GLEAM(Global Land Evapotranspiration Amsterdam Model)和MOD16(MODIS Global Evapotranspiration Project)全球蒸散发产品已经得到了广泛的检验和应用,但由于观测资料缺乏,尚缺少对高原地区的检验。本文以青藏高原然乌湖流域、羊卓...GLEAM(Global Land Evapotranspiration Amsterdam Model)和MOD16(MODIS Global Evapotranspiration Project)全球蒸散发产品已经得到了广泛的检验和应用,但由于观测资料缺乏,尚缺少对高原地区的检验。本文以青藏高原然乌湖流域、羊卓雍错流域、纳木错流域、色林错流域和塔若错流域为检验区域,利用流域水量平衡法,采用相关系数、相对误差、均方根误差和Kling-Gupta系数,对这两种蒸散产品开展了精度验证与评价。结果表明:GLEAM蒸散发产品在然乌湖、色林错和塔若错流域整体存在低估现象,在羊卓雍错和纳木错流域存在轻微高估现象,而MOD16产品仅在色林错流域有轻微低估现象,在其他湖泊流域均表现为高估;GLEAM和MOD16蒸散发产品在5个湖泊流域年降水量较少的年份均存在高估的现象,在湿润年份则为低估;GLEAM产品在然乌湖流域、羊卓雍错流域和色林错流域的验证结果相对较好,而MOD16产品在纳木错流域和塔若错流域的验证精度相对较高;总体而言,在年尺度和多年平均尺度下,GLEAM蒸散发产品在青藏高原中东南湖泊流域的精度明显优于MOD16产品。本文的研究结果为适用于青藏高原地区蒸散发产品的甄选提供了重要参考。展开更多
On May 22, the Conference on Dialogue of Asian Civilizations (CDAC) closed in Beijing as a huge success. It was my great honor to participate in the organization of the event. Now, in retrospect, my memories remain fr...On May 22, the Conference on Dialogue of Asian Civilizations (CDAC) closed in Beijing as a huge success. It was my great honor to participate in the organization of the event. Now, in retrospect, my memories remain fresh. The CDAC produced new ideas, new visions and new thoughts. With them, people began to look forward to and work on creating a community of shared future based on mutual respect, equality, mutual appreciation, openness, inclusiveness, mutual learning, advancement with the times and innovation.展开更多
The goal of the study was to model water quality impacts of growing perennial grasses on marginal soils. The GLEAMS-NAPRA and RUSLE models were used to simulate long-term surface runoff, percolation, erosion, total ph...The goal of the study was to model water quality impacts of growing perennial grasses on marginal soils. The GLEAMS-NAPRA and RUSLE models were used to simulate long-term surface runoff, percolation, erosion, total phosphorus (TP), and nitrate (NO3-N) losses associated with the production of corn-based bioenergy systems (i.e. conventional tillage corn and corn grain plus stover removal), switchgrass and Miscanthus on three marginal quality soils and one good quality soil in Indiana. Simulations showed that switchgrass and Miscanthus had no effect on annual runoff, but decreased percolation by at least 17%. Results also suggested a potential for reduction in erosion for Miscanthus across the soil types examined when compared to corn-based bioenergy production. The production of switchgrass and Miscanthus did not have significant effects on the simulated TP and NO3-N losses in runoff compared to corn production systems. Nitrates leached from fertilized Miscanthus production were approximately 90% lower than NO3-N leached from the production of fertilized switchgrass and corn systems. Additional studies are needed to better understand the hydrology, erosion and nutrient responses of Miscanthus and switchgrass production to meet bioenergy demands.展开更多
文摘GLEAM(Global Land Evapotranspiration Amsterdam Model)和MOD16(MODIS Global Evapotranspiration Project)全球蒸散发产品已经得到了广泛的检验和应用,但由于观测资料缺乏,尚缺少对高原地区的检验。本文以青藏高原然乌湖流域、羊卓雍错流域、纳木错流域、色林错流域和塔若错流域为检验区域,利用流域水量平衡法,采用相关系数、相对误差、均方根误差和Kling-Gupta系数,对这两种蒸散产品开展了精度验证与评价。结果表明:GLEAM蒸散发产品在然乌湖、色林错和塔若错流域整体存在低估现象,在羊卓雍错和纳木错流域存在轻微高估现象,而MOD16产品仅在色林错流域有轻微低估现象,在其他湖泊流域均表现为高估;GLEAM和MOD16蒸散发产品在5个湖泊流域年降水量较少的年份均存在高估的现象,在湿润年份则为低估;GLEAM产品在然乌湖流域、羊卓雍错流域和色林错流域的验证结果相对较好,而MOD16产品在纳木错流域和塔若错流域的验证精度相对较高;总体而言,在年尺度和多年平均尺度下,GLEAM蒸散发产品在青藏高原中东南湖泊流域的精度明显优于MOD16产品。本文的研究结果为适用于青藏高原地区蒸散发产品的甄选提供了重要参考。
文摘On May 22, the Conference on Dialogue of Asian Civilizations (CDAC) closed in Beijing as a huge success. It was my great honor to participate in the organization of the event. Now, in retrospect, my memories remain fresh. The CDAC produced new ideas, new visions and new thoughts. With them, people began to look forward to and work on creating a community of shared future based on mutual respect, equality, mutual appreciation, openness, inclusiveness, mutual learning, advancement with the times and innovation.
文摘The goal of the study was to model water quality impacts of growing perennial grasses on marginal soils. The GLEAMS-NAPRA and RUSLE models were used to simulate long-term surface runoff, percolation, erosion, total phosphorus (TP), and nitrate (NO3-N) losses associated with the production of corn-based bioenergy systems (i.e. conventional tillage corn and corn grain plus stover removal), switchgrass and Miscanthus on three marginal quality soils and one good quality soil in Indiana. Simulations showed that switchgrass and Miscanthus had no effect on annual runoff, but decreased percolation by at least 17%. Results also suggested a potential for reduction in erosion for Miscanthus across the soil types examined when compared to corn-based bioenergy production. The production of switchgrass and Miscanthus did not have significant effects on the simulated TP and NO3-N losses in runoff compared to corn production systems. Nitrates leached from fertilized Miscanthus production were approximately 90% lower than NO3-N leached from the production of fertilized switchgrass and corn systems. Additional studies are needed to better understand the hydrology, erosion and nutrient responses of Miscanthus and switchgrass production to meet bioenergy demands.