OBJECTIVE: To investigate the antiepileptic effects of Chaihushugan decoction(CHSGD) in rats with pentylenetetrazole(PTZ)-induced seizures and to discuss the impact of CHSGD on glutamate metabolism, a hypothesized und...OBJECTIVE: To investigate the antiepileptic effects of Chaihushugan decoction(CHSGD) in rats with pentylenetetrazole(PTZ)-induced seizures and to discuss the impact of CHSGD on glutamate metabolism, a hypothesized underlying mechanism of seizure reduction.METHODS: Fifty Wistar rats were divided randomly into either control(n = 10) or experimental(n = 40)groups. Rats in the control group were administered physiological saline intraperitoneally. A subconvulsive dose of PTZ(35 mg/kg) was administered intraperitoneally to rats in the experimental group to induce seizures. The fully PTZ-kindled rats were then randomly divided into five subgroups(n = 8 each) based on the following treatment categories: physiological saline, VPA(200 mg/kg), CHSGD(2.5 g/kg), CHSGD(5 g/kg), or CHSGD(10 g/kg),administered orally once per day, respectively. On day 28 following initiation of drug treatment, seizures were monitored. The rats were then sacrificed, and hippocampal dissections were performed for subsequent studies.RESULTS: CHSGD significantly prolonged the latency of myoclonic, clonic, and tonic seizures, while decreasing overall seizure rates in the kindled rats.The measured concentrations of 2-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl) amino]-2-deoxy-d-glucose(2-NBDG) and glutamate were significantly lower in the hippocampi of kindled rats in groups treated with CHSGD compared with those treated with PTZ alone. In addition, CHSGD was found to up-regulate both the expression of glutamate transporter-1(GLT-1) protein and the activity of glutamine synthetase(GS) in the hippocampi of kindled rats.CONCLUSION: These results suggest that CHSGD has antiepileptic effects on PTZ-induced seizures.The results further suggest an increase in glutamate metabolism at the synaptic cleft is a putative underlying mechanism of seizure reduction.展开更多
This article presents research focused on developing and scientifically substantiating a technology for producing environmentally friendly glued structures fromwood treated through a two-stage process.Themethodology i...This article presents research focused on developing and scientifically substantiating a technology for producing environmentally friendly glued structures fromwood treated through a two-stage process.Themethodology involves preliminary thermal modification followed by high-frequency low-temperature plasma treatment.Thermal modification enhances performance characteristics such as resistance to rot,lowers hygroscopicity,and increases dimensional stability.However,it can diminish the adhesive properties of wood,complicating the bonding process.To address this challenge,the study introduces high-frequency low-temperature plasma treatment,which activates the wood surface,improving wettability and adhesion while minimizing glue consumption.Experimental results indicate that plasma treatment reduces the contact angle by 46%and adhesive consumption during bonding by 24%,thereby enhancing the environmental friendliness of the glued structures.Furthermore,this dual treatment process increases the shear strength of adhesive joints by 22.7%and bending strength of glued beams by 66.6%,demonstrating a 30%lower carbon footprint compared to conventional methods.The findings affirm the efficacy of this technology in producing building materials,particularly glued beams for large-span structures.展开更多
基金Supported by Guangdong Natural Science Foundation(The effects of "Treatment from Gan"on Regulation of A-type Potassium Channels by KChIP/Kv4 in the pathomechanism of Refractory Epilepsy,No.2014A030310052)National Natural Science Foundation of China(Study on Regulation of A-type Potassium Channels by KChIP/Kv4 in the Pathomechanism of Refractory Epilepsy and the Effects of "Treatment from Gan",No.81503564)
文摘OBJECTIVE: To investigate the antiepileptic effects of Chaihushugan decoction(CHSGD) in rats with pentylenetetrazole(PTZ)-induced seizures and to discuss the impact of CHSGD on glutamate metabolism, a hypothesized underlying mechanism of seizure reduction.METHODS: Fifty Wistar rats were divided randomly into either control(n = 10) or experimental(n = 40)groups. Rats in the control group were administered physiological saline intraperitoneally. A subconvulsive dose of PTZ(35 mg/kg) was administered intraperitoneally to rats in the experimental group to induce seizures. The fully PTZ-kindled rats were then randomly divided into five subgroups(n = 8 each) based on the following treatment categories: physiological saline, VPA(200 mg/kg), CHSGD(2.5 g/kg), CHSGD(5 g/kg), or CHSGD(10 g/kg),administered orally once per day, respectively. On day 28 following initiation of drug treatment, seizures were monitored. The rats were then sacrificed, and hippocampal dissections were performed for subsequent studies.RESULTS: CHSGD significantly prolonged the latency of myoclonic, clonic, and tonic seizures, while decreasing overall seizure rates in the kindled rats.The measured concentrations of 2-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl) amino]-2-deoxy-d-glucose(2-NBDG) and glutamate were significantly lower in the hippocampi of kindled rats in groups treated with CHSGD compared with those treated with PTZ alone. In addition, CHSGD was found to up-regulate both the expression of glutamate transporter-1(GLT-1) protein and the activity of glutamine synthetase(GS) in the hippocampi of kindled rats.CONCLUSION: These results suggest that CHSGD has antiepileptic effects on PTZ-induced seizures.The results further suggest an increase in glutamate metabolism at the synaptic cleft is a putative underlying mechanism of seizure reduction.
基金funded by the Technostart competition,Agreement No.12-22(2-22)dated 01 February 2022.
文摘This article presents research focused on developing and scientifically substantiating a technology for producing environmentally friendly glued structures fromwood treated through a two-stage process.Themethodology involves preliminary thermal modification followed by high-frequency low-temperature plasma treatment.Thermal modification enhances performance characteristics such as resistance to rot,lowers hygroscopicity,and increases dimensional stability.However,it can diminish the adhesive properties of wood,complicating the bonding process.To address this challenge,the study introduces high-frequency low-temperature plasma treatment,which activates the wood surface,improving wettability and adhesion while minimizing glue consumption.Experimental results indicate that plasma treatment reduces the contact angle by 46%and adhesive consumption during bonding by 24%,thereby enhancing the environmental friendliness of the glued structures.Furthermore,this dual treatment process increases the shear strength of adhesive joints by 22.7%and bending strength of glued beams by 66.6%,demonstrating a 30%lower carbon footprint compared to conventional methods.The findings affirm the efficacy of this technology in producing building materials,particularly glued beams for large-span structures.