It is with great honor and enthusiasm that I extend my warmest greetings to all readers and contributors of this special issue of Episodes,titled“Recent Advances in Korean Geosciences,”published to commemorate the 3...It is with great honor and enthusiasm that I extend my warmest greetings to all readers and contributors of this special issue of Episodes,titled“Recent Advances in Korean Geosciences,”published to commemorate the 37th International Geological Congress(IGC)being held in Busan from August 25 to 31,2024.展开更多
MatGeoS’2009,the 2^(nd) International Workshop on Mathematical Geosciences“Geosciences from Space to Earth”was held in Freiberg(Saxony),Germany,December 7-8,2009.It was organized by the International Association of...MatGeoS’2009,the 2^(nd) International Workshop on Mathematical Geosciences“Geosciences from Space to Earth”was held in Freiberg(Saxony),Germany,December 7-8,2009.It was organized by the International Association of Mathematical Geosciences(IAMG)Student Chapter Freiberg with support from three organisations-IAMG Society,Freiberg University of Mining and Technology(TUBAF)and the State Government of Saxony(Germany).The first event MatGeoS’2008 was held in Freiberg in the summer of 2008 in order for young geoscientists to share their ideas and research perspectives and discuss Mathematical Geosciences.展开更多
The pre-congress of the fifth conference of the AAWG was held in at the headquarters of PETROCI Holding.It was well attended by representatives from the Governing Council(GC)of AAWG,members of AAWG-CI,dignitaries and ...The pre-congress of the fifth conference of the AAWG was held in at the headquarters of PETROCI Holding.It was well attended by representatives from the Governing Council(GC)of AAWG,members of AAWG-CI,dignitaries and vips from PETROCI Holding.During the opening ceremony held on the morning of the Monday 4^(th)May,2009,the President the fifth congress and President of the African Association of Women in Geosciences Ivory Coast Chapter“AAWG-CI”Dr.Juliette Tea.展开更多
The Federal Institute for Geosciences and Natural Resources(Bundesanstalt für Geowissenschaften und Rohstoffe)–BGR is Germany’s geoscientific centre of competence within the Federal Government and part of its s...The Federal Institute for Geosciences and Natural Resources(Bundesanstalt für Geowissenschaften und Rohstoffe)–BGR is Germany’s geoscientific centre of competence within the Federal Government and part of its scientific and technical infrastructure.BGR is accountable to the Federal Ministry of Economics and Technology,providing independent advice and information on all geoscientific and natural resources issues.In particular,BGR supports the Federal Government in their following objectives.展开更多
Learning incorporates a broad range of complex procedures. Machine learning(ML) is a subdivision of artificial intelligence based on the biological learning process. The ML approach deals with the design of algorith...Learning incorporates a broad range of complex procedures. Machine learning(ML) is a subdivision of artificial intelligence based on the biological learning process. The ML approach deals with the design of algorithms to learn from machine readable data. ML covers main domains such as data mining, difficultto-program applications, and software applications. It is a collection of a variety of algorithms(e.g. neural networks, support vector machines, self-organizing map, decision trees, random forests, case-based reasoning, genetic programming, etc.) that can provide multivariate, nonlinear, nonparametric regression or classification. The modeling capabilities of the ML-based methods have resulted in their extensive applications in science and engineering. Herein, the role of ML as an effective approach for solving problems in geosciences and remote sensing will be highlighted. The unique features of some of the ML techniques will be outlined with a specific attention to genetic programming paradigm. Furthermore,nonparametric regression and classification illustrative examples are presented to demonstrate the efficiency of ML for tackling the geosciences and remote sensing problems.展开更多
In the context of global climate change,geosciences provide an important geological solution to achieve the goal of carbon neutrality,China’s geosciences and geological technologies can play an important role in solv...In the context of global climate change,geosciences provide an important geological solution to achieve the goal of carbon neutrality,China’s geosciences and geological technologies can play an important role in solving the problem of carbon neutrality.This paper discusses the main problems,opportunities,and challenges that can be solved by the participation of geosciences in carbon neutrality,as well as China’s response to them.The main scientific problems involved and the geological work carried out mainly fall into three categories:(1)Carbon emission reduction technology(natural gas hydrate,geothermal,hot dry rock,nuclear energy,hydropower,wind energy,solar energy,hydrogen energy);(2)carbon sequestration technology(carbon capture and storage,underground space utilization);(3)key minerals needed to support carbon neutralization(raw materials for energy transformation,carbon reduction technology).Therefore,geosciences and geological technologies are needed:First,actively participate in the development of green energy such as natural gas,geothermal energy,hydropower,hot dry rock,and key energy minerals,and develop exploration and exploitation technologies such as geothermal energy and natural gas;the second is to do a good job in geological support for new energy site selection,carry out an in-depth study on geotechnical feasibility and mitigation measures,and form the basis of relevant economic decisions to reduce costs and prevent geological disasters;the third is to develop and coordinate relevant departments of geosciences,organize and carry out strategic research on natural resources,carry out theoretical system research on global climate change and other issues under the guidance of earth system science theory,and coordinate frontier scientific information and advanced technological tools of various disciplines.The goal of carbon neutrality provides new opportunities and challenges for geosciences research.In the future,it is necessary to provide theoretical and technical support from various aspects,enhance the ability of climate adaptation,and support the realization of the goal of carbon peaking and carbon neutrality.展开更多
Climate change and its impacts have become topical issues of global news,scientific research and conferences.Environmental Geosciences incorporate the various disciplines of geosciences and their multifaceted interact...Climate change and its impacts have become topical issues of global news,scientific research and conferences.Environmental Geosciences incorporate the various disciplines of geosciences and their multifaceted interactions with life.Research discussions on the interaction of climate change,geosciences and environment may often be blur,and Schmidt-Thoméet al.(2010)stated that“Often past climate changes that can be deduced from geological records may help in understanding the speed of potential climate change effects,i.e.how quickly have sea levels changed,how drastic has nature reacted to ups and downs in temperature,etc.These analyses of past events help in giving outlooks on potential changes in our living environment.It is also of important to understand the magnitude and potential effects of extreme events,such as droughts and floods”.展开更多
Time is an essential reference system for recording objects,events,and processes in the field of geosciences.There are currently various time references,such as solar calendar,geological time,and regional calendar,to ...Time is an essential reference system for recording objects,events,and processes in the field of geosciences.There are currently various time references,such as solar calendar,geological time,and regional calendar,to represent the knowledge in different domains and regions,which subsequently entails a time conversion process required to interpret temporal information under different time references.However,the current time conversion method is limited by the application scope of existing time ontologies(e.g.,“Jurassic”is a period in geological ontology,but a point value in calendar ontology)and the reliance on experience in conversion processes.These issues restrict accurate and efficient calculation of temporal information across different time references.To address these issues,this paper proposes a Unified Time Framework(UTF)in the geosciences knowledge system.According to a systematic time element parsing from massive time references,the proposed UTF designs an independent time root node to get rid of irrelevant nodes when accessing different time types and to adapt to the time expression of different geoscience disciplines.Furthermore,this UTF carries out several designs:to ensure the accuracy of time expressions by designing quantitative relationship definitions;to enable time calculations across different time elements by designing unified time nodes and structures,and to link to the required external ontologies by designing adequate interfaces.By comparing the time conversion methods,the experiment proves the UTF greatly supports accurate and efficient calculation of temporal information across different time references in SPARQL queries.Moreover,it shows a higher and more stable performance of temporal information queries than the time conversion method.With the advent of the Big Data era in the geosciences,the UTF can be used more widely to discover new geosciences knowledge across different time references.展开更多
In the past two decades, artificial intelligence (AI) algorithms have proved to be promising tools for solving several tough scientific problems, As a broad subfield of AI, machine learning is concerned with algorit...In the past two decades, artificial intelligence (AI) algorithms have proved to be promising tools for solving several tough scientific problems, As a broad subfield of AI, machine learning is concerned with algorithms and techniques that allow computers to "learn". The machine learning approach covers main domains such as data mining, difficult-to-program applications, and soft- ware applications. It is a collection of a variety of algorithms that can provide multivariate, nonlinear, nonparametric regression or classification. The remarkable simulation capabilities of the ma- chine learning-based methods have resulted in their extensive ap- plications in science and engineering. Recently, the machine learning techniques have found many applications in the geoscien- ces and remote sensing. More specifically, these techniques are proved to be practical for cases where the system's deterministic model is computationally expensive or there is no deterministic model to solve the problem (Lary, 2010).展开更多
In China submarine geosciences represents a newly established discipline of oceanography, focusing on the oceanic lithosphere, and its interface with the hydrosphere and biosphere. Recently, supported by the National ...In China submarine geosciences represents a newly established discipline of oceanography, focusing on the oceanic lithosphere, and its interface with the hydrosphere and biosphere. Recently, supported by the National High Technology Research and Development Program and other high-tech development projects, significant progress has been made in the development of advanced technologies and equipment. This en- ables the scientists in China to carry out explorations of the international seabed area in the Pacific Ocean and on the Southwest Indian Ridge. In addition, they have been active in the research activities associated the mid-ocean ridges and western Pacific marginal seas. It is anticipated that this research field will continue to be highly fruitful in the near future.展开更多
The papers published in this issue are selected from manuscripts submitted by invited authors and most of these papers will be presented at the 33^rd International Geological Congress (33^rd IGC) in Oslo, August 200...The papers published in this issue are selected from manuscripts submitted by invited authors and most of these papers will be presented at the 33^rd International Geological Congress (33^rd IGC) in Oslo, August 2008. It receives 25 manuscripts and 16 were accepted after going through the journal normal peer reviewing process. The topics of the papers cover various aspects of "metallogenic complex processes and mineral resource quantitative assessment", one of the strategic research areas of the State Key Laboratory of Geological Processes Resources (GPMR) sponsored by the Science and Technology and the and Mineral Ministry of Ministry of Education of China. Researches in the area are also supported by the National Natural Science Foundation and Ministry of Land and Resources of China as well as by mining companies. Thanks are due to these funding programs and organizations for supporting the research activities of GPMR. Sincere thanks are due to those who have reviewed the manuscripts and provided critical comments and even English editing of some of the papers. We are very appreciated for the assistance of the editorial office especially Professor Wang, the editor-in-chief, Ms. Yuan and many others who have worked hard to make this issue be printed before the event of 33^rd IGC. Special thanks are given to Professor Xie Shuyun, Xu Deyi and Tali Neta and many other members in the Geomatics Research Lab of York University for handling the manuscripts during the reviewing processes.展开更多
China University of Geosciences(Beijing)(CUGB),is one of the leading universities listed in"Project 211,"a national program that offers more government financial support for the advancement of 100 top na...China University of Geosciences(Beijing)(CUGB),is one of the leading universities listed in"Project 211,"a national program that offers more government financial support for the advancement of 100 top national universities in 21<sup>st</sup>-century China.CUGB is also supported by the Ministry of Education for its uniquely strong strengths in geological disciplines.CUGB could be traced back to the former Beijing College of Geology,which was founded in 1952 by combining the Departments of Geology from Peking University, Tsinghua University,Tianjin University and Tangshan Railway College.In 1987,the predecessor of CUGB was renamed China University of Geosciences(Beijing).展开更多
The future of geosciences will be radically different than it was 100,50,or even 5 years ago.We are on the cusp of new discoveries,techniques,and ideas.Geoscientists are becoming well respected in the science and publ...The future of geosciences will be radically different than it was 100,50,or even 5 years ago.We are on the cusp of new discoveries,techniques,and ideas.Geoscientists are becoming well respected in the science and public communities as new challenges face us.The future of geosciences will involve research into renewable energy and the depleted water resources.The water crisis will also increase the need for medical geology research and will perhaps open up a new industry for this specific title.Geoscientists will be called to help find water on other planets or decipher the historical geology of a planet to see if it is habitable.These planetary geologists will also be used to set up lunar bases or develop local resources.Geoscientists will be educated in many disciplines to fully understand everything they are studying.As much as theory is important,classes in the geosciences will be aimed toward applicability and practical use.Dating techniques will improve so we can understand how fast one animal evolved,or how fast climate change can realistically take place.Geoscientists will be the experts and therefore must be more responsible with scientific evidence and the differences between truth and imagination.Finally,geosciences will depend on all encompassing ethical codes,meticulous documentation in the field,and a better way to present confidence of a given topic.展开更多
文摘It is with great honor and enthusiasm that I extend my warmest greetings to all readers and contributors of this special issue of Episodes,titled“Recent Advances in Korean Geosciences,”published to commemorate the 37th International Geological Congress(IGC)being held in Busan from August 25 to 31,2024.
文摘MatGeoS’2009,the 2^(nd) International Workshop on Mathematical Geosciences“Geosciences from Space to Earth”was held in Freiberg(Saxony),Germany,December 7-8,2009.It was organized by the International Association of Mathematical Geosciences(IAMG)Student Chapter Freiberg with support from three organisations-IAMG Society,Freiberg University of Mining and Technology(TUBAF)and the State Government of Saxony(Germany).The first event MatGeoS’2008 was held in Freiberg in the summer of 2008 in order for young geoscientists to share their ideas and research perspectives and discuss Mathematical Geosciences.
文摘The pre-congress of the fifth conference of the AAWG was held in at the headquarters of PETROCI Holding.It was well attended by representatives from the Governing Council(GC)of AAWG,members of AAWG-CI,dignitaries and vips from PETROCI Holding.During the opening ceremony held on the morning of the Monday 4^(th)May,2009,the President the fifth congress and President of the African Association of Women in Geosciences Ivory Coast Chapter“AAWG-CI”Dr.Juliette Tea.
文摘The Federal Institute for Geosciences and Natural Resources(Bundesanstalt für Geowissenschaften und Rohstoffe)–BGR is Germany’s geoscientific centre of competence within the Federal Government and part of its scientific and technical infrastructure.BGR is accountable to the Federal Ministry of Economics and Technology,providing independent advice and information on all geoscientific and natural resources issues.In particular,BGR supports the Federal Government in their following objectives.
文摘Learning incorporates a broad range of complex procedures. Machine learning(ML) is a subdivision of artificial intelligence based on the biological learning process. The ML approach deals with the design of algorithms to learn from machine readable data. ML covers main domains such as data mining, difficultto-program applications, and software applications. It is a collection of a variety of algorithms(e.g. neural networks, support vector machines, self-organizing map, decision trees, random forests, case-based reasoning, genetic programming, etc.) that can provide multivariate, nonlinear, nonparametric regression or classification. The modeling capabilities of the ML-based methods have resulted in their extensive applications in science and engineering. Herein, the role of ML as an effective approach for solving problems in geosciences and remote sensing will be highlighted. The unique features of some of the ML techniques will be outlined with a specific attention to genetic programming paradigm. Furthermore,nonparametric regression and classification illustrative examples are presented to demonstrate the efficiency of ML for tackling the geosciences and remote sensing problems.
基金This study was supported by the project of China Geological Survey on a systematic assessment of ecological protection and natural resources utilization(DD20211413)。
文摘In the context of global climate change,geosciences provide an important geological solution to achieve the goal of carbon neutrality,China’s geosciences and geological technologies can play an important role in solving the problem of carbon neutrality.This paper discusses the main problems,opportunities,and challenges that can be solved by the participation of geosciences in carbon neutrality,as well as China’s response to them.The main scientific problems involved and the geological work carried out mainly fall into three categories:(1)Carbon emission reduction technology(natural gas hydrate,geothermal,hot dry rock,nuclear energy,hydropower,wind energy,solar energy,hydrogen energy);(2)carbon sequestration technology(carbon capture and storage,underground space utilization);(3)key minerals needed to support carbon neutralization(raw materials for energy transformation,carbon reduction technology).Therefore,geosciences and geological technologies are needed:First,actively participate in the development of green energy such as natural gas,geothermal energy,hydropower,hot dry rock,and key energy minerals,and develop exploration and exploitation technologies such as geothermal energy and natural gas;the second is to do a good job in geological support for new energy site selection,carry out an in-depth study on geotechnical feasibility and mitigation measures,and form the basis of relevant economic decisions to reduce costs and prevent geological disasters;the third is to develop and coordinate relevant departments of geosciences,organize and carry out strategic research on natural resources,carry out theoretical system research on global climate change and other issues under the guidance of earth system science theory,and coordinate frontier scientific information and advanced technological tools of various disciplines.The goal of carbon neutrality provides new opportunities and challenges for geosciences research.In the future,it is necessary to provide theoretical and technical support from various aspects,enhance the ability of climate adaptation,and support the realization of the goal of carbon peaking and carbon neutrality.
文摘Climate change and its impacts have become topical issues of global news,scientific research and conferences.Environmental Geosciences incorporate the various disciplines of geosciences and their multifaceted interactions with life.Research discussions on the interaction of climate change,geosciences and environment may often be blur,and Schmidt-Thoméet al.(2010)stated that“Often past climate changes that can be deduced from geological records may help in understanding the speed of potential climate change effects,i.e.how quickly have sea levels changed,how drastic has nature reacted to ups and downs in temperature,etc.These analyses of past events help in giving outlooks on potential changes in our living environment.It is also of important to understand the magnitude and potential effects of extreme events,such as droughts and floods”.
基金funded by the National Natural Science Foundation of China(Grant Nos.42050101 and 42101467)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDA23100101).
文摘Time is an essential reference system for recording objects,events,and processes in the field of geosciences.There are currently various time references,such as solar calendar,geological time,and regional calendar,to represent the knowledge in different domains and regions,which subsequently entails a time conversion process required to interpret temporal information under different time references.However,the current time conversion method is limited by the application scope of existing time ontologies(e.g.,“Jurassic”is a period in geological ontology,but a point value in calendar ontology)and the reliance on experience in conversion processes.These issues restrict accurate and efficient calculation of temporal information across different time references.To address these issues,this paper proposes a Unified Time Framework(UTF)in the geosciences knowledge system.According to a systematic time element parsing from massive time references,the proposed UTF designs an independent time root node to get rid of irrelevant nodes when accessing different time types and to adapt to the time expression of different geoscience disciplines.Furthermore,this UTF carries out several designs:to ensure the accuracy of time expressions by designing quantitative relationship definitions;to enable time calculations across different time elements by designing unified time nodes and structures,and to link to the required external ontologies by designing adequate interfaces.By comparing the time conversion methods,the experiment proves the UTF greatly supports accurate and efficient calculation of temporal information across different time references in SPARQL queries.Moreover,it shows a higher and more stable performance of temporal information queries than the time conversion method.With the advent of the Big Data era in the geosciences,the UTF can be used more widely to discover new geosciences knowledge across different time references.
文摘In the past two decades, artificial intelligence (AI) algorithms have proved to be promising tools for solving several tough scientific problems, As a broad subfield of AI, machine learning is concerned with algorithms and techniques that allow computers to "learn". The machine learning approach covers main domains such as data mining, difficult-to-program applications, and soft- ware applications. It is a collection of a variety of algorithms that can provide multivariate, nonlinear, nonparametric regression or classification. The remarkable simulation capabilities of the ma- chine learning-based methods have resulted in their extensive ap- plications in science and engineering. Recently, the machine learning techniques have found many applications in the geoscien- ces and remote sensing. More specifically, these techniques are proved to be practical for cases where the system's deterministic model is computationally expensive or there is no deterministic model to solve the problem (Lary, 2010).
文摘In China submarine geosciences represents a newly established discipline of oceanography, focusing on the oceanic lithosphere, and its interface with the hydrosphere and biosphere. Recently, supported by the National High Technology Research and Development Program and other high-tech development projects, significant progress has been made in the development of advanced technologies and equipment. This en- ables the scientists in China to carry out explorations of the international seabed area in the Pacific Ocean and on the Southwest Indian Ridge. In addition, they have been active in the research activities associated the mid-ocean ridges and western Pacific marginal seas. It is anticipated that this research field will continue to be highly fruitful in the near future.
文摘The papers published in this issue are selected from manuscripts submitted by invited authors and most of these papers will be presented at the 33^rd International Geological Congress (33^rd IGC) in Oslo, August 2008. It receives 25 manuscripts and 16 were accepted after going through the journal normal peer reviewing process. The topics of the papers cover various aspects of "metallogenic complex processes and mineral resource quantitative assessment", one of the strategic research areas of the State Key Laboratory of Geological Processes Resources (GPMR) sponsored by the Science and Technology and the and Mineral Ministry of Ministry of Education of China. Researches in the area are also supported by the National Natural Science Foundation and Ministry of Land and Resources of China as well as by mining companies. Thanks are due to these funding programs and organizations for supporting the research activities of GPMR. Sincere thanks are due to those who have reviewed the manuscripts and provided critical comments and even English editing of some of the papers. We are very appreciated for the assistance of the editorial office especially Professor Wang, the editor-in-chief, Ms. Yuan and many others who have worked hard to make this issue be printed before the event of 33^rd IGC. Special thanks are given to Professor Xie Shuyun, Xu Deyi and Tali Neta and many other members in the Geomatics Research Lab of York University for handling the manuscripts during the reviewing processes.
文摘China University of Geosciences(Beijing)(CUGB),is one of the leading universities listed in"Project 211,"a national program that offers more government financial support for the advancement of 100 top national universities in 21<sup>st</sup>-century China.CUGB is also supported by the Ministry of Education for its uniquely strong strengths in geological disciplines.CUGB could be traced back to the former Beijing College of Geology,which was founded in 1952 by combining the Departments of Geology from Peking University, Tsinghua University,Tianjin University and Tangshan Railway College.In 1987,the predecessor of CUGB was renamed China University of Geosciences(Beijing).
文摘The future of geosciences will be radically different than it was 100,50,or even 5 years ago.We are on the cusp of new discoveries,techniques,and ideas.Geoscientists are becoming well respected in the science and public communities as new challenges face us.The future of geosciences will involve research into renewable energy and the depleted water resources.The water crisis will also increase the need for medical geology research and will perhaps open up a new industry for this specific title.Geoscientists will be called to help find water on other planets or decipher the historical geology of a planet to see if it is habitable.These planetary geologists will also be used to set up lunar bases or develop local resources.Geoscientists will be educated in many disciplines to fully understand everything they are studying.As much as theory is important,classes in the geosciences will be aimed toward applicability and practical use.Dating techniques will improve so we can understand how fast one animal evolved,or how fast climate change can realistically take place.Geoscientists will be the experts and therefore must be more responsible with scientific evidence and the differences between truth and imagination.Finally,geosciences will depend on all encompassing ethical codes,meticulous documentation in the field,and a better way to present confidence of a given topic.