Wire arc additive manufacturing(WAAM)has emerged as a promising approach for fabricating large-scale components.However,conventional WAAM still faces challenges in optimizing microstructural evolution,minimizing addit...Wire arc additive manufacturing(WAAM)has emerged as a promising approach for fabricating large-scale components.However,conventional WAAM still faces challenges in optimizing microstructural evolution,minimizing additive-induced defects,and alleviating residual stress and deformation,all of which are critical for enhancing the mechanical performance of the manufactured parts.Integrating interlayer friction stir processing(FSP)into WAAM significantly enhances the quality of deposited materials.However,numerical simulation research focusing on elucidating the associated thermomechanical coupling mechanisms remains insufficient.A comprehensive numerical model was developed to simulate the thermomechanical coupling behavior in friction stir-assisted WAAM.The influence of post-deposition FSP on the coupled thermomechanical response of the WAAM process was analyzed quantitatively.Moreover,the residual stress distribution and deformation behavior under both single-layer and multilayer deposition conditions were investigated.Thermal analysis of different deposition layers in WAAM and friction stir-assisted WAAM was conducted.Results show that subsequent layer deposition induces partial remelting of the previously solidified layer,whereas FSP does not cause such remelting.Furthermore,thermal stress and deformation analysis confirm that interlayer FSP effectively mitigates residual stresses and distortion in WAAM components,thereby improving their structural integrity and mechanical properties.展开更多
Based on the Smit-Suhl formula,we propose a universal approach for solving the magnon-magnon coupling problem in bilayer coupled systems(e.g.,antiferromagnets).This method requires only the energy expression,enabling ...Based on the Smit-Suhl formula,we propose a universal approach for solving the magnon-magnon coupling problem in bilayer coupled systems(e.g.,antiferromagnets).This method requires only the energy expression,enabling the automatic derivation of analytical expressions for the eigenmatrix elements via symbolic computation,eliminating the need for tedious manual calculations.Using this approach,we investigate the impact of magnetic hysteresis on magnon-magnon coupling in a system with interlayer Dzyaloshinskii-Moriya interaction(DMI).The magnetic hysteresis leads to an asymmetric magnetic field dependence of the resonance frequency and alters the number of degeneracy points between the pure optical and acoustic modes.Moreover,it can result in the coupling strength at the gap of the f–H phase diagram being nearly vanishing,contrary to the conventionally expected maximum.These results deepen the understanding of the effect of interlayer DMI on magnon–magnon coupling and the proposed universal method significantly streamlines the solving process of magnon–magnon coupling problems.展开更多
Background:Cyperi Rhizoma,derived from Cyperus rotundus L.,is a widely used medicinal herb in traditional Chinese medicine(TCM),with Shandong Province recognized as its geo-authentic habitat.However,the quality of Cyp...Background:Cyperi Rhizoma,derived from Cyperus rotundus L.,is a widely used medicinal herb in traditional Chinese medicine(TCM),with Shandong Province recognized as its geo-authentic habitat.However,the quality of Cyperi Rhizoma varies significantly across different regions,potentially influencing its therapeutic efficacy.This study investigates the influence of geographic origin on the chemical composition and overall quality of Cyperi Rhizoma.Methods:A comprehensive approach,including traditional quality assessment,GC-MS(g as c hromatography-m ass s pectrometry),RP-HPLC(r everse p hase h igh-p erformance l iquid c hromatography),and FT-IR(f ourier t ransform i nfrared s pectroscopy)techniques,was employed to analyze Cyperi Rhizoma samples from Shandong Province.These methods examined the physical appearance,chemical profile,and content variations,particularly focusing onα-cyperone.Results:Traditional quality assessments revealed noticeable differences in the external characteristics of the samples.GC-MS analysis identified a variety of unique chemical constituents,while RP-HPLC and FT-IR showed significant variations inα-cyperone content,with higher levels found in Shandong samples.Conclusion:These results demonstrate that geographic origin is a critical determinant of Cyperi Rhizoma quality,with Shandong specimens exhibiting superiorα-cyperone levels and characteristic phytochemical profiles.This validates the geo-authenticity concept in TCM and provides actionable data for developing evidence-based quality standards,suggesting that provenance should be prioritized in medicinal material selection and pharmacopeial specifications.展开更多
To address the deficiencies in comprehensive surface contamination prevention strategies within China's nitrate-affected regions,this research innovatively proposes the DITAPH model-a systematic framework integrat...To address the deficiencies in comprehensive surface contamination prevention strategies within China's nitrate-affected regions,this research innovatively proposes the DITAPH model-a systematic framework integrating groundwater nitrate vulnerability assessment and Nitrate Vulnerable Zones(NVZs)delineation through optimization of hydrogeological parameters.Based on detailed hydrogeological and hydrochemical investigations,the DITAPH model was applied in the plain areas of Quanzhou to evaluate its applicability.The model selected hydrogeological parameters(depth of groundwater,lithology of the vadose zone,topographic slope,aquifer water yield property),one climatic parameter(precipitation),and two anthropogenic parameters(land use type and population density)as assessment indicators.The results of the groundwater nitrate vulnerability assessment showed that the low,relatively low,relatively high,and high groundwater nitrate vulnerability zones in the study area accounted for 5.96%,35.44%,53.74%and 4.86%of the total area,respectively.Groundwater nitrate vulnerability was most strongly influenced by human activities,followed by groundwater depth and topographic slope.The high vulnerability zone is mainly affected by domestic and industrial wastewater,whereas the relatively high groundwater nitrate vulnerability zone is primarily influenced by agricultural activities.Validation of the DITAPH model revealed a significant positive correlation between the DITAPH index(DI)and nitrate concentration(ρ(NO3−)).The results of the NVZs delineated by the DITAPH model are reliable and can serve as a tool for water resource management planning,guiding the development of targeted measures in the NVZs to prevent groundwater contamination.展开更多
A trace analytical method based on solid-phase extraction gas chromatography-tandem mass spectrometry(SPE–GC–MS/MS)was developed for the rapid detection of 256 semi-volatile organic compounds(SVOCs),including 25 pol...A trace analytical method based on solid-phase extraction gas chromatography-tandem mass spectrometry(SPE–GC–MS/MS)was developed for the rapid detection of 256 semi-volatile organic compounds(SVOCs),including 25 polycyclic aromatic hydrocarbons(PAHs),70 polychlorinated biphenyls(PCBs),123 pesticides,20 phthalate esters(PAEs),4 organophosphate esters(OPEs),9 synthetic musks(SMs),and 5 UV filters(UVs)in water.No-tably,this method provided a decent linearity of calibration standards(R^(2)>0.999),excellent method limits of quantification(MLOQs)(0.12–11.41 ng/L),satisfactory matrix spiking recovery rates(60.4%–126%),and high precision(intra-day relative standard deviations(RSDs):1.0%–10.0%,inter-day RSDs:3.0%–15.0%,and inter-week RSDs:3.4%–15.7%),making it suitable for trace-level studies.Statistical analysis revealed that SVOCs with higher volatility exhibited enhanced recovery rates.Validation of the methodology involved analyzing SVOCs in real spring water and river water samples.Twenty-seven SVOCs were detected in spring water and 58 in river water,with an average concentration of 631.73 and 16,095 ng/L,respectively.Among the detected SVOCs,PAEs constituted the predominant proportion.This study underscored the presence of SVOCs contamination specifi-cally within the spring water,although SVOCs concentrations in river water were significantly greater than those found in spring water.In summary,this sensitive method based on SPE–GC–MS/MS was successfully developed and validated for the rapid analysis of a diverse array of 256 SVOCs at trace levels in water,including not only the traditional highly valued PAHs,PCBs,pesticides,and PAEs,but also the emerging OPEs,UVs,and SMs.展开更多
Since the United Nations launched the Sustainable Development Goals(SDGs)in 2015,global implementation has steadily advanced,yet prominent challenges persist.Progress has been uneven across regions and countries,with ...Since the United Nations launched the Sustainable Development Goals(SDGs)in 2015,global implementation has steadily advanced,yet prominent challenges persist.Progress has been uneven across regions and countries,with Tajikistan representing a typical example of such disparities.Based on 81 SDG indicators for Tajikistan from 2001 to 2023,this study applied a three-level coupling network framework:at the microscale,it identified synergies and trade-offs between indicators;at the mesoscale,it examined the strength and direction of linkages within four SDG-related components(society,finance,governance,and environment);and at the global level,it focused on the overall SDG interlinkages.Spearman’s rank correlation,sliding window method,and topological properties were employed to analyze the coupling dynamics of SDGs.Results showed that over 70.00%of associations in the global SDG network were of medium-to-low intensity,alongside extremely strong ones(|r|value approached 1.00,where r is the correlation coefficient).SDG interactions were generally limited,with stable local synergy clusters in core livelihood sectors.Network modularity fluctuated,reflecting a cycle of differentiation,integration,and fragmentation,while coupling efficiency varied with the external environment.Each component exhibited distinct functional characteristics.The social component maintained high connectivity through the“poverty alleviation-education-healthcare”loop.The environmental component shifted toward coordinated eco-economic governance.The governance-related component broke interdepartmental barriers,while the financial component showed weak links between resource-based indicators and consumption/employment indicators.Tajikistan’s SDG coupling evolved through three phases:survival-oriented(2001–2012),policy integration(2013–2018),and shock adaptation(2019–2023).These phases were driven by policy changes,resource industries,governance optimization,and external factors.This study enriches the analytical framework for understanding the dynamic coupling of SDGs in mountainous resource-dependent countries and provides empirical evidence to support similar countries in formulating phase-specific SDG promotion strategies.展开更多
In this study,three specific scenarios of a novel accelerator light source mechanism called steady-state microbunching(SSMB)were studied:longitudinal weak focusing,longitudinal strong focusing,and generalized longitud...In this study,three specific scenarios of a novel accelerator light source mechanism called steady-state microbunching(SSMB)were studied:longitudinal weak focusing,longitudinal strong focusing,and generalized longitudinal strong focusing(GLSF).At present,GLSF is the most promising method for realizing high-power short-wavelength coherent radiation with mild requirements on modulation laser power.Its essence is to exploit the ultrasmall natural vertical emittance of an electron beam in a planar storage ring for efficient microbunching formation,like a partial transverse-longitudinal emittance exchange in the optical laser wavelength range.Based on an in-depth investigation of related beam physics,a solution for a GLSF SSMB storage ring that can deliver 1 kW average-power EUV light is presented.The work in this paper,such as the generalized Courant–Snyder formalism,analysis of theoretical minimum emittances,transverse-longitudinal coupling dynamics,and derivation of the bunching factor and modulation strengths for laser-induced microbunching schemes,is expected to be useful not only for the development of SSMB but also for future accelerator light sources in general that demand increasingly precise electron beam phase space manipulations.展开更多
本文通过以玉米碴为原料,酿酒酵母、嗜酸乳杆菌、枯草芽孢杆菌及纳豆芽孢杆菌作发酵剂,以单菌和组合的方式对玉米进行发酵制成玉米粉,采用气相-离子迁移谱(Gas-chromatography ion mobility spectrometry,GCIMS)和气相色谱-质谱联用(Gas...本文通过以玉米碴为原料,酿酒酵母、嗜酸乳杆菌、枯草芽孢杆菌及纳豆芽孢杆菌作发酵剂,以单菌和组合的方式对玉米进行发酵制成玉米粉,采用气相-离子迁移谱(Gas-chromatography ion mobility spectrometry,GCIMS)和气相色谱-质谱联用(Gas Chromatography-Mass Spectrometry,GC-MS)方法对发酵玉米粉的挥发性风味成分进行分析。结果表明,GC-IMS共检出68种风味物质,包括醛类12种、醇类18种、酯类11种、酮类11种以及6种杂环类;根据图谱差异分析发现,发酵后玉米粉风味物质均发生变化,其醇类、酯类和酸类物质含量相对提高。GC-MS共检出59种风味物质,包含13种醛类、12种酯类、15种醇类、7种酸类、6种酮类和7种杂环类物质。两种技术共同检测出29种风味物质,其中正癸醛等10种醛类、5种醇类、2-壬酮、2-庚酮、己酸乙酯、甲酸甲酯、丁酸乙酯及4种酸类物质为发酵玉米粉的主要风味物质。根据香气含量分析,对比未发酵玉米粉,自然发酵水果香含量提高了24.64%,酿酒酵母发酵水果香和酒香含量分别提高了30.05%、85.05%,嗜酸乳杆菌发酵水果甜香和奶油蜂蜜香含量分别提高了36.56%、90.36%,枯草芽孢杆菌和纳豆芽孢杆菌发酵水果甜香花及苦杏仁香含量分别提高了18.05%、15.59%和38.68%、38.02%,组合发酵水果甜香花、草香含量分别提高了53.53%、48.08%,表明经过发酵制得的玉米粉风味独特。展开更多
基金National Key Research and Development Program of China(2022YFB4600902)Shandong Provincial Science Foundation for Outstanding Young Scholars(ZR2024YQ020)。
文摘Wire arc additive manufacturing(WAAM)has emerged as a promising approach for fabricating large-scale components.However,conventional WAAM still faces challenges in optimizing microstructural evolution,minimizing additive-induced defects,and alleviating residual stress and deformation,all of which are critical for enhancing the mechanical performance of the manufactured parts.Integrating interlayer friction stir processing(FSP)into WAAM significantly enhances the quality of deposited materials.However,numerical simulation research focusing on elucidating the associated thermomechanical coupling mechanisms remains insufficient.A comprehensive numerical model was developed to simulate the thermomechanical coupling behavior in friction stir-assisted WAAM.The influence of post-deposition FSP on the coupled thermomechanical response of the WAAM process was analyzed quantitatively.Moreover,the residual stress distribution and deformation behavior under both single-layer and multilayer deposition conditions were investigated.Thermal analysis of different deposition layers in WAAM and friction stir-assisted WAAM was conducted.Results show that subsequent layer deposition induces partial remelting of the previously solidified layer,whereas FSP does not cause such remelting.Furthermore,thermal stress and deformation analysis confirm that interlayer FSP effectively mitigates residual stresses and distortion in WAAM components,thereby improving their structural integrity and mechanical properties.
基金supported by the National Key Research and Development Program of China (MOST)(Grant No.2022YFA1402800)the Chinese Academy of Sciences (CAS) Presidents International Fellowship Initiative (PIFI)(Grant No.2025PG0006)+3 种基金the National Natural Science Foundation of China (NSFC)(Grant Nos.51831012,12274437,and 52161160334)the CAS Project for Young Scientists in Basic Research (Grant No.YSBR-084)the CAS Youth Interdisciplinary Teamthe China Postdoctoral Science Foundation (Grant No.2025M773402)。
文摘Based on the Smit-Suhl formula,we propose a universal approach for solving the magnon-magnon coupling problem in bilayer coupled systems(e.g.,antiferromagnets).This method requires only the energy expression,enabling the automatic derivation of analytical expressions for the eigenmatrix elements via symbolic computation,eliminating the need for tedious manual calculations.Using this approach,we investigate the impact of magnetic hysteresis on magnon-magnon coupling in a system with interlayer Dzyaloshinskii-Moriya interaction(DMI).The magnetic hysteresis leads to an asymmetric magnetic field dependence of the resonance frequency and alters the number of degeneracy points between the pure optical and acoustic modes.Moreover,it can result in the coupling strength at the gap of the f–H phase diagram being nearly vanishing,contrary to the conventionally expected maximum.These results deepen the understanding of the effect of interlayer DMI on magnon–magnon coupling and the proposed universal method significantly streamlines the solving process of magnon–magnon coupling problems.
基金supported by the National Natural Science Foundation of China(No.82204610)Qihang Talent Program(L2022046)+1 种基金the Scientific and Technological Innovation Project of China Academy of Chinese Medical Sciences(CI2021A04013)Fundamental Research Funds for the Central Public Welfare Research Institutes(ZZ15-YQ-041 and L2021029).
文摘Background:Cyperi Rhizoma,derived from Cyperus rotundus L.,is a widely used medicinal herb in traditional Chinese medicine(TCM),with Shandong Province recognized as its geo-authentic habitat.However,the quality of Cyperi Rhizoma varies significantly across different regions,potentially influencing its therapeutic efficacy.This study investigates the influence of geographic origin on the chemical composition and overall quality of Cyperi Rhizoma.Methods:A comprehensive approach,including traditional quality assessment,GC-MS(g as c hromatography-m ass s pectrometry),RP-HPLC(r everse p hase h igh-p erformance l iquid c hromatography),and FT-IR(f ourier t ransform i nfrared s pectroscopy)techniques,was employed to analyze Cyperi Rhizoma samples from Shandong Province.These methods examined the physical appearance,chemical profile,and content variations,particularly focusing onα-cyperone.Results:Traditional quality assessments revealed noticeable differences in the external characteristics of the samples.GC-MS analysis identified a variety of unique chemical constituents,while RP-HPLC and FT-IR showed significant variations inα-cyperone content,with higher levels found in Shandong samples.Conclusion:These results demonstrate that geographic origin is a critical determinant of Cyperi Rhizoma quality,with Shandong specimens exhibiting superiorα-cyperone levels and characteristic phytochemical profiles.This validates the geo-authenticity concept in TCM and provides actionable data for developing evidence-based quality standards,suggesting that provenance should be prioritized in medicinal material selection and pharmacopeial specifications.
基金supported by the National Key Research and Development Program of China(No.2022YFF1301301)the Natural Science Foundation of Xiamen Municipality(No.3502Z202472047)the Geological Survey Program of China Geological Survey(DD20190303).
文摘To address the deficiencies in comprehensive surface contamination prevention strategies within China's nitrate-affected regions,this research innovatively proposes the DITAPH model-a systematic framework integrating groundwater nitrate vulnerability assessment and Nitrate Vulnerable Zones(NVZs)delineation through optimization of hydrogeological parameters.Based on detailed hydrogeological and hydrochemical investigations,the DITAPH model was applied in the plain areas of Quanzhou to evaluate its applicability.The model selected hydrogeological parameters(depth of groundwater,lithology of the vadose zone,topographic slope,aquifer water yield property),one climatic parameter(precipitation),and two anthropogenic parameters(land use type and population density)as assessment indicators.The results of the groundwater nitrate vulnerability assessment showed that the low,relatively low,relatively high,and high groundwater nitrate vulnerability zones in the study area accounted for 5.96%,35.44%,53.74%and 4.86%of the total area,respectively.Groundwater nitrate vulnerability was most strongly influenced by human activities,followed by groundwater depth and topographic slope.The high vulnerability zone is mainly affected by domestic and industrial wastewater,whereas the relatively high groundwater nitrate vulnerability zone is primarily influenced by agricultural activities.Validation of the DITAPH model revealed a significant positive correlation between the DITAPH index(DI)and nitrate concentration(ρ(NO3−)).The results of the NVZs delineated by the DITAPH model are reliable and can serve as a tool for water resource management planning,guiding the development of targeted measures in the NVZs to prevent groundwater contamination.
基金supported by the National Natural Science Foundation of China(No.51939009)Shenzhen Science and Technology Program(Nos.JCYJ20241202125905008 and GXWD20201231165807007-20200810165349001).
文摘A trace analytical method based on solid-phase extraction gas chromatography-tandem mass spectrometry(SPE–GC–MS/MS)was developed for the rapid detection of 256 semi-volatile organic compounds(SVOCs),including 25 polycyclic aromatic hydrocarbons(PAHs),70 polychlorinated biphenyls(PCBs),123 pesticides,20 phthalate esters(PAEs),4 organophosphate esters(OPEs),9 synthetic musks(SMs),and 5 UV filters(UVs)in water.No-tably,this method provided a decent linearity of calibration standards(R^(2)>0.999),excellent method limits of quantification(MLOQs)(0.12–11.41 ng/L),satisfactory matrix spiking recovery rates(60.4%–126%),and high precision(intra-day relative standard deviations(RSDs):1.0%–10.0%,inter-day RSDs:3.0%–15.0%,and inter-week RSDs:3.4%–15.7%),making it suitable for trace-level studies.Statistical analysis revealed that SVOCs with higher volatility exhibited enhanced recovery rates.Validation of the methodology involved analyzing SVOCs in real spring water and river water samples.Twenty-seven SVOCs were detected in spring water and 58 in river water,with an average concentration of 631.73 and 16,095 ng/L,respectively.Among the detected SVOCs,PAEs constituted the predominant proportion.This study underscored the presence of SVOCs contamination specifi-cally within the spring water,although SVOCs concentrations in river water were significantly greater than those found in spring water.In summary,this sensitive method based on SPE–GC–MS/MS was successfully developed and validated for the rapid analysis of a diverse array of 256 SVOCs at trace levels in water,including not only the traditional highly valued PAHs,PCBs,pesticides,and PAEs,but also the emerging OPEs,UVs,and SMs.
文摘Since the United Nations launched the Sustainable Development Goals(SDGs)in 2015,global implementation has steadily advanced,yet prominent challenges persist.Progress has been uneven across regions and countries,with Tajikistan representing a typical example of such disparities.Based on 81 SDG indicators for Tajikistan from 2001 to 2023,this study applied a three-level coupling network framework:at the microscale,it identified synergies and trade-offs between indicators;at the mesoscale,it examined the strength and direction of linkages within four SDG-related components(society,finance,governance,and environment);and at the global level,it focused on the overall SDG interlinkages.Spearman’s rank correlation,sliding window method,and topological properties were employed to analyze the coupling dynamics of SDGs.Results showed that over 70.00%of associations in the global SDG network were of medium-to-low intensity,alongside extremely strong ones(|r|value approached 1.00,where r is the correlation coefficient).SDG interactions were generally limited,with stable local synergy clusters in core livelihood sectors.Network modularity fluctuated,reflecting a cycle of differentiation,integration,and fragmentation,while coupling efficiency varied with the external environment.Each component exhibited distinct functional characteristics.The social component maintained high connectivity through the“poverty alleviation-education-healthcare”loop.The environmental component shifted toward coordinated eco-economic governance.The governance-related component broke interdepartmental barriers,while the financial component showed weak links between resource-based indicators and consumption/employment indicators.Tajikistan’s SDG coupling evolved through three phases:survival-oriented(2001–2012),policy integration(2013–2018),and shock adaptation(2019–2023).These phases were driven by policy changes,resource industries,governance optimization,and external factors.This study enriches the analytical framework for understanding the dynamic coupling of SDGs in mountainous resource-dependent countries and provides empirical evidence to support similar countries in formulating phase-specific SDG promotion strategies.
基金supported by the National Key Research and Development Program of China(No.2022YFA1603401)National Natural Science Foundation of China(Nos.12035010 and 12342501)+1 种基金Beijing Outstanding Young Scientist Program(No.JWZQ20240101006)the Tsinghua University Dushi Program.
文摘In this study,three specific scenarios of a novel accelerator light source mechanism called steady-state microbunching(SSMB)were studied:longitudinal weak focusing,longitudinal strong focusing,and generalized longitudinal strong focusing(GLSF).At present,GLSF is the most promising method for realizing high-power short-wavelength coherent radiation with mild requirements on modulation laser power.Its essence is to exploit the ultrasmall natural vertical emittance of an electron beam in a planar storage ring for efficient microbunching formation,like a partial transverse-longitudinal emittance exchange in the optical laser wavelength range.Based on an in-depth investigation of related beam physics,a solution for a GLSF SSMB storage ring that can deliver 1 kW average-power EUV light is presented.The work in this paper,such as the generalized Courant–Snyder formalism,analysis of theoretical minimum emittances,transverse-longitudinal coupling dynamics,and derivation of the bunching factor and modulation strengths for laser-induced microbunching schemes,is expected to be useful not only for the development of SSMB but also for future accelerator light sources in general that demand increasingly precise electron beam phase space manipulations.