This paper presents a scheme for probabilistic teleportation of an arbitrary GHZ-class state with a pure entangled two-particle quantum channel. The sender Alice first teleports the coefficients of the unknown state t...This paper presents a scheme for probabilistic teleportation of an arbitrary GHZ-class state with a pure entangled two-particle quantum channel. The sender Alice first teleports the coefficients of the unknown state to the receiver Bob, and then Bob reconstructs the state with an auxiliary particle and some unitary operations if the teleportation succeeds. This scheme has the advantage of transmitting much less particles for teleporting an arbitrary GHZ-class state than others. Moreover, it discusses the application of this scheme in quantum state sharing.展开更多
We present a scheme for multiparty-controlled teleportation of an arbitrary high-dimensional GHZ-class state with a d-dimensional (N+2)-particle GHZ state following some ideas from the teleportation (Chinese Physics B...We present a scheme for multiparty-controlled teleportation of an arbitrary high-dimensional GHZ-class state with a d-dimensional (N+2)-particle GHZ state following some ideas from the teleportation (Chinese Physics B, 2007, 16: 2867). This scheme has the advantage of transmitting much fewer particles for controlled teleportation of an arbitrary multiparticle GHZ-class state. Moreover,we discuss the application of this scheme by using a nonmaximally entangled state as its quantum channel.展开更多
We present,two schemes for concentrating unknown nonmaximally entangled Greenberger Horme-Zeilinger(GHZ) or W class states.The first scheme for concentrating the nonmaximally entangled GHZ state is based on linearopti...We present,two schemes for concentrating unknown nonmaximally entangled Greenberger Horme-Zeilinger(GHZ) or W class states.The first scheme for concentrating the nonmaximally entangled GHZ state is based on linearoptical devices.The second scheme for concentrating the W class states can be applied to a wide variety of atomic state.Both of our schemes are not postselection ones and are within the current technologies.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant Nos 10604008 and 10435020) and Beijing Education Committee (Grant No XK100270454).
文摘This paper presents a scheme for probabilistic teleportation of an arbitrary GHZ-class state with a pure entangled two-particle quantum channel. The sender Alice first teleports the coefficients of the unknown state to the receiver Bob, and then Bob reconstructs the state with an auxiliary particle and some unitary operations if the teleportation succeeds. This scheme has the advantage of transmitting much less particles for teleporting an arbitrary GHZ-class state than others. Moreover, it discusses the application of this scheme in quantum state sharing.
基金supported by the Scientific Research Starting Foundation of Guangxi University for Nationalities (Grant No. 2008QD019)the Guangxi Natural Science Foundation (Grant No. 0991015)
文摘We present a scheme for multiparty-controlled teleportation of an arbitrary high-dimensional GHZ-class state with a d-dimensional (N+2)-particle GHZ state following some ideas from the teleportation (Chinese Physics B, 2007, 16: 2867). This scheme has the advantage of transmitting much fewer particles for controlled teleportation of an arbitrary multiparticle GHZ-class state. Moreover,we discuss the application of this scheme by using a nonmaximally entangled state as its quantum channel.
基金The project supported by National Natural Science Foundation of Chinathe National Fundamental Research Program under Grant No.2006CB921900
文摘We present,two schemes for concentrating unknown nonmaximally entangled Greenberger Horme-Zeilinger(GHZ) or W class states.The first scheme for concentrating the nonmaximally entangled GHZ state is based on linearoptical devices.The second scheme for concentrating the W class states can be applied to a wide variety of atomic state.Both of our schemes are not postselection ones and are within the current technologies.