A series of blue long afterglow mixed halide-phosphate phosphors Sr5 (PO4)3 FxCll-x:Eu2+,Gd3+ were synthesized in air by traditional solid-state reaction routte. The crystal structures, photoluminescence, thermol...A series of blue long afterglow mixed halide-phosphate phosphors Sr5 (PO4)3 FxCll-x:Eu2+,Gd3+ were synthesized in air by traditional solid-state reaction routte. The crystal structures, photoluminescence, thermolurninescenee properties and afterglow proper- ties of the phosphors were characterized systematically using X-ray diffraction (XRD), luminescence spectrophotometer, microcom- puter thermoluminescence dosimeter and single photon counter, respectively. Under 280 nm excitation, the broadband emissions of Eu2+ ions were observed at 445 nm (blue) due to the 4f7→4f65d transition. It was demonstrated that there existed the self-reduction of the Eu3+ to Eu2+ ions in this special halide-phosphate matrix in air condition. The addition of Gd3+ ions obviously enhanced the after- glow properties of the single doped Eu2+ ions in the halide-phosphate phosphors. And the content of the fluoride anions also had sig- nificant influence on the afterglow properties. All results indicated that Srs (PO4)3 FxCI1-x:Eu2+,Gd3+ might be potential phosphors for long lasting phosphorescence (LLP) materials.展开更多
Gangliosides are a class of important glycosphingolipids containing sialic acid that are widely distributed on the outer surface of cells and are abundantly distributed in brain tissue. Disialoganglioside with three g...Gangliosides are a class of important glycosphingolipids containing sialic acid that are widely distributed on the outer surface of cells and are abundantly distributed in brain tissue. Disialoganglioside with three glycosyl groups(GD3) and disialoganglioside with two glycosyl groups(GD2) are markedly increased in pathological conditions such as cancers and neurodegenerative diseases. GD3 and GD2 were found to play important roles in cancers by mediating cell proliferation, migration, invasion, adhesion,angiogenesis and in preventing immunosuppression of tumors. GD3 synthase(GD3S) is the regulatory enzyme of GD3 and GD2 synthesis, and is important in tumorigenesis and the development of cancers.The study of GD3S as a drug target may be of great significance for the discovery of new drugs for cancer treatment. This review will describe the gangliosides and their roles in physiological and pathological conditions; the roles of GD3 and GD2 in cancers; the expression, functions and mechanisms of GD3S,and its potential as a drug target in cancers.展开更多
基金Project supported by Cooperation Project in Industry, Education and Research of Guangdong Province and Ministry of Education of China (2012B09110044), and the Guangdong Provincial Natural Science Foundation of China (9151009001000052 )
文摘A series of blue long afterglow mixed halide-phosphate phosphors Sr5 (PO4)3 FxCll-x:Eu2+,Gd3+ were synthesized in air by traditional solid-state reaction routte. The crystal structures, photoluminescence, thermolurninescenee properties and afterglow proper- ties of the phosphors were characterized systematically using X-ray diffraction (XRD), luminescence spectrophotometer, microcom- puter thermoluminescence dosimeter and single photon counter, respectively. Under 280 nm excitation, the broadband emissions of Eu2+ ions were observed at 445 nm (blue) due to the 4f7→4f65d transition. It was demonstrated that there existed the self-reduction of the Eu3+ to Eu2+ ions in this special halide-phosphate matrix in air condition. The addition of Gd3+ ions obviously enhanced the after- glow properties of the single doped Eu2+ ions in the halide-phosphate phosphors. And the content of the fluoride anions also had sig- nificant influence on the afterglow properties. All results indicated that Srs (PO4)3 FxCI1-x:Eu2+,Gd3+ might be potential phosphors for long lasting phosphorescence (LLP) materials.
基金supported by National Natural Science Foundation of China (81573454)supported by Beijing Natural Science Foundation (7172142)supported by CAMS Innovation Fund for Medical Sciences (2016-I2M-3–007)
文摘Gangliosides are a class of important glycosphingolipids containing sialic acid that are widely distributed on the outer surface of cells and are abundantly distributed in brain tissue. Disialoganglioside with three glycosyl groups(GD3) and disialoganglioside with two glycosyl groups(GD2) are markedly increased in pathological conditions such as cancers and neurodegenerative diseases. GD3 and GD2 were found to play important roles in cancers by mediating cell proliferation, migration, invasion, adhesion,angiogenesis and in preventing immunosuppression of tumors. GD3 synthase(GD3S) is the regulatory enzyme of GD3 and GD2 synthesis, and is important in tumorigenesis and the development of cancers.The study of GD3S as a drug target may be of great significance for the discovery of new drugs for cancer treatment. This review will describe the gangliosides and their roles in physiological and pathological conditions; the roles of GD3 and GD2 in cancers; the expression, functions and mechanisms of GD3S,and its potential as a drug target in cancers.