This study analyzes the stability and reactive characteristics of the hybrid offshore wind farm that includes gridforming(GFM)and grid-following(GFL)wind turbines(WTs)integrated with a diode rectifier unit(DRU)based h...This study analyzes the stability and reactive characteristics of the hybrid offshore wind farm that includes gridforming(GFM)and grid-following(GFL)wind turbines(WTs)integrated with a diode rectifier unit(DRU)based high-voltage direct current(HVDC)system.The determination method for the proportion of GFM WTs is proposed while considering system stability and optimal offshore reactive power constraints.First,the small-signal stability is studied based on the developed linear model,and crucial factors that affect the stability are captured by eigenvalue analysis.The reactive power-frequency compensation control of GFM WTs is then proposed to improve the reactive power and frequency dynamics.Second,the relationship between offshore reactive power imbalance and the effectiveness of GFM capability is analyzed.Offshore reactive power optimization methods are next proposed to diminish offshore reactive load.These methods include the optimal design for the reactive capacity of the AC filter and the reactive power compensation control of GFL WTs.Third,in terms of stability and optimal offshore reactive power constraints,the principle and calculation method for determining the proportion of GFM WTs are proposed,and the critical proportion of GFM WTs is determined over the full active power range.Finally,case studies using a detailed model are conducted by timedomain simulations in PSCAD/EMTDC.The simulations verify the theoretical analysis results and the effectiveness of the proposed determination method for the proportion of GFM WTs and reactive power optimization methods.展开更多
基于涉网变流器开展电能质量问题治理可以有效利用变流器的剩余容量,提高治理效益,但其往往只考虑跟网型(grid-following,GFL)控制,未能充分发挥多种类变流器的调控潜力。文中基于GFL和构网型(grid-forming,GFM)涉网变流器并联系统,提...基于涉网变流器开展电能质量问题治理可以有效利用变流器的剩余容量,提高治理效益,但其往往只考虑跟网型(grid-following,GFL)控制,未能充分发挥多种类变流器的调控潜力。文中基于GFL和构网型(grid-forming,GFM)涉网变流器并联系统,提出谐波补偿、电压跌落抑制等协同控制策略。首先,介绍涉网变流器的基本控制原理及数学模型。其次,针对并联系统公共耦合点(point of common coupling,PCC)的谐波补偿问题,提出谐波分次补偿方法,增强谐波补偿的灵活性,实现谐波电流在不同容量变流单元间的合理分摊。针对PCC电压跌落问题,将并联系统状态总结为正常运行、仅GFL变流单元参与电压支撑、GFL和GFM变流单元共同支撑3种工况。经补偿容量计算和无功功率分配,PCC电压可始终保持在额定电压附近。最后,通过仿真验证所提策略的可行性与优越性。展开更多
To enable distributed PV to adapt to variations in power grid strength and achieve stable grid connection while enhancing operational flexibility,it is essential to configure grid-connected inverters with an integrate...To enable distributed PV to adapt to variations in power grid strength and achieve stable grid connection while enhancing operational flexibility,it is essential to configure grid-connected inverters with an integrated grid-following control mode,allowing smooth switching between GFL and GFM modes.First,impedance models of GFL and GFM PV energy storage VSG systems were established,and grid stability was analyzed.Second,an online impedance identification method based on voltage fluctuation data screening was proposed to enhance the accuracy of impedance identification.Additionally,a PV energy storage GFM/GFL VSG smooth switching method based on current inner loop compensation was introduced to achieve stable grid-connected operation of distributed photovoltaics under changes in strong and weak power grids.Finally,a grid stability analysis was conducted on the multi-machine parallel PV ESS,and a simulation model of a multi-machine parallel PV ESS based on current inner loop compensation was established for testing.Results showed that,compared to using a single GFM or single GFL control for the PV VSG system,the smooth switching method of multi-machine parallel PV ESS effectively suppresses system resonance under variations in power grid strength,enabling adaptive and stable grid-connected operations of distributed PV.展开更多
跟网型逆变器作为电流源型变换器,在电网强度、负载变化和电网波动的扰动下,其输出电流会发生波动,进而通过电网阻抗引发公共耦合点电压振荡。构网型逆变器作为电压源型变换器,可用于模拟同步发电机调节电压且无须依赖锁相环,在弱电网...跟网型逆变器作为电流源型变换器,在电网强度、负载变化和电网波动的扰动下,其输出电流会发生波动,进而通过电网阻抗引发公共耦合点电压振荡。构网型逆变器作为电压源型变换器,可用于模拟同步发电机调节电压且无须依赖锁相环,在弱电网中表现出更强鲁棒性。针对跟网型逆变器在弱电网运行时存在的稳定性问题及传统改进策略在控制稳定性和参数设计上的局限性,提出基于线性自抗扰控制(Linear active disturbance rejection control,LADRC)的构网型逆变器电压协调控制方法,通过扩张状态观测器补偿公共耦合点扰动,降低跟网型逆变器电压对电流的敏感性。与传统控制相比,用该方法可显著降低构网型逆变器输出阻抗、减小非无源区域、提高电压调节性能及弱电网下稳定性。仿真结果验证了所提策略的有效性。展开更多
基金supported by the Research Project of China Southern Power Grid Co.,Ltd.(No.030400KK52220008(GDKJXM20220327))。
文摘This study analyzes the stability and reactive characteristics of the hybrid offshore wind farm that includes gridforming(GFM)and grid-following(GFL)wind turbines(WTs)integrated with a diode rectifier unit(DRU)based high-voltage direct current(HVDC)system.The determination method for the proportion of GFM WTs is proposed while considering system stability and optimal offshore reactive power constraints.First,the small-signal stability is studied based on the developed linear model,and crucial factors that affect the stability are captured by eigenvalue analysis.The reactive power-frequency compensation control of GFM WTs is then proposed to improve the reactive power and frequency dynamics.Second,the relationship between offshore reactive power imbalance and the effectiveness of GFM capability is analyzed.Offshore reactive power optimization methods are next proposed to diminish offshore reactive load.These methods include the optimal design for the reactive capacity of the AC filter and the reactive power compensation control of GFL WTs.Third,in terms of stability and optimal offshore reactive power constraints,the principle and calculation method for determining the proportion of GFM WTs are proposed,and the critical proportion of GFM WTs is determined over the full active power range.Finally,case studies using a detailed model are conducted by timedomain simulations in PSCAD/EMTDC.The simulations verify the theoretical analysis results and the effectiveness of the proposed determination method for the proportion of GFM WTs and reactive power optimization methods.
文摘基于涉网变流器开展电能质量问题治理可以有效利用变流器的剩余容量,提高治理效益,但其往往只考虑跟网型(grid-following,GFL)控制,未能充分发挥多种类变流器的调控潜力。文中基于GFL和构网型(grid-forming,GFM)涉网变流器并联系统,提出谐波补偿、电压跌落抑制等协同控制策略。首先,介绍涉网变流器的基本控制原理及数学模型。其次,针对并联系统公共耦合点(point of common coupling,PCC)的谐波补偿问题,提出谐波分次补偿方法,增强谐波补偿的灵活性,实现谐波电流在不同容量变流单元间的合理分摊。针对PCC电压跌落问题,将并联系统状态总结为正常运行、仅GFL变流单元参与电压支撑、GFL和GFM变流单元共同支撑3种工况。经补偿容量计算和无功功率分配,PCC电压可始终保持在额定电压附近。最后,通过仿真验证所提策略的可行性与优越性。
基金supported by National Key Research and Development Technology Project program(SQ2022YFB2400136).
文摘To enable distributed PV to adapt to variations in power grid strength and achieve stable grid connection while enhancing operational flexibility,it is essential to configure grid-connected inverters with an integrated grid-following control mode,allowing smooth switching between GFL and GFM modes.First,impedance models of GFL and GFM PV energy storage VSG systems were established,and grid stability was analyzed.Second,an online impedance identification method based on voltage fluctuation data screening was proposed to enhance the accuracy of impedance identification.Additionally,a PV energy storage GFM/GFL VSG smooth switching method based on current inner loop compensation was introduced to achieve stable grid-connected operation of distributed photovoltaics under changes in strong and weak power grids.Finally,a grid stability analysis was conducted on the multi-machine parallel PV ESS,and a simulation model of a multi-machine parallel PV ESS based on current inner loop compensation was established for testing.Results showed that,compared to using a single GFM or single GFL control for the PV VSG system,the smooth switching method of multi-machine parallel PV ESS effectively suppresses system resonance under variations in power grid strength,enabling adaptive and stable grid-connected operations of distributed PV.
文摘跟网型逆变器作为电流源型变换器,在电网强度、负载变化和电网波动的扰动下,其输出电流会发生波动,进而通过电网阻抗引发公共耦合点电压振荡。构网型逆变器作为电压源型变换器,可用于模拟同步发电机调节电压且无须依赖锁相环,在弱电网中表现出更强鲁棒性。针对跟网型逆变器在弱电网运行时存在的稳定性问题及传统改进策略在控制稳定性和参数设计上的局限性,提出基于线性自抗扰控制(Linear active disturbance rejection control,LADRC)的构网型逆变器电压协调控制方法,通过扩张状态观测器补偿公共耦合点扰动,降低跟网型逆变器电压对电流的敏感性。与传统控制相比,用该方法可显著降低构网型逆变器输出阻抗、减小非无源区域、提高电压调节性能及弱电网下稳定性。仿真结果验证了所提策略的有效性。