, glucagon, and cortisol regulate the relationship of glycolysis, gluconeogenesis and glycogen synthesis. The overall GSD incidence is estimated 1 case per 20000-43000 live births. There are over 12 types and they are classified based on the enzyme deficiency and the affected tissue. Disorders of glycogen degradation may affect primarily the liver, the muscle, or both. Type I a involves the liver, kidney and intestine (and I b also leukocytes), and the clinical manifestations are hepatomegaly, failure to thrive, hypoglycemia, hyperlactatemia, hyperuricemia and hyperlipidemia. Type Ilia involves both the liver and muscle, and lib solely the liver. The liver symptoms generally improve with age. Type IV usually presents in the first year of life, with hepatomegaly and growth retardation. The disease in general is progressive to cirrhosis. Type Ⅵ and Ⅳ are a heterogeneous group of diseases caused by a deficiency of the liver phosphorylase and phosphorylase kinase system. There is no hyperuricemia or hyperlactatemia. Type Ⅺ is characterized by hepatic glycogenosis and renal Fanconi syndrome. Type Ⅱ is a prototype of inborn lysosomal storage diseases and involves many organs but primarily the muscle. Types V and Ⅶ involve only the muscle.展开更多
Glycogenic hepatopathy(GH) is a rare complication of the poorly controlled diabetes mellitus characterized by the transient liver dysfunction with elevated liver enzymes and associated hepatomegaly caused by the rever...Glycogenic hepatopathy(GH) is a rare complication of the poorly controlled diabetes mellitus characterized by the transient liver dysfunction with elevated liver enzymes and associated hepatomegaly caused by the reversible accumulation of excess glycogen in the hepatocytes. It is predominantly seen in patients with longstanding type 1 diabetes mellitus and rarely reported in association with type 2 diabetes mellitus. Although it was first observed in the pediatric population, since then, it has been reported in adolescents and adults with or without ketoacidosis. The association of GH with hyperglycemia in diabetes has not been well established. One of the essential elements in the pathophysiology of development of GH is the wide fluctuation in both glucose and insulin levels. GH and non-alcoholic fatty liver disease(NAFLD) are clinically indistinguishable, and latter is more prevalent in diabetic patients and can progress to advanced liver disease and cirrhosis. Gradient dual-echo MRI can distinguish GH from NAFLD; however, GH can reliably be diagnosed only by liver biopsy. Adequate glycemic control can result in complete remission of clinical, laboratory and histological abnormalities. There has been a recent report of varying degree of liver fibrosis identified in patients with GH. Future studies are required to understand the biochemical defects underlying GH, noninvasive, rapid diagnostic tests for GH, and to assess the consequence of the fibrosis identified as severe fibrosis may progress to cirrhosis. Awareness of this entity in the medical community including specialists is low. Here we briefly reviewed the English literature on pathogenesis involved, recent progress in the evaluation, differential diagnosis, and management.展开更多
Insulin resistance is the pathophysiological basis of many diseases.Overcoming early insulin resistance highly significant in prevention diabetes,non-alcoholic fatty liver,and atherosclerosis.The present study aimed a...Insulin resistance is the pathophysiological basis of many diseases.Overcoming early insulin resistance highly significant in prevention diabetes,non-alcoholic fatty liver,and atherosclerosis.The present study aimed at evaluating the therapeutic effects of baicalin on insulin resistance and skeletal muscle ectopic fat storage in high fat diet-induced mice,and exploring the potential molecular mechanisms.Insulin resistance in mice was induced with a high fat diet for 16 weeks.Animals were then treated with three different doses of baicalin(100,200,and 400 mg·kg^(-1)·d^(-1)for 14 weeks.Fasting blood glucose,fasting serum insulin,glucose tolerance test(GTT),insulin tolerance test(ITT),and skeletal muscle lipid deposition were measured.Additionally,the AMP-activated protein kinase/acetyl-CoA carboxylase and protein kinase B/Glycogen synthase kinase 3 beta pathways in skeletal muscle were further evaluated.Baicalin significantly reduced the levels of fasting blood glucose and fasting serum insulin and attenuated high fat diet induced glucose tolerance and insulin tolerance.Moreover,insulin resistance was significantly reversed.Pathological analysis revealed baicalin dose-dependently decreased the degree of the ectopic fat storage in skeletal muscle.The properties of baicalin were mediated,at least in part,by inhibition of the AMPK/ACC pathway,a key regulator of de novo lipogenesis and activation of the Akt/GSK-3β pathway,a key regulator of Glycogen synthesis.These data suggest that baicalin,at dose up to 400 mg·kg^(-1)·d^(-1),is safe and able to attenuate insulin resistance and skeletal muscle ectopic fat storage,through modulating the skeletal muscle AMPK/ACC pathway and Akt/GSK-3β pathway.展开更多
OBJECTIVE: To explore the molecular mechanism underpinning the action by investigating its effect on glycogen content and AKT(also known as protein kinase B)/glycogen synthase kinase 3β(GSK-3β) pathway in the liver ...OBJECTIVE: To explore the molecular mechanism underpinning the action by investigating its effect on glycogen content and AKT(also known as protein kinase B)/glycogen synthase kinase 3β(GSK-3β) pathway in the liver of rats with type 2 diabetic induced by high-fat diet.METHODS: The rat model of type 2 diabetes was induced by high-fat diet and multiple low-dose streptozotocin injection. Diabetic rats were divided into five groups: the model control group, the Metformin group, spleen-kidney supplementing formula groups of low, medium and high doses. Fasting blood glucose(FBG) levels were measured before treatment and every two weeks during treatment.After the treatment, oral glucose tolerance test was performed, and hemoglobin A1c (HbA1c) and C-peptide were measured to assess the formula's effect on glucose metabolism and insulin resistance. The protein expression levels of AKT, GSK-3βand their phosphorylated forms in the liver were also measured to study the formula's role in insulin signaling pathway.RESULTS: Spleen-kidney supplementing formula significantly relieved the symptoms of polydipsia,polyuria and weight loss in type 2 diabetic rats, reduced FBG and HbA1c levels, increased glycogen content, and improved insulin sensitivity. The anti-diabetic effects of spleen-kidney supplementing formula are dose dependent. It also increased the total AKT protein level and the GSK-3β phosphorylation in the liver of type 2 diabetic rats.CONCLUSION: Spleen-kidney supplementing formula has hypoglycemic effect and relieves insulin resistance by enhancing AKT/GSK-3β signaling pathway in the liver of type 2 diabetic rats.展开更多
Although glycogen synthase kinase-3 (GSK-3) might act as a tumor suppressor since its inhibition is expected to mimic the activation of Wnt-signaling pathway, GSK-3β may contribute to NF-κB activation in cancer ce...Although glycogen synthase kinase-3 (GSK-3) might act as a tumor suppressor since its inhibition is expected to mimic the activation of Wnt-signaling pathway, GSK-3β may contribute to NF-κB activation in cancer cells leading to increased cancer cell proliferation and survival. Here we report that GSK-3β activity was involved in the proliferation of human ovarian cancer cell both in vitro and in vivo. Inhibition of GSK-3 activity by pharmacological inhibitors suppressed proliferation of the ovarian cancer cells. Overexpressing constitutively active form of GSK-3β induced entry into the S phase, increased cyclin D1 expression and facilitated the proliferation of ovarian cancer cells. Furthermore, GSK-3 inhibition prevented the formation of the tumor in nude mice generated by the inoculation of human ovarian cancer cells. Our findings thus suggest that GSK-3β activity is important for the proliferation of ovarian cancer cells, implicating this kinase as a potential therapeutic target in ovarian cancer.展开更多
Glycogen is important not only for the energy supplementary of oysters, but also for human consumption. High glycogen content can improve the stress survival of oyster. A key enzyme in glycogenesis is glycogen synthas...Glycogen is important not only for the energy supplementary of oysters, but also for human consumption. High glycogen content can improve the stress survival of oyster. A key enzyme in glycogenesis is glycogen synthase that is encoded by glycogen synthase gene GYS. In this study, the relationship between single nucleotide polymorphisms(SNPs) in coding regions of Crassostrea gigas GYS(Cg-GYS) and individual glycogen content was investigated with 321 individuals from five full-sib families. Single-strand conformation polymorphism(SSCP) procedure was combined with sequencing to confirm individual SNP genotypes of Cg-GYS. Least-square analysis of variance was performed to assess the relationship of variation in glycogen content of C. gigas with single SNP genotype and SNP haplotype. As a consequence, six SNPs were found in coding regions to be significantly associated with glycogen content(P < 0.01), from which we constructed four main haplotypes due to linkage disequilibrium. Furthermore, the most effective haplotype H2(GAGGAT) had extremely significant relationship with high glycogen content(P < 0.0001). These findings revealed the potential influence of Cg-GYS polymorphism on the glycogen content and provided molecular biological information for the selective breeding of good quality traits of C. gigas.展开更多
Tau oligomers are the etiologic molecules of Alzheimer disease(AD), and correlate strongly with neuronal loss and exhibit neurotoxicity. Recent evidence indicates that small tau oligomers are the most relevant toxic a...Tau oligomers are the etiologic molecules of Alzheimer disease(AD), and correlate strongly with neuronal loss and exhibit neurotoxicity. Recent evidence indicates that small tau oligomers are the most relevant toxic aggregate species. The aim of the present study was to investigate the mechanisms of cornel iridoid glycoside(CIG) on tau oligomers and cognitive functions. We injected wortmannin and GF-109203 X(WM/GFX, 200 μmol·L-1 each) into the lateral ventricles to induce tau oligomer and memory impairment in rats. When oral y administered with CIG at 60 and 120 mg·kg-1 per day for 14 d, CIG decreased the escape latency in Morris water maze test. We also found that CIG restored the expression of presynaptic p-synapsin, synaptophysin, and postsynaptic density-95(PSD-95) decreased by WM/GFX in rat cortex. CIG reduced the accumulation of tau oligomers in the brain of WM/GFX rats and in cells transfected with wild type glycogen synthase kinase-3β(wt GSK-3β). In addition, CIG up-regulated the levels of ATG7, ATG12, Beclin-1, and LC3 II in vivo and in vitro, suggesting the restoration of autophagy function. These results suggest that CIG could ameliorate memory deficits and regulate memory-associated synaptic proteins through the clearance of tau oligomers accumulation. Moreover, CIG clears tau oligomers by restoring autophagy function.展开更多
Interleukin-4(IL-4) has a protective effect against cerebral ischemia/reperfusion injury. Animal experiments have shown that IL-4 improves the short-and long-term prognosis of neurological function. The Akt(also calle...Interleukin-4(IL-4) has a protective effect against cerebral ischemia/reperfusion injury. Animal experiments have shown that IL-4 improves the short-and long-term prognosis of neurological function. The Akt(also called protein kinase B, PKB)/glycogen synthase kinase-3β(Akt/GSK-3β) signaling pathway is involved in oxidative stress, the inflammatory response, apoptosis, and autophagy. However, it is not yet clear whether the Akt/GSK-3β pathway participates in the neuroprotective effect of IL-4 against cerebral ischemia/reperfusion injury. In the present study, we established a cerebral ischemia/reperfusion mouse model by middle cerebral artery occlusion for 60 minutes followed by a 24-hour reperfusion. An IL-4/anti-IL-4 complex(10 μg) was intraperitoneally administered 30 minutes before surgery. We found that administration of IL-4 significantly alleviated the neurological deficits, oxidative stress, cell apoptosis, and autophagy and reduced infarct volume of the mice with cerebral ischemia/reperfusion injury 24 hours after reperfusion. Simultaneously, IL-4 activated Akt/GSK-3β signaling pathway. However, an Akt inhibitor LY294002, which was injected at 15 nmol/kg via the tail vein, attenuated the protective effects of IL-4. These findings indicate that IL-4 has a protective effect on cerebral ischemia/reperfusion injury by mitigating oxidative stress, reducing apoptosis, and inhibiting excessive autophagy, and that this mechanism may be related to activation of the Akt/GSK-3β pathway. This animal study was approved by the Animal Ethics Committee of Renmin Hospital of Wuhan University, China(approval No. WDRY2017-K037) on March 9, 2017.展开更多
Glycogen storage diseases(GSDs),also referred to as glycogenoses,are inherited metabolic disorders of glycogen metabolism caused by deficiency of enzymes or transporters involved in the synthesis or degradation of gly...Glycogen storage diseases(GSDs),also referred to as glycogenoses,are inherited metabolic disorders of glycogen metabolism caused by deficiency of enzymes or transporters involved in the synthesis or degradation of glycogen leading to aberrant storage and/or utilization.The overall estimated GSD incidence is 1 case per 20000-43000 live births.There are over 20 types of GSD including the subtypes.This heterogeneous group of rare diseases represents inborn errors of carbohydrate metabolism and are classified based on the deficient enzyme and affected tissues.GSDs primarily affect liver or muscle or both as glycogen is particularly abundant in these tissues.However,besides liver and skeletal muscle,depending on the affected enzyme and its expression in various tissues,multiorgan involvement including heart,kidney and/or brain may be seen.Although GSDs share similar clinical features to some extent,there is a wide spectrum of clinical phenotypes.Currently,the goal of treatment is to maintain glucose homeostasis by dietary management and the use of uncooked cornstarch.In addition to nutritional interventions,pharmacological treatment,physical and supportive therapies,enzyme replacement therapy(ERT)and organ transplantation are other treatment approaches for both disease manifestations and longterm complications.The lack of a specific therapy for GSDs has prompted efforts to develop new treatment strategies like gene therapy.Since early diagnosis and aggressive treatment are related to better prognosis,physicians should be aware of these conditions and include GSDs in the differential diagnosis of patients with relevant manifestations including fasting hypoglycemia,hepatomegaly,hypertransaminasemia,hyperlipidemia,exercise intolerance,muscle cramps/pain,rhabdomyolysis,and muscle weakness.Here,we aim to provide a comprehensive review of GSDs.This review provides general characteristics of all types of GSDs with a focus on those with liver involvement.展开更多
Objective: To study the mechanism of hepatocellular glycogen in alleviation of liver ischemia-reperfusion injury during hepatic vascular occlusion for partial hepatectomy. Methods: Seventeen patients were randomly div...Objective: To study the mechanism of hepatocellular glycogen in alleviation of liver ischemia-reperfusion injury during hepatic vascular occlusion for partial hepatectomy. Methods: Seventeen patients were randomly divided into experimental group (n=9) and control group (n=8). In the experimental group, patients were given high concentration glucose intravenously during 24 hours before operation. The hepatic lesion was re- sected after portal triad clamping in the two groups. Non-cancer liver tissue was biopsied to measure he- patic tissue ATP content and change of malondialde- hyde (MDA) and superoxide dismutase (SOD). Liver function of all patients was assessed before operation and the first and fifth day after operation. Results: Hepatic tissue ATP content of the experi- mental group was significantly higher than that of the control group both at the end of hepatic vascular oc- clusion and the point of one-hour reperfusion. Be- sides, liver function of the experimental group was significantly better than that of the control group the first and fifth day after operation. There was signifi- cant difference in SOD activity or MDA content be- tween the two groups at the end of hepatic vascular occlusion and at the point of one-hour reperfusion. Conclusions: Abundant intracellular glycogen may reduce liver ischemia-reperfusion injury caused by hepatic vascular occlusion. It is beneficial to give a large amount of glucose before a complex liver opera- tion, in which temporary occlusion of hepatic blood flow is necessary.展开更多
基金Supported by a grant from the National Natural Science Foundation of China(no.82174457)。
文摘Background:Lung cancer is one of the deadliest cancers worldwide,creating a pressing need to develop novel drugs that inhibit oncogenic signaling pathways.Numerous studies have shown that berberine(BBR)has anti–lung cancer potential.We aimed to explore the anti–lung cancer effect of BBR and related mechanisms by targeting the glycogen synthase kinase 3β(GSK3β)/β-catenin pathway.Methods:Lung adenocarcinoma(LUAD)cells A549 and NCI-H1975 were treated with BBR.Results:Our results showed that BBR inhibited cell proliferation by decreasing c-Myc levels and induced cel cycle arrest in the G0/G1 phase by lowering cyclin D1 levels.BBR induced apoptosis by upregulating cleaved caspase 3 levels.BBR inhibited cell migration and invasion by decreasing N-cadherin levels.Furthermore,BBR upregulated the expression of GSK3βprotein and phospho-β-catenin proteins in the cytoplasm,while decreasing the expression ofβ-catenin protein.Next,LUAD cel s were exposed to CHIR-99021(a GSK3βinhibitor).This treatment led to an increase in c-Myc,cyclin D1,andβ-catenin levels at specific concentrations.BBR partially reversed the effects of CHIR-99021.Finally,LUAD cells were treated with CHIR-99021(4μmoL/L)combined with BBR(30 and 60μmoL/L)for 24 h.The expression of programmed death ligand 1(PD-L1)was assessed by Western blot analysis.Jurkat T cells and A549 cel s were cocultured for 24 h to examine the lactate dehydrogenase release rate.Results suggested that BBR suppressed the expression of PD-L1 and heightened the immune lethality of T cells.Conclusions:BBR suppressed the proliferative activity of LUAD cell lines A549 and NCI-H1975 in vitro,induced cell cycle arrest and cancer cel apoptosis in the G0/G1 stage,and repressed the migration and invasion of cancer cells.BBR reduced the PD-L1 protein expression and enhanced T-cell–mediated cytotoxicity.These effects appear to be related to BBR's regulation of the GSK3β/β-catenin pathway.
文摘Glycogen storage diseases(GSDs)are a group of inherited disorders caused by genetic defects in various enzymes involved in glycogen production or breakdown.Hepatic GSDs often have overlapping clinical features,making subtyping or prognostication difficult.With the availability and advancement of next-generation sequencing,definitive molecular diagnosis is now available for most patients,with newer variants being increasingly identified.Molecular diagnosis could help in systematic follow-up,anticipating complications and prognostications.However,the mutations reported in the published literature display wide variations across racial and geographical groups.Hence,natural history,long-term outcome,and genotype-phenotypic correlation studies in patients with various hepatic GSDs are needed for a deeper understanding.Considering the emerging evidence of genetic profiling of patients with hepatic GSDs,including the recent study by Vanduangden et al,this editorial aims to review the various clinical subtypes,the spectrum of genetic mutations,and genotype-phenotype correlations for various hepatic GSDs.
基金supported by a Sara Borrell postdoctoral contract granted by Instituto de Salud Carlos III(CD21/00138).PLV,DB-G and AL are funded by the Spanish Ministry of Economy and Competitiveness and Fondos Feder(Alejandro Lucia,Grant No.PI18/00139)TP is funded by the Spanish Ministry of Economy and Competitiveness and Fondos Feder(Tomas Pinos,Grant No.PI22/00201).
文摘Background:This study aimed to determine the effect of different carbohydrate(CHO)doses on exercise capacity in patients with McArdle disease—the paradigm of“exercise intolerance”,characterized by complete muscle glycogen unavailability—and to determine whether higher exogenous glucose levels affect metabolic responses at the McArdle muscle cell(in vitro)level.Methods:Patients with McArdle disease(n=8)and healthy controls(n=9)underwent a 12-min submaximal cycling constant-load bout followed by a maximal ramp test 15 min after ingesting a non-caloric placebo.In a randomized,double-blinded,cross-over design,patients repeated the tests after consuming either 75 g or 150 g of CHO(glucose:fructose=2:1).Cardiorespiratory,biochemical,perceptual,and electromyographic(EMG)variables were assessed.Additionally,glucose uptake and lactate appearance were studied in vitro in wild-type and McArdle mouse myotubes cultured with increasing glucose concentrations(0.35,1.00,4.50,and 10.00 g/L).Results:Compared with controls,patients showed the“classical”second-wind phenomenon(after prior disproportionate tachycardia,myalgia,and excess electromyographic activity during submaximal exercise,all p<0.05)and an impaired endurance exercise capacity(-51%ventilatory threshold and55%peak power output,both p<0.001).Regardless of the CHO dose(p<0.05 for both doses compared with the placebo),CHO intake increased blood glucose and lactate levels,decreased fat oxidation rates,and attenuated the second wind in the patients.However,only the higher dose increased ventilatory threshold(+27%,p=0.010)and peak power output(+18%,p=0.007).In vitro analyses revealed no differences in lactate levels across glucose concentrations in wild-type myotubes,whereas a doseresponse effect was observed in McArdle myotubes.Conclusion:CHO intake exerts beneficial effects on exercise capacity in McArdle disease,a condition associated with total muscle glycogen unavailability.Some of these benefits are dose dependent.
基金supported by the National Key R&D Program of China(2022YFD2400105,2018YFD0900104)Central Publicinterest Scientific Institution Basal Research Fund,CAFS(2021XT0102,2023TD30)+2 种基金Marine S&T Fund of Shandong Province for Pilot National Laboratory for Marine Science and Technology(Qingdao)(2021QNLM050103)Key Research and Development Project of Shandong Province(2021LZGC028)National Marine Genetic Resource Center。
文摘Glycogen serves as the principal energy reserve for metabolic processes in aquatic shellfish and substantially contributes to the flavor and quality of oysters.The Jinjiang oyster(Crassostrea ariakensis)is an economically and ecologically important species in China.In the present study,RNA sequencing(RNA-seq)and assay for transposase-accessible chromatin using sequencing(ATAC-seq)were performed to investigate gene expression and chromatin accessibility variations in oysters with different glycogen contents.Analysis identified 9483 differentially expressed genes(DEGs)and 7215 genes with significantly differential chromatin accessibility(DCAGs)were obtained,with an overlap of 2600 genes between them.Notably,a significant proportion of these genes were enriched in pathways related to glycogen metabolism,including“Glycogen metabolic process”and“Starch and sucrose metabolism”.In addition,genome-wide association study(GWAS)identified 526 single nucleotide polymorphism(SNP)loci associated with glycogen content.These loci corresponded to 241 genes,63 of which were categorized as both DEGs and DCAGs.This study enriches basic research data and provides insights into the molecular mechanisms underlying the regulation of glycogen metabolism in C.ariakensis.
基金Liuzhou City's Top Ten Hundred Talents Project,Liuzhou Science and Technology Project(Grant Nos.2021CBC0126 and 2021CBC0123)Guangxi Zhuang Autonomous Region Health and Family Planning Commission Projects(Z20210561,Z20210903)+1 种基金liuzhou Scienceand Technology Plan Projects(2021CBC0121,2021CBC0128).
文摘Glycogen metabolism plays a key role in the development of hepatoellular carcinoma(HCC),but the function of glycogen metabolism genes in the tumor microenvironment(TME)is still to be elucidated.Single cell RNA-seq data were obtained from ten HCC tumor samples totaling 64,545 cells and 65 glycogen metabolism genes were analyzed bya nonnegative matrix factorization(NMF).The prognosis and immune response of new glycogen TME cell dusters were predicted by using HCC and immunotherapy cohorts from public databases.HOC single cell analysis was divided into fibroblasts,NT T cells,macrophages,endothelial clls,and B cells,which were separately divided into new cell clusters by glycogen metabolism gene annotation.Pseudo temporal trajectory analysis demonstrated the temporal differentiation trajectory of different glycogen subtype cell dusters.Cellular communication analysis revealed extensive interactions between endothelial cells with glycogen metabolizing TME cell.related subtypes and diferent glycogen subtype cell clusters.SCENIC analysis of transcription factors upstream of TME cell clusters with different glycogen metabolism.In addition,TME cell dusters of glycogen metabolism were found to be enriched in expression in CAF subtypes,CD8 depleted,M1,and M2 types.Bulk seq analysis showed the prognostic signifcance of glycogen metabolism.mediated TME cell dusters in HCC,while a significant immune response was found in the immunotherapy cohort in patients treated with immune checkpoint blockade(ICB),especially for CAFs,T cells,and macrophages In summary,our study reveals for the first time that glycogen metabolism mediates intercellular communication in the hepatocellular carcinoma microenvironment while elucidating the anti-tumor mechanisms and immune prognostic responses of different subtypes of cell dusters.
基金the Major Program of the National Natural Science Foundation of China(81590954)the International Cooperation and Exchange of the National Natural Science Foundation of China(81420108013)the State Key Program of National Natural Science Foundation of China(81730032)。
文摘General anesthesia severely affects the metabolites in the brain.Glycogen,principally stored in astrocytes and providing the short-term delivery of substrates to neurons,has been implicated as an affected molecule.However,whether glycogen plays a pivotal role in modulating anesthesia-arousal remains unclear.Here,we demonstrated that isoflurane-anesthetized mice exhibited dynamic changes in the glycogen levels in various brain regions.Glycogen synthase(GS)and glycogen phosphorylase(GP),key enzymes of glycogen metabolism,showed increased activity after isoflurane exposure.Upon blocking glycogenolysis with 1,4-dideoxy-1,4-imino-Darabinitol(DAB),a GP antagonist,we found a prolonged time of emergence from anesthesia and an enhancedδfrequency in the EEG(electroencephalogram).In addition,augmented expression of glycogenolysis genes in glycogen phosphorylase,brain(Pygb)knock-in(PygbH11/H11)mice resulted in delayed induction of anesthesia,a shortened emergence time,and a lower ratio of EEG-δ.Our findings revealed a role of brain glycogen in regulating anesthesiaarousal,providing a potential target for modulating anesthesia.
文摘Hepatic glycogenosis(HG) in type 1 diabetes is a underrecognized complication. Mauriac firstly described the syndrome characterized by hepatomegaly with altered liver enzymes, growth impairment, delay puberty and Cushingoid features, during childhood. HG in adulthood is characterized by the liver disorder(with circulating aminotransferase increase) in the presence of poor glycemic control(elevation of glycated hemoglobin, Hb A1 c levels). The advances in the comprehension of the metabolic pathways driving to the hepatic glycogen deposition point out the role of glucose transporters and insulin mediated activations of glucokinase and glycogen synthase, with inhibition of glucose-6-phosphatase. The differential diagnosis of HG consists in the exclusion of causes of liver damage(infectious, metabolic, obstructive and autoimmune disease). The imaging study(ultrasonography and/or radiological examinations) gives information about the liver alterations(hepatomegaly), but the diagnosis needs to be confirmed by the liver biopsy. The main treatment of HG is the amelioration of glycemic control that is usu-ally accompanied by the reversal of the liver disorder. In selected cases, more aggressive treatment options(transplantation) have been successfully reported.
基金supported by the FundamentalResearch Funds for the Central Universities(No.JKP2011004)
文摘AIM: To investigate the molecular signaling mechanism by which the plant-derived, pentacyclic triterpene maslinic acid(MA) exerts anti-diabetic effects. METHOD: HepG2 cells were stimulated with various concentrations of MA. The effects of MA on glycogen phosphorylase a(GPa) activity and the cellular glycogen content were measured. Western blot analyses were performed with anti-insulin receptor β(IRβ), protein kinase B(also known as Akt), and glycogen synthase kinase-3β(GSK3β) antibodies. Activation status of the insulin pathway was investigated using phospho-IRβ, as well as phospho-Akt, and phospho-GSK3β antibodies. The specific PI3-kinase inhibitor wortmannin was added to the cells to analyze the Akt expression. Enzyme-linked immunosorbent assay(ELISA) was used to measure the effect of MA on IRβ auto-phosphorylation. Furthermore, the effect of MA on glycogen metabolism was investigated in C57BL/6J mice fed with a high-fat diet(HFD). RESULTS: The results showed that MA exerts anti-diabetic effects by increasing glycogen content and inhibiting glycogen phosphorylase activity in HepG2 cells. Furthermore, MA was shown to induce the phosphorylation level of IRβ-subunit, Akt, and GSK3β. The MA-induced activation of Akt appeared to be specific, since it could be blocked by wortmannin. Finally, MA treatment of mice fed with a high-fat diet reduced the model-associated adiposity and insulin resistance, and increased the accumulated hepatic glycogen content. CONCLUSION: The results suggested that maslinic acid modulates glycogen metabolism by enhancing the insulin signaling pathway and inhibiting glycogen phosphorylase.
文摘Background: Glycogenic hepatopathy(GH) is a disorder associated with uncontrolled diabetes mellitus,most commonly type 1, expressed as right upper quadrant abdominal pain, hepatomegaly and increased liver enzymes. The diagnosis may be difficult, because laboratory and imaging tests are not pathognomonic. Although GH may be suggested based on clinical presentation and imaging studies, the gold standard for diagnosis is a liver biopsy, showing a significant accumulation of glycogen within the hepatocytes. GH may be diagnosed also after elevated liver enzymes in routine blood tests. GH usually regresses after tight glycemic control. Progression to end-stage liver disease has never been reported. This review aims to increase the awareness to this disease, to suggest a pathway for investigation that may reduce the use of unnecessary tests, especially invasive ones.Data sources: A Pub Med database search(up to July 1, 2017) was done with the words "glycogenic hepatopathy", "hepatic glycogenosis", "liver glycogenosis" and "diabetes mellitus-associated glycogen storage hepatopathy". Articles in which diabetes mellitus-associated liver glycogen accumulation was described were included in this review.Results: A total of 47 articles were found, describing 126 patients with GH. Hepatocellular disturbance was more profound than cholestatic disturbance. No synthetic failure was reported.Conclusions: GH may be diagnosed conservatively, based on corroborating medical history, physical examination, laboratory tests, imaging studies and response to treatment, even without liver biopsy. In case of doubt about the diagnosis or lack of clinical response to treatment, a liver biopsy may be considered.There is no role for noninvasive tests like fibroscan or fibrotest for the diagnosis of GH or for differentiation of this situation from nonalcoholic fatty liver disease.
基金Supported by Funds for Swine Innovation Team Construction of Shandong Provincial Modern Agriculture Industry Technology System(SDAIT-06-011-03)Fine Breeds Engineering Project of Shandong Province(2011LZ013-01)China Swine Industry Technology System(CARS-36)~~
文摘The changes and correlations of muscle pH, glycogen, lactic acid and in- tramuscular fat oxidation in Duroc pigs 10 d after their slaughter, and the effects of different storage temperature and time on Duroc muscle pH value, water loss rate, glycogen, lactic acid and 2-thiobarbituric acid (TBA) were studied. The results showed that during the 10 h after the slaughter, the pH value was decreased rapid- ly, the lactic acid content was increased significantly, while the glycogen and TBA contents were remained stable. At the storage temperature of 4 ℃, storage time showed no significant effects on Duroc muscle pH value and glycogen, lactic acid and TBA contents. At the storage temperature of -20 ℃, storage temperature had significant effects on pH value, while no significant effects on other indicators. The correlation analysis demonstrated that during the 10 h after the slaughter, the TBA content was negatively related to glycogen content (P〈0.05), but positively related to lactic content (P〈0.05); the pH value was negatively related to lactic acid content (P〈0.05). At the storage temperature of 4 ℃, the TBA content was negatively relat- ed to water loss rate (P〈0.01) and lactic acid content (P〈0.05); the water loss rate was positively related to pH value (P〈0.01) and lactic acid content (P〈0.05). At the storage temperature of -20 ℃, the TBA content was negatively related to pH value (P〈0.01) and positively related to water loss rate (P〈0.05); the water loss rate was negatively related to pH value (P〈0.01) and lactic acid content (P〈0.05).
文摘Glycogen storage diseases (GSD) are inherited metabolic disorders of glycogen metabolism. Different hormones, including insulin, glucagon, and cortisol regulate the relationship of glycolysis, gluconeogenesis and glycogen synthesis. The overall GSD incidence is estimated 1 case per 20000-43000 live births. There are over 12 types and they are classified based on the enzyme deficiency and the affected tissue. Disorders of glycogen degradation may affect primarily the liver, the muscle, or both. Type I a involves the liver, kidney and intestine (and I b also leukocytes), and the clinical manifestations are hepatomegaly, failure to thrive, hypoglycemia, hyperlactatemia, hyperuricemia and hyperlipidemia. Type Ilia involves both the liver and muscle, and lib solely the liver. The liver symptoms generally improve with age. Type IV usually presents in the first year of life, with hepatomegaly and growth retardation. The disease in general is progressive to cirrhosis. Type Ⅵ and Ⅳ are a heterogeneous group of diseases caused by a deficiency of the liver phosphorylase and phosphorylase kinase system. There is no hyperuricemia or hyperlactatemia. Type Ⅺ is characterized by hepatic glycogenosis and renal Fanconi syndrome. Type Ⅱ is a prototype of inborn lysosomal storage diseases and involves many organs but primarily the muscle. Types V and Ⅶ involve only the muscle.
文摘Glycogenic hepatopathy(GH) is a rare complication of the poorly controlled diabetes mellitus characterized by the transient liver dysfunction with elevated liver enzymes and associated hepatomegaly caused by the reversible accumulation of excess glycogen in the hepatocytes. It is predominantly seen in patients with longstanding type 1 diabetes mellitus and rarely reported in association with type 2 diabetes mellitus. Although it was first observed in the pediatric population, since then, it has been reported in adolescents and adults with or without ketoacidosis. The association of GH with hyperglycemia in diabetes has not been well established. One of the essential elements in the pathophysiology of development of GH is the wide fluctuation in both glucose and insulin levels. GH and non-alcoholic fatty liver disease(NAFLD) are clinically indistinguishable, and latter is more prevalent in diabetic patients and can progress to advanced liver disease and cirrhosis. Gradient dual-echo MRI can distinguish GH from NAFLD; however, GH can reliably be diagnosed only by liver biopsy. Adequate glycemic control can result in complete remission of clinical, laboratory and histological abnormalities. There has been a recent report of varying degree of liver fibrosis identified in patients with GH. Future studies are required to understand the biochemical defects underlying GH, noninvasive, rapid diagnostic tests for GH, and to assess the consequence of the fibrosis identified as severe fibrosis may progress to cirrhosis. Awareness of this entity in the medical community including specialists is low. Here we briefly reviewed the English literature on pathogenesis involved, recent progress in the evaluation, differential diagnosis, and management.
基金supported by a grant provided by Southeast University(No.9224007044)
文摘Insulin resistance is the pathophysiological basis of many diseases.Overcoming early insulin resistance highly significant in prevention diabetes,non-alcoholic fatty liver,and atherosclerosis.The present study aimed at evaluating the therapeutic effects of baicalin on insulin resistance and skeletal muscle ectopic fat storage in high fat diet-induced mice,and exploring the potential molecular mechanisms.Insulin resistance in mice was induced with a high fat diet for 16 weeks.Animals were then treated with three different doses of baicalin(100,200,and 400 mg·kg^(-1)·d^(-1)for 14 weeks.Fasting blood glucose,fasting serum insulin,glucose tolerance test(GTT),insulin tolerance test(ITT),and skeletal muscle lipid deposition were measured.Additionally,the AMP-activated protein kinase/acetyl-CoA carboxylase and protein kinase B/Glycogen synthase kinase 3 beta pathways in skeletal muscle were further evaluated.Baicalin significantly reduced the levels of fasting blood glucose and fasting serum insulin and attenuated high fat diet induced glucose tolerance and insulin tolerance.Moreover,insulin resistance was significantly reversed.Pathological analysis revealed baicalin dose-dependently decreased the degree of the ectopic fat storage in skeletal muscle.The properties of baicalin were mediated,at least in part,by inhibition of the AMPK/ACC pathway,a key regulator of de novo lipogenesis and activation of the Akt/GSK-3β pathway,a key regulator of Glycogen synthesis.These data suggest that baicalin,at dose up to 400 mg·kg^(-1)·d^(-1),is safe and able to attenuate insulin resistance and skeletal muscle ectopic fat storage,through modulating the skeletal muscle AMPK/ACC pathway and Akt/GSK-3β pathway.
基金Supported by Key Program of Science and Technology Research of Higher Education Institutions in Hebei Province(No.Zd2018215)Doctoral Scientific Research Fund of North China University of Science and Technology(No.BS2017064)
文摘OBJECTIVE: To explore the molecular mechanism underpinning the action by investigating its effect on glycogen content and AKT(also known as protein kinase B)/glycogen synthase kinase 3β(GSK-3β) pathway in the liver of rats with type 2 diabetic induced by high-fat diet.METHODS: The rat model of type 2 diabetes was induced by high-fat diet and multiple low-dose streptozotocin injection. Diabetic rats were divided into five groups: the model control group, the Metformin group, spleen-kidney supplementing formula groups of low, medium and high doses. Fasting blood glucose(FBG) levels were measured before treatment and every two weeks during treatment.After the treatment, oral glucose tolerance test was performed, and hemoglobin A1c (HbA1c) and C-peptide were measured to assess the formula's effect on glucose metabolism and insulin resistance. The protein expression levels of AKT, GSK-3βand their phosphorylated forms in the liver were also measured to study the formula's role in insulin signaling pathway.RESULTS: Spleen-kidney supplementing formula significantly relieved the symptoms of polydipsia,polyuria and weight loss in type 2 diabetic rats, reduced FBG and HbA1c levels, increased glycogen content, and improved insulin sensitivity. The anti-diabetic effects of spleen-kidney supplementing formula are dose dependent. It also increased the total AKT protein level and the GSK-3β phosphorylation in the liver of type 2 diabetic rats.CONCLUSION: Spleen-kidney supplementing formula has hypoglycemic effect and relieves insulin resistance by enhancing AKT/GSK-3β signaling pathway in the liver of type 2 diabetic rats.
文摘Although glycogen synthase kinase-3 (GSK-3) might act as a tumor suppressor since its inhibition is expected to mimic the activation of Wnt-signaling pathway, GSK-3β may contribute to NF-κB activation in cancer cells leading to increased cancer cell proliferation and survival. Here we report that GSK-3β activity was involved in the proliferation of human ovarian cancer cell both in vitro and in vivo. Inhibition of GSK-3 activity by pharmacological inhibitors suppressed proliferation of the ovarian cancer cells. Overexpressing constitutively active form of GSK-3β induced entry into the S phase, increased cyclin D1 expression and facilitated the proliferation of ovarian cancer cells. Furthermore, GSK-3 inhibition prevented the formation of the tumor in nude mice generated by the inoculation of human ovarian cancer cells. Our findings thus suggest that GSK-3β activity is important for the proliferation of ovarian cancer cells, implicating this kinase as a potential therapeutic target in ovarian cancer.
基金supported by the grants from the National Natural Science Foundation of China(No.31372524)Shandong Seed Projectproject of Shandong Province(No.2016ZDJS06A06)
文摘Glycogen is important not only for the energy supplementary of oysters, but also for human consumption. High glycogen content can improve the stress survival of oyster. A key enzyme in glycogenesis is glycogen synthase that is encoded by glycogen synthase gene GYS. In this study, the relationship between single nucleotide polymorphisms(SNPs) in coding regions of Crassostrea gigas GYS(Cg-GYS) and individual glycogen content was investigated with 321 individuals from five full-sib families. Single-strand conformation polymorphism(SSCP) procedure was combined with sequencing to confirm individual SNP genotypes of Cg-GYS. Least-square analysis of variance was performed to assess the relationship of variation in glycogen content of C. gigas with single SNP genotype and SNP haplotype. As a consequence, six SNPs were found in coding regions to be significantly associated with glycogen content(P < 0.01), from which we constructed four main haplotypes due to linkage disequilibrium. Furthermore, the most effective haplotype H2(GAGGAT) had extremely significant relationship with high glycogen content(P < 0.0001). These findings revealed the potential influence of Cg-GYS polymorphism on the glycogen content and provided molecular biological information for the selective breeding of good quality traits of C. gigas.
文摘Tau oligomers are the etiologic molecules of Alzheimer disease(AD), and correlate strongly with neuronal loss and exhibit neurotoxicity. Recent evidence indicates that small tau oligomers are the most relevant toxic aggregate species. The aim of the present study was to investigate the mechanisms of cornel iridoid glycoside(CIG) on tau oligomers and cognitive functions. We injected wortmannin and GF-109203 X(WM/GFX, 200 μmol·L-1 each) into the lateral ventricles to induce tau oligomer and memory impairment in rats. When oral y administered with CIG at 60 and 120 mg·kg-1 per day for 14 d, CIG decreased the escape latency in Morris water maze test. We also found that CIG restored the expression of presynaptic p-synapsin, synaptophysin, and postsynaptic density-95(PSD-95) decreased by WM/GFX in rat cortex. CIG reduced the accumulation of tau oligomers in the brain of WM/GFX rats and in cells transfected with wild type glycogen synthase kinase-3β(wt GSK-3β). In addition, CIG up-regulated the levels of ATG7, ATG12, Beclin-1, and LC3 II in vivo and in vitro, suggesting the restoration of autophagy function. These results suggest that CIG could ameliorate memory deficits and regulate memory-associated synaptic proteins through the clearance of tau oligomers accumulation. Moreover, CIG clears tau oligomers by restoring autophagy function.
基金supported by the National Natural Science Foundation of China,Nos.81901994(to BZ)and 81571147(to XXX)the Natural Science Foundation of Hubei Province,China,No.2019CFC847(to WWG)the Fundamental Research Funds for the Central Universities,China,No.2042018kf0149(to ML)
文摘Interleukin-4(IL-4) has a protective effect against cerebral ischemia/reperfusion injury. Animal experiments have shown that IL-4 improves the short-and long-term prognosis of neurological function. The Akt(also called protein kinase B, PKB)/glycogen synthase kinase-3β(Akt/GSK-3β) signaling pathway is involved in oxidative stress, the inflammatory response, apoptosis, and autophagy. However, it is not yet clear whether the Akt/GSK-3β pathway participates in the neuroprotective effect of IL-4 against cerebral ischemia/reperfusion injury. In the present study, we established a cerebral ischemia/reperfusion mouse model by middle cerebral artery occlusion for 60 minutes followed by a 24-hour reperfusion. An IL-4/anti-IL-4 complex(10 μg) was intraperitoneally administered 30 minutes before surgery. We found that administration of IL-4 significantly alleviated the neurological deficits, oxidative stress, cell apoptosis, and autophagy and reduced infarct volume of the mice with cerebral ischemia/reperfusion injury 24 hours after reperfusion. Simultaneously, IL-4 activated Akt/GSK-3β signaling pathway. However, an Akt inhibitor LY294002, which was injected at 15 nmol/kg via the tail vein, attenuated the protective effects of IL-4. These findings indicate that IL-4 has a protective effect on cerebral ischemia/reperfusion injury by mitigating oxidative stress, reducing apoptosis, and inhibiting excessive autophagy, and that this mechanism may be related to activation of the Akt/GSK-3β pathway. This animal study was approved by the Animal Ethics Committee of Renmin Hospital of Wuhan University, China(approval No. WDRY2017-K037) on March 9, 2017.
文摘Glycogen storage diseases(GSDs),also referred to as glycogenoses,are inherited metabolic disorders of glycogen metabolism caused by deficiency of enzymes or transporters involved in the synthesis or degradation of glycogen leading to aberrant storage and/or utilization.The overall estimated GSD incidence is 1 case per 20000-43000 live births.There are over 20 types of GSD including the subtypes.This heterogeneous group of rare diseases represents inborn errors of carbohydrate metabolism and are classified based on the deficient enzyme and affected tissues.GSDs primarily affect liver or muscle or both as glycogen is particularly abundant in these tissues.However,besides liver and skeletal muscle,depending on the affected enzyme and its expression in various tissues,multiorgan involvement including heart,kidney and/or brain may be seen.Although GSDs share similar clinical features to some extent,there is a wide spectrum of clinical phenotypes.Currently,the goal of treatment is to maintain glucose homeostasis by dietary management and the use of uncooked cornstarch.In addition to nutritional interventions,pharmacological treatment,physical and supportive therapies,enzyme replacement therapy(ERT)and organ transplantation are other treatment approaches for both disease manifestations and longterm complications.The lack of a specific therapy for GSDs has prompted efforts to develop new treatment strategies like gene therapy.Since early diagnosis and aggressive treatment are related to better prognosis,physicians should be aware of these conditions and include GSDs in the differential diagnosis of patients with relevant manifestations including fasting hypoglycemia,hepatomegaly,hypertransaminasemia,hyperlipidemia,exercise intolerance,muscle cramps/pain,rhabdomyolysis,and muscle weakness.Here,we aim to provide a comprehensive review of GSDs.This review provides general characteristics of all types of GSDs with a focus on those with liver involvement.
文摘Objective: To study the mechanism of hepatocellular glycogen in alleviation of liver ischemia-reperfusion injury during hepatic vascular occlusion for partial hepatectomy. Methods: Seventeen patients were randomly divided into experimental group (n=9) and control group (n=8). In the experimental group, patients were given high concentration glucose intravenously during 24 hours before operation. The hepatic lesion was re- sected after portal triad clamping in the two groups. Non-cancer liver tissue was biopsied to measure he- patic tissue ATP content and change of malondialde- hyde (MDA) and superoxide dismutase (SOD). Liver function of all patients was assessed before operation and the first and fifth day after operation. Results: Hepatic tissue ATP content of the experi- mental group was significantly higher than that of the control group both at the end of hepatic vascular oc- clusion and the point of one-hour reperfusion. Be- sides, liver function of the experimental group was significantly better than that of the control group the first and fifth day after operation. There was signifi- cant difference in SOD activity or MDA content be- tween the two groups at the end of hepatic vascular occlusion and at the point of one-hour reperfusion. Conclusions: Abundant intracellular glycogen may reduce liver ischemia-reperfusion injury caused by hepatic vascular occlusion. It is beneficial to give a large amount of glucose before a complex liver opera- tion, in which temporary occlusion of hepatic blood flow is necessary.