期刊文献+
共找到272篇文章
< 1 2 14 >
每页显示 20 50 100
The Application of GGE Biplot Analysis for Evaluating Test Locations and Mega-Environment Investigation of Cotton Regional Trials 被引量:16
1
作者 XU Nai-yin Fok Michel +2 位作者 ZHANG Guo-wei LI Jian ZHOU Zhi-guo 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2014年第9期1921-1933,共13页
In the process to the marketing of cultivars, identification of superior test locations within multi-environment variety trial schemes is of critical relevance. It is relevant to breeding organizations as well as to g... In the process to the marketing of cultivars, identification of superior test locations within multi-environment variety trial schemes is of critical relevance. It is relevant to breeding organizations as well as to governmental organizations in charge of cultivar registration. Where competition among breeding companies exists, effective and fair multi-environment variety trials are of utmost importance to motivate investment in breeding. The objective of this study was to use genotype main effect plus genotype by environment interaction(GGE) biplot analysis to evaluate test locations in terms of discrimination ability, representativeness and desirability, and to investigate the presence of multiple mega-environments in cotton production in the Yangtze River Valley(YaRV), China. Four traits(cotton lint yield, fiber length, lint breaking tenacity, micronaire) and two composite selection indices were considered. It was found that the assumption of a single mega-environment in the YaRV for cotton production does not hold. The YaRV consists of three cotton mega-environments: a main one represented by 11 locations and two minor ones represented by two test locations each. This demands that the strategy of cotton variety registration or recommendation must be adjusted. GGE biplot analysis has also led to the identification of test location superior for cotton variety evaluation. Although test location desirable for selecting different traits varied greatly, Jinzhou, Hubei Province, China, was found to be desirable for selecting for all traits considered while Jianyang, Sichuan Province, China, was found to be desirable for none. 展开更多
关键词 COTTON multi-environmental trial gge biplot test location mega-environment
在线阅读 下载PDF
GGE biplot analysis of yield stability and test location representativeness in proso millet (Panicum miliaceum L.) genotypes 被引量:14
2
作者 ZHANG Pan-pan SONG Hui +8 位作者 KE Xi-wang JIN Xi-jun YIN Li-hua LIU Yang QU Yang SU Wang FENG Nai-jie ZHENG Dian-feng FENG Bai-li 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2016年第6期1218-1227,共10页
The experiments were conducted for three consecutive years across 14 locations using 9 non-waxy proso millet genotypes and 16 locations using 7 waxy proso millet genotypes in China. The objectives of this study were t... The experiments were conducted for three consecutive years across 14 locations using 9 non-waxy proso millet genotypes and 16 locations using 7 waxy proso millet genotypes in China. The objectives of this study were to analyze yield stability and adaptability of proso millets and to evaluate the discrimination and representativeness of locations by analysis of vari- ance (ANOVA) and genotype and genotype by environment interaction (GGE) biplot methods. Grain yields of proso millet genotypes were significantly influenced by environment (E), genotype (G) and their interaction (GxE) (P〈0.1%). GxE inter- action effect was six times higher than G effect in non-waxy group and seven times in waxy group. N04-339 in non-waxy and Neimi 6 (NM6) in waxy showed higher grain yields and stability compared with other genotypes. Also, Neimi 9 (NM9, a non-waxy cultivar) and 90322-2-33 (a waxy cultivar) showed higher adaptability in 7 and in 11 locations, respectively. For non-waxy, Dalat, Inner Mongolia (E2) and Wuzhai, Shanxi (E5) were the best sites among all the locations for maximizing the variance among candidate cultivars, and Yanchi, Ningxia (El0) had the best representativeness. Wuzhai, Shanxi (e9) and Yanchi, Ningxia (e14) were the best representative locations, and Baicheng, Jilin (e2) was better discriminating location than others for waxy genotypes. Based on our results, El0 and e14 have enhanced efficiency and accuracy for non-waxy genotypes and waxy genotypes selection, respectively in national regional test of proso millet varieties. 展开更多
关键词 proso millet gge biplot yield stability test location representativeness
在线阅读 下载PDF
One compound approach combining factor-analytic model with AMMI and GGE biplot to improve multi-environment trials analysis 被引量:7
3
作者 Weihua Zhang Jianlin Hu +1 位作者 Yuanmu Yang Yuanzhen Lin 《Journal of Forestry Research》 SCIE CAS CSCD 2020年第1期123-130,共8页
To improve multi-environmental trial(MET)analysis,a compound method—which combines factor analytic(FA)model with additive main effect and multiplicative interaction(AMMI)and genotype main effect plus genotype-by-envi... To improve multi-environmental trial(MET)analysis,a compound method—which combines factor analytic(FA)model with additive main effect and multiplicative interaction(AMMI)and genotype main effect plus genotype-by-environment interaction(GGE)biplot—was conducted in this study.The diameter at breast height of 36 open-pollinated(OP)families of Pinus taeda at six sites in South China was used as a raw dataset.The best linear unbiased prediction(BLUP)data of all individual trees in each site was obtained by fitting the spatial effects with the FA method from raw data.The raw data and BLUP data were analyzed and compared by using the AMMI and GGE biplot.BLUP results showed that the six sites were heterogeneous and spatial variation could be effectively fitted by spatial analysis with the FA method.AMMI analysis identified that two datasets had highly significant effects on the site,family,and their interactions,while BLUP data had a smaller residual error,but higher variation explaining ability and more credible stability than raw data.GGE biplot results revealed that raw data and BLUP data had different results in mega-environment delineation,test-environment evaluation,and genotype evaluation.In addition,BLUP data results were more reasonable due to the stronger analytical ability of the first two principal components.Our study suggests that the compound method combing the FA method with the AMMI and GGE biplot could improve the analysis result of MET data in Pinus teada as it was more reliable than direct AMMI and GGE biplot analysis on raw data. 展开更多
关键词 Additive main effect and multiplicative interaction Best linear unbiased prediction gge biplot Genotype by environment interaction Multi-environment trial
在线阅读 下载PDF
Cultivar Selection and Test Site Evaluation of Cotton Regional Trials in Jiangsu Province Based on GGE Biplot 被引量:2
4
作者 Jian LI Naiyin XU 《Agricultural Science & Technology》 CAS 2014年第8期1277-1280,1284,共5页
This study was to evaluate the high yielding and stability of candidate cultivars, depict the adaptive planting region, analyze trial location discrim-ination ability and representativeness, as wel as identify the ide... This study was to evaluate the high yielding and stability of candidate cultivars, depict the adaptive planting region, analyze trial location discrim-ination ability and representativeness, as wel as identify the ideal cultivar and trial location, with the aim to provide theory background for cultivar selection and rea-sonable scheme of test location in Jiangsu Province. [Method] The GGE biplot method was used to analyze the lint cotton yield of 12 experimental genotypes in the 6 test locations (three replicates in each) of the cotton regional trial in Jiangsu Province in 2013. [Result] The effects of genotype (G), environment (E), and geno-type by environment interaction (G&#215;E) on lint cotton yield were al highly significant (P〈0.01), which made it necessary to further explore the specific pattern of geno-type by environment interaction. Jinmian118 (G4) and SF3303 (G5) were the best ideal genotypes screened by the "ideal cultivar" and "ideal location" view of GGE biplot, and the ordination of test sites based on the ideal index were in the order of Dafeng (DF), Yanliang (YL), Liuhe (LH), Dongtai (DT), Yancheng (YC), and Nantong (NT), among which NT was relatively weak in representing of the whole target cot-ton planting region in Jiangsu Province. The "similarity among locations" view of GGE biplot clustered al trial locations into one group, showing that the test sites in the cotton planting region in Jiangsu Province were in the same mega-environment. The "which-won-where" view of GGE biplot indicated that cotton cultivar Jinmian118 (G4) was the most appropriate cultivar in the homogeneous cotton planting region in Jiangsu Province. [Conclusion] Among the candidate cultivars, Jinmian118 and SF3303 were identified as the most ideal cultivars in this set of conventional cotton regional trial in Jiangsu Province; the test site of Dafeng ranked the first out of al locations in terms of discrimination and representativeness, and al test locations were clustered into the same mega-environmet, which indicated the high efficiency of cultivar selection in the cotton regional trial in Jiangsu Province. 展开更多
关键词 Cotton (Gossypium hirsutum L.) gge biplot Discrimination ability REPRESENTATIVENESS Crop regional trial
在线阅读 下载PDF
Multi-environmental Evaluation of Triticale, Wheat and Barley Genotypes by GGE Biplot Analysis
5
作者 Oguz Bilgin Alpay Balkan +1 位作者 Zahit Kayihan Korkut Ismet Baser 《Journal of Life Sciences》 2018年第1期13-23,共11页
The research was carried out with 9 triticale, 3 bread wheat, 3 durum wheat and 3 barley varieties and advanced lines in Tekirdag, Edime and Silivri locations during three years. In the study, the data obtained from c... The research was carried out with 9 triticale, 3 bread wheat, 3 durum wheat and 3 barley varieties and advanced lines in Tekirdag, Edime and Silivri locations during three years. In the study, the data obtained from combined variance analysis were performed and the significance of the differences between the averages was determined by LSD multiple comparison test. GGE biplot analysis and graphics were made by using the statistical package program. The genotypes G2 and G3 for thousand kernel weight, genotype G1 for the heading time and test weight, genotypes G14 and G15 for the maturation time, number of spikelets per spike and grain weight per spike and G13 for the plant height, spike length and grain yield per hectare decare revealed the highest values. The genotypes G6, GS, G4, G14, G9, G8 and G7 gave lower values than the average in terms of grain yield, whereas the other genotypes gave higher values than the general average. According to biplot graphical results, while locations 1 and 8 were closely related, locations 9, 2 and 7 were positively related to these environments. Although the location 7 is slightly different from the other 4 locations, these 5 locations can be seen as a mega environment. Genotypes G12, G2, G3 and G10 for this mega-environment showed the best performances. According to the results of grain yields obtained from 9 different locations, the location 5 was the most discriminating area while the location 1 was the least discriminating. Location 2 was the best representative location, while locations 4 and 7 were with the lowest representation capability. The locations that are both descriptive and representative are good test locations for the selection of adapted genotypes. Test environments, such as location 8, with low ability to represent are useful for selecting genotypes that perform well in specific regions if the target environments can be subdivided into sub-environments. 展开更多
关键词 gge biplot genotype mega-environment descriptive location and representative.
在线阅读 下载PDF
Evaluating Varieties and Test Sites in the 2017 Rice Regional Trials of Hubei Province by GGE Biplot Based on Genstat 被引量:11
6
作者 潘高峰 房振兵 +3 位作者 田永宏 陈波 范兵 赵沙沙 《湖北农业科学》 2018年第15期24-27,共4页
为分析水稻区试参试品种的丰产性、稳产性、适应性以及区试地点的代表力和鉴别力,采用Gen Stat软件中的GGE双标图对湖北省2017年水稻区试A组12个参试品种和10个区试地点进行了分析。结果表明,深两优10号、亮两优1212、隆晶优4393、襄优5... 为分析水稻区试参试品种的丰产性、稳产性、适应性以及区试地点的代表力和鉴别力,采用Gen Stat软件中的GGE双标图对湖北省2017年水稻区试A组12个参试品种和10个区试地点进行了分析。结果表明,深两优10号、亮两优1212、隆晶优4393、襄优5327产量较高,亮两优1212、隆晶优4393、聚两优639、深两优10号具有较好的稳产性,襄优5327稳产性较弱,但在生产上仍有推广利用的价值。区试地点沙洋县、黄冈市、孝南区的代表力和鉴别力较强。 展开更多
关键词 水稻 GenStat gge双标图 品种 区域试验
在线阅读 下载PDF
Multienvironmental evaluation of wheat landraces by GGE Biplot Analysis for organic breeding 被引量:2
7
作者 Kostas Koutis Athanasios G. Mavromatis +1 位作者 Dimitrios Baxevanos Metaxia Koutsika-Sotiriou 《Agricultural Sciences》 2012年第1期66-74,共9页
This study was conducted to determine the performance of wheat landraces cultivated under organic conditions and to analyze their stability across diverse environments. Six wheat landraces with specific characteristic... This study was conducted to determine the performance of wheat landraces cultivated under organic conditions and to analyze their stability across diverse environments. Six wheat landraces with specific characteristics (high protein content, drought tolerance, stay green) were tested under organic growing environment. The experiments were applied in three locations (Larisa (LAR), Thessaloniki (THES), Kilkis (KIL)) for three growing seasons. The role of specific agronomic traits (stay green, lodging) and their correlation with yield components were analyzed. Stability and genotypic superiority for grain yield were determined using ANOVA and genotype × environment (GGE) biplot analysis. Furthermore, the interrelationships among wheat traits and genotype-by-trait using regression analysis, coefficient of variation and (GT)-biplot technique were studied. Significant differences were found in yield among wheat landraces tested, and also in yield components, as related to specific traits expressed into organic environment. Best varieties in terms of yield were the medium statured landraces Skliropetra and M. Argolidas, characterized by lowest weight of 1000 grains, large number of spikes per m2 meter and the highest number of grains per spike as compared to the other landraces. The statistical model GGE biplot provides useful information for experimentation of wheat landraces when grown under organic environment. It identifies clearly the ideal and representative environment for experimentation and underlines the effect of specific traits for each wheat cultivar on yield performance and stability across environments. 展开更多
关键词 WHEAT LANDRACES Stay Green LODGING gge biplot ANALYSIS
暂未订购
基于R语言GGE双标图的强筋小麦新麦58丰产稳产性和适应性综合分析
8
作者 李晓航 王映红 +1 位作者 付亮 蒋志凯 《种子》 北大核心 2025年第8期136-144,166,共10页
小麦新品种推广和应用的重要参考指标包括其丰产性、稳产性和适应性。利用R语言的GGE双标图法分析新麦58在2021-2022年度生产试验(黄淮南部麦区)的产量数据,同时结合方差分析、变异系数、高稳系数、适应度和离优度等方法综合分析其连续... 小麦新品种推广和应用的重要参考指标包括其丰产性、稳产性和适应性。利用R语言的GGE双标图法分析新麦58在2021-2022年度生产试验(黄淮南部麦区)的产量数据,同时结合方差分析、变异系数、高稳系数、适应度和离优度等方法综合分析其连续三年的审定试验结果,以便提高对适应性、丰产稳产性及试点区分力评价的可靠性。结果表明,新麦58在陕西省宝鸡市、河南省郑州市和辉县表现出最强的适应性,其丰产稳产性综合排序第4,优于对照品种周麦18;河南原阳和江苏徐州是代表性和鉴别力均较强的试验地点;2019-2021年度新麦58较对照品种周麦18分别增产3.26%、3.84%和5.69%,差异极显著,其丰产性较好;高稳系数分别为86.3%、85.8%和87.9%,均高于对照品种周麦18,具有良好的稳产性;适应度和离优度分析结果说明不同试点条件下新麦58的适应性较强。 展开更多
关键词 新麦58 gge双标图 丰产稳产性 适应性
在线阅读 下载PDF
基于GGE双标图评价小麦京农72的丰产性、稳产性和适应性
9
作者 高新欢 马巧云 +3 位作者 陈现朝 侯起岭 张立平 王汉霞 《种子》 北大核心 2025年第4期204-209,共6页
为更准确地评价小麦品种京农72的丰产性、稳产性和适应性,提高育种效率,采用GGE Biplot双标图,对2020-2021年国家北部冬麦区水地组区域试验中各参试品种进行评价。结果表明,京农72在平均环境轴上垂足最接近正方向,丰产性较好;在平均环... 为更准确地评价小麦品种京农72的丰产性、稳产性和适应性,提高育种效率,采用GGE Biplot双标图,对2020-2021年国家北部冬麦区水地组区域试验中各参试品种进行评价。结果表明,京农72在平均环境轴上垂足最接近正方向,丰产性较好;在平均环境轴投影距离较短,稳产性较好。京农72距离理想品种较近,表现出较好的高产稳产性,适宜种植区域涵盖北部冬麦区绝大部分区域。研究表明,在北部冬麦区水地组区域试验参试品种中,京农72是兼有丰产、稳产和广适性的理想小麦品种,具有较好的推广价值。 展开更多
关键词 小麦 京农72 gge双标图 丰产性 稳产性 适应性
在线阅读 下载PDF
基于BLUP和GGE双标图的谷子区域试验分析
10
作者 王淑君 邢璐 《河南农业科学》 北大核心 2025年第8期51-59,共9页
为准确筛选丰产性、稳产性好和适应性广的谷子品种,利用最佳线性无偏预测(BLUP)数据代替产量原始数据对2023—2024年全国谷子品种区域适应性联合鉴定(华北夏谷区组)试验的9个谷子品种和14个试点进行GGE双标图分析。通过对比热图和方差... 为准确筛选丰产性、稳产性好和适应性广的谷子品种,利用最佳线性无偏预测(BLUP)数据代替产量原始数据对2023—2024年全国谷子品种区域适应性联合鉴定(华北夏谷区组)试验的9个谷子品种和14个试点进行GGE双标图分析。通过对比热图和方差分析结果发现,BLUP数据降低了产量变异系数,能够更真实地反映品种的遗传潜力;同时,对产量总变异的解释(94.95%)明显高于原始数据(72.51%),提高了分析的准确性。利用BLUP数据进行GGE双标图分析发现,豫谷101、郑谷678和中谷855丰产性较好,邯谷6号、中谷855和沧471稳产性较好,豫谷101、中谷855丰产性和稳产性综合表现较好;豫谷101适应性最广,其次是中谷855。辽宁省的锦州、山东省的泰安和河南省的安阳3个试点是具有较强区分力和较好代表性的理想试点。综上,豫谷101、中谷855是丰产性、稳产性、适应性均较好的理想谷子品种,适合在华北夏谷区推广种植。 展开更多
关键词 谷子 最佳线性无偏预测(BLUP) gge双标图 丰产性 稳产性 适应性
在线阅读 下载PDF
基于GGE双标图法对两系杂交中稻组合襄两优1192丰产稳产和适应性分析 被引量:1
11
作者 赵沙沙 李三和 +5 位作者 田永宏 陈波 房振兵 潘高峰 潘秀才 孙强 《杂交水稻》 北大核心 2025年第3期72-79,共8页
为合理评价两系杂交中稻组合襄两优1192的丰产稳产性,确定其适宜种植区域,基于2021-2022年度湖北省中稻区域试验产量数据,采用方差分析和GGE双标图法对其进行分析和评价。结果表明,2 a环境效应变异占产量总变异的比例均最高,表明产量受... 为合理评价两系杂交中稻组合襄两优1192的丰产稳产性,确定其适宜种植区域,基于2021-2022年度湖北省中稻区域试验产量数据,采用方差分析和GGE双标图法对其进行分析和评价。结果表明,2 a环境效应变异占产量总变异的比例均最高,表明产量受地域环境影响显著。GGE双标图法分析显示,2021年襄两优1192丰产性排名第二,稳产性居前列,综合表现较好,是较理想品种;2022年其丰产性排名第四,稳产性一般,综合表现接近理想品种。适宜种植区域分析表明,2021年襄两优1192适合在除天门以外的8个试点环境中种植,范围较广;2022年襄两优1192所在扇形区域未包含参试地点,适应性欠佳。此外,襄两优1192株型适中,熟期适宜,抗性较好,适合在湖北省除西南地区以外区域推广种植,具有显著推广种植潜力。 展开更多
关键词 杂交水稻 襄两优1192 gge双标图 丰产性 稳产性 适应性
原文传递
基于GGE双标图和TOPSIS法对麦套花生品种的综合评价 被引量:1
12
作者 吕娇艳 王芳 +7 位作者 邢晓宁 王海莉 王艳 朱艳芳 张少聪 路坤 华福平 沈希华 《干旱地区农业研究》 北大核心 2025年第4期1-10,52,共11页
为综合评估河南省麦套花生品种的丰产稳产性、适应性、主要性状和试验点代表性、区分力,采用基于R语言的GGE双标图分析法和TOPSIS法对2018—2019年河南省花生联合体麦套花生区域试验数据中9个试验点和15个品种进行分析。结果表明,环境... 为综合评估河南省麦套花生品种的丰产稳产性、适应性、主要性状和试验点代表性、区分力,采用基于R语言的GGE双标图分析法和TOPSIS法对2018—2019年河南省花生联合体麦套花生区域试验数据中9个试验点和15个品种进行分析。结果表明,环境及其与基因型的互作效应对花生产量的影响均大于基因型,两者占总变异比例分别是基因型效应的6.08倍~14.53倍和1.28倍~1.50倍,不同品种的荚果产量为2 887.50~8 920.05 kg·hm^(-2),同一试验点内不同品种的荚果产量波动值范围为17.62%~75.80%,表明基因型所决定的产量潜力不可忽视。在河南省内的9个试验点中,开封、新乡、漯河、商丘具有较强的区分力和代表性。‘开农99’、‘商花27号’、‘豫花120号’具有良好的丰产性、稳产性和广适性,其中‘商花27号’和‘豫花120号’在两年的品质性状、抗病性和产量综合评价中位居前列,可作为高产优质品种进行推广种植。 展开更多
关键词 麦套花生 gge双标图 逼近理想解排序法(TOPSIS) 丰产性 稳产性 适应性
在线阅读 下载PDF
基于BLUP育种值和GGE双标图的陈山红心杉优良家系选择 被引量:2
13
作者 陈兴彬 黎志强 +4 位作者 彭小兵 娄永锋 冷春晖 肖平江 肖复明 《南方林业科学》 2025年第1期1-6,共6页
【目的】基于BLUP育种值和GGE双标图评价陈山红心杉家系的速生性和稳定性,为陈山红心杉家系的选择和利用提供依据。【方法】对江西省3个试验点的陈山红心杉1.5代种子园31个半同胞家系进行生长性状(胸径)测定,通过最佳线性无偏预测(BLUP... 【目的】基于BLUP育种值和GGE双标图评价陈山红心杉家系的速生性和稳定性,为陈山红心杉家系的选择和利用提供依据。【方法】对江西省3个试验点的陈山红心杉1.5代种子园31个半同胞家系进行生长性状(胸径)测定,通过最佳线性无偏预测(BLUP)获得各家系4年生胸径育种值,再进行GGE双标图分析,对家系和试验点进行评价。【结果】3地点联合方差分析结果表明,胸径在家系间、地点间以及地点和家系间差异极显著。GGE双标图分析的前两个主成分解释方差变异的94.73%。安福点的代表性和区分力最强,婺源点的代表性和区分力最弱。最速生的家系是21号、17号和8号,最稳定的家系是22号和18号。21号和17号家系既速生又稳定。【结论】3个试验点中,安福试验点有最好的区分力和代表性。综合考虑,21号和17号为既速生又稳定家系。GGE双标图分析法能有效用于陈山红心杉家系及试验地点的评价。 展开更多
关键词 最佳线性无偏预测 基因型与环境互作 gge双标图 陈山红心杉
在线阅读 下载PDF
基于GGE双标图的不同绿地植物固碳降温效益比较 被引量:3
14
作者 司明倩 穆艳 《应用生态学报》 北大核心 2025年第3期682-692,共11页
为了了解常见园林植物在不同环境中的生态适应能力,以街道绿地和校园绿地为研究区,筛选17种常见园林植物作为对象,对比分析两种绿地类型同胸径(草本为株高)植物的微环境特征、固碳释氧量和降温增湿量变化,利用基因型主效应及其与环境互... 为了了解常见园林植物在不同环境中的生态适应能力,以街道绿地和校园绿地为研究区,筛选17种常见园林植物作为对象,对比分析两种绿地类型同胸径(草本为株高)植物的微环境特征、固碳释氧量和降温增湿量变化,利用基因型主效应及其与环境互作双标图和皮尔逊分析法解析两种绿地上植物与环境的互作关系。结果表明:国槐、银杏、碧桃、七叶树、金叶女贞、紫叶小檗、小蜡和龙柏的固碳降温效益在两种绿地间存在显著差异。单位土地面积上,校园绿地固碳降温最强的植物是龙柏,固碳量和降温值分别为33.79 g·m^(-2)·d^(-1)和2.30℃,街道绿地上最强的植物是红叶石楠,固碳量和降温值分别为31.47 g·m^(-2)·d^(-1)和0.84℃;17种植物在校园绿地的平均固碳降温能力大于街道绿地,而乔木在街道绿地的降温增湿效果更好。夏季校园绿地的小气候条件比街道绿地更稳定,更接近植物生长的理想自然环境。对于中小城镇,在进行景观植物配置时,应选用固碳降温效益较好的乔灌草植物,包括国槐、栾树、女贞、紫叶李、七叶树、白皮松、龙柏、小蜡、金叶女贞、红叶石楠和麦冬等,来提升绿地的生态功能。 展开更多
关键词 街道绿地 校园绿地 固碳 释氧 降温 增湿 基因型主效应及其与环境互作(gge)双标图
原文传递
基于GGE双标图与TOPSIS模型协同的吉科玉885综合表现分析 被引量:1
15
作者 李剑明 黄佳亮 +5 位作者 刘博阳 吕子鹏 荣美琪 宁夕琳 姜龙 隋昕 《饲料研究》 北大核心 2025年第4期139-144,共6页
研究旨在通过多年多点次试验,对粮饲通用型青贮玉米品种吉科玉885的稳定性和高产性进行准确评估。基于2022年和2023年8个试验地点的10个青贮玉米品种的产量数据,运用GGE双标图和TOPSIS模型进行分析,探讨其在评估青贮玉米品种综合表现方... 研究旨在通过多年多点次试验,对粮饲通用型青贮玉米品种吉科玉885的稳定性和高产性进行准确评估。基于2022年和2023年8个试验地点的10个青贮玉米品种的产量数据,运用GGE双标图和TOPSIS模型进行分析,探讨其在评估青贮玉米品种综合表现方面的实际应用价值。结果显示,GGE双标图表明吉科玉885在连续两年的试验中均表现出优异的丰产性和稳产性,排名始终位于前两位,且在吉林省大部分试验地点均展现出良好的适应性。吉科玉885的营养品质较为优良,粗蛋白和粗灰分含量较高,粗脂肪含量适中,粗纤维含量较低,能够满足畜牧业对优质饲料的需求。TOPSIS模型进一步分析验证了吉科玉885在多个方面表现突出,连续两年在综合排名中位列第二。研究表明,吉科玉885是吉林省青贮玉米种植的理想品种。 展开更多
关键词 gge双标图 TOPSIS模型 青贮玉米 稳定性 丰产性
原文传递
基于GGE双标图的黄淮海地区青贮玉米高产稳产性分析
16
作者 李淑芬 柴文波 +4 位作者 许瀚元 祝庆 李洪涛 袁超 王军 《浙江农业科学》 2025年第4期863-868,共6页
为了确定黄淮海地区2020年夏播青贮玉米区域试验参试品种的丰产性和稳定性,为进一步的品种推广种植提供合理的分析方法和理论参考,选用2020年黄淮海夏播青贮玉米667 m^(2)5000株密度组区域试验参试的15个品种(系)、13个试点的数据,应用... 为了确定黄淮海地区2020年夏播青贮玉米区域试验参试品种的丰产性和稳定性,为进一步的品种推广种植提供合理的分析方法和理论参考,选用2020年黄淮海夏播青贮玉米667 m^(2)5000株密度组区域试验参试的15个品种(系)、13个试点的数据,应用基因型主效应与基因型×环境相互作用(GGE)双标图的分析方法,分析参试品种的丰产性和稳产性以及试点的区分力和代表性,结果表明,丰产性和稳产性较好的品种为皖农科青贮6号、川单99、连青贮101和渝青玉9号,也是本组区域试验较理想的品种,适宜在黄淮海大部分地区种植推广。河北石家庄是本组区域试验最理想的试点。 展开更多
关键词 青贮玉米 gge双标图 丰产性 稳产性
在线阅读 下载PDF
基于GGE双标图与决策分析的玉米品种吉科玉899综合评价
17
作者 荣美琪 崔百琦 +6 位作者 姜龙 李赵博 李天虹 宁夕琳 李继竹 胡鹏宇 杨金娟 《种子》 北大核心 2025年第6期182-187,194,共7页
为探究玉米品种吉科玉899的丰产性、稳产性和适应性及各试验点的鉴别力和代表性,采用GGE双标图和决策分析对2023年的多点次试验的12个玉米品种在8个试验点的产量与籽粒含水率的表现进行分析。结果表明,吉科玉899在德惠市、东丰县、扶余... 为探究玉米品种吉科玉899的丰产性、稳产性和适应性及各试验点的鉴别力和代表性,采用GGE双标图和决策分析对2023年的多点次试验的12个玉米品种在8个试验点的产量与籽粒含水率的表现进行分析。结果表明,吉科玉899在德惠市、东丰县、扶余市、白城市、榆树市均表现出较强适应性;所有参试品种中吉科玉899的丰产性、稳产性均排名第1,表明该品种丰产性突出,且具有较高的稳产潜力;籽粒含水量在参试品种中表现为第2。根据决策分析得出吉科玉899综合排名第2。研究表明,吉科玉899具有极高的丰产和宜机收潜力,是值得推广的理想品种。 展开更多
关键词 gge双标图 决策分析 吉科玉899 丰产性
在线阅读 下载PDF
基于BLUP值和GGE双标图对小粒花生品种的综合评价 被引量:1
18
作者 殷君华 邓丽 +4 位作者 郭敏杰 苗建利 胡俊平 李绍伟 任丽 《作物杂志》 北大核心 2025年第4期118-125,共8页
为筛选丰产稳产性好、适应性广的品种,以2019和2020年国家北方片花生新品种区域试验数据为基础,通过变异分析、相关性分析和GGE双标图法对12个小粒型花生品种主要农艺性状进行分析,通过Genstat软件获取12个参试品种在各试点荚果产量的B... 为筛选丰产稳产性好、适应性广的品种,以2019和2020年国家北方片花生新品种区域试验数据为基础,通过变异分析、相关性分析和GGE双标图法对12个小粒型花生品种主要农艺性状进行分析,通过Genstat软件获取12个参试品种在各试点荚果产量的BLUP值。结果表明,经过BLUP值矫正后,某些品种荚果产量较原始产量变小,精度提高,各品种BLUP值在不同试点的变异系数均较原始值变小。各品种在不同试点的农艺性状分析结果显示,不同性状受环境影响程度不同,侧枝长、主茎高、结果枝数、总分枝数、单株总果数、单株饱果数、百果重和荚果产量受环境影响较大,百仁重、出米率和生育期受环境影响较小。变异分析显示,出米率和生育期变异系数较小,单株总果数和单株饱果数变异系数较大,其中,商花588(G10)的主茎高和侧枝长变异程度最大,变异系数分别为35.22%和30.76%,总分枝数变异最大的是濮花66号(G9),结果枝数变异最大的是花育20号(G1),结果枝数和单株饱果数变异最大的是花育655(G4)。由相关性分析可知,荚果产量与百仁重、百果重、出米率、生育期均呈极显著正相关,说明这4个农艺性状是提高小粒花生产量的关键因素。GGE双标图显示,濮花66号(G9)丰产稳产性综合评价最好,冀农花16号(G6)和开农111(G7)适宜种植区域较多。 展开更多
关键词 花生 BLUP值 gge双标图 综合评价
原文传递
利用GGE法评价不同马铃薯品种在湖南冬闲田的适应性和稳定性 被引量:1
19
作者 李璐 杨丹 +6 位作者 王素华 蒋万 李树举 万国安 蒯星龙 孙芳 曾祥林 《中国瓜菜》 北大核心 2025年第2期123-128,共6页
为筛选出适宜湖南省种植的丰产、稳产马铃薯新品种,2018-2020年连续3 a(年)对引进的6个品种进行物候期、植株和块茎外观性状及田间主要农艺性状和产量性状观察,采用双因素方差分析和GGE双标图分析品种的稳定性、丰产性和适应性。结果表... 为筛选出适宜湖南省种植的丰产、稳产马铃薯新品种,2018-2020年连续3 a(年)对引进的6个品种进行物候期、植株和块茎外观性状及田间主要农艺性状和产量性状观察,采用双因素方差分析和GGE双标图分析品种的稳定性、丰产性和适应性。结果表明,不同马铃薯品种的外观和主要农艺性状差异显著。对品种产量相关性状影响的贡献度依次为环境>基因型>基因型-环境互作。评价品种鲜薯产量、株高、单株薯数和干物质率时,要充分考虑基因型与环境的互作效应。GGE双标分析筛选出1个新品种华薯1号,其丰产性和稳产性表现突出,适宜在本区域进一步示范推广。 展开更多
关键词 马铃薯 冬闲田 gge双标分析 综合评价
在线阅读 下载PDF
基于AMMI模型和GGE双标图的西北春玉米品种的稳定性和适应性分析 被引量:2
20
作者 陈茂功 焦钰舰 +3 位作者 张乾昌 刘兴军 孟丹丹 赵向田 《寒旱农业科学》 2025年第2期148-153,共6页
评价西北春玉米区各品种的丰产性、适应性和稳定性以及不同地区的鉴别力和代表性,为西北春玉米区选择适宜品种提供参考。通过AMMI模型和GGE双标图线性统计模型2种分析方法,对玉米新品种ZD2008、ZD2139、ZD2141、ZD2230和对照品种先玉335... 评价西北春玉米区各品种的丰产性、适应性和稳定性以及不同地区的鉴别力和代表性,为西北春玉米区选择适宜品种提供参考。通过AMMI模型和GGE双标图线性统计模型2种分析方法,对玉米新品种ZD2008、ZD2139、ZD2141、ZD2230和对照品种先玉335在2021—2022年开展的西北春玉米区绿色通道试验中白银市景泰县、临夏州临夏县、平凉市崆峒区、庆阳市庆城县、武威市凉州区、张掖市甘州区、银川市永宁县、中卫市中宁县、延安市黄陵县、榆林市靖边县等10个试点的试验数据进行适应性和稳定性综合分析。结果表明,试验各品种间、各试点间的差异均达到了显著水平,且参试玉米品种与试点间的互作效应也达到了显著水平,其中试验地点以张掖市甘州区的稳定性最好,参试玉米品种以ZD2141的稳定性最好。GGE双标图线性统计模型反映出玉米品种ZD2141在白银市景泰县、银川市永宁县、中卫市中宁县、延安市黄陵县、榆林市靖边县等试点的表现较好;玉米品种ZD2139在平凉市崆峒区、庆阳市庆城县、武威市凉州区、张掖市甘州区等试点的表现较好,说明这2个品种具有较广泛的适应性,建议加以推广。 展开更多
关键词 西北春玉米 品种 AMMI模型 gge双标图 稳定性 适应性
在线阅读 下载PDF
上一页 1 2 14 下一页 到第
使用帮助 返回顶部