期刊导航
期刊开放获取
vip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于参数优化VMD与宽卷积神经网络的齿轮箱故障诊断
被引量:
2
1
作者
万佳诚
曾宪文
李靖超
《电子测量技术》
北大核心
2025年第10期25-32,共8页
针对齿轮箱故障诊断中因噪声干扰等因素导致的诊断效果不佳问题,提出一种基于改进的黑翅鸢优化算法(GBKA)优化变分模态分解(VMD)和宽卷积神经网络(WDCNN)的故障诊断方法。首先,针对黑翅鸢算法(BKA)易陷入局部最优和过早收敛的缺陷,引入...
针对齿轮箱故障诊断中因噪声干扰等因素导致的诊断效果不佳问题,提出一种基于改进的黑翅鸢优化算法(GBKA)优化变分模态分解(VMD)和宽卷积神经网络(WDCNN)的故障诊断方法。首先,针对黑翅鸢算法(BKA)易陷入局部最优和过早收敛的缺陷,引入遗传算法的基因交叉重组与变异操作对BKA进行改进;其次,利用改进后的GBKA对VMD参数寻优,通过相关系数筛选模态分量并重构信号;最后,将重构信号输入WDCNN模型,实现故障分类。结果表明,在测试函数上,GBKA相比BKA具有更优的寻优性能;在两种工况下,该方法的平均故障分类准确率分别达到99.645%和99.978%,优于其他对比方法,并且在噪声实验中受到噪声的影响较小,验证了所提模型的有效性和稳定性,为齿轮箱故障诊断提供了一种可靠的解决方案。
展开更多
关键词
行星齿轮
故障诊断
宽卷积神经网络
VMD
gbka
算法
原文传递
题名
基于参数优化VMD与宽卷积神经网络的齿轮箱故障诊断
被引量:
2
1
作者
万佳诚
曾宪文
李靖超
机构
上海电机学院电气学院
上海电机学院电子信息学院
出处
《电子测量技术》
北大核心
2025年第10期25-32,共8页
基金
国家自然科学基金面上项目(62076160)
上海市自然科学基金面上项目(21ZR1424700)
上海市青年科技启明星项目(23QA1403800)资助。
文摘
针对齿轮箱故障诊断中因噪声干扰等因素导致的诊断效果不佳问题,提出一种基于改进的黑翅鸢优化算法(GBKA)优化变分模态分解(VMD)和宽卷积神经网络(WDCNN)的故障诊断方法。首先,针对黑翅鸢算法(BKA)易陷入局部最优和过早收敛的缺陷,引入遗传算法的基因交叉重组与变异操作对BKA进行改进;其次,利用改进后的GBKA对VMD参数寻优,通过相关系数筛选模态分量并重构信号;最后,将重构信号输入WDCNN模型,实现故障分类。结果表明,在测试函数上,GBKA相比BKA具有更优的寻优性能;在两种工况下,该方法的平均故障分类准确率分别达到99.645%和99.978%,优于其他对比方法,并且在噪声实验中受到噪声的影响较小,验证了所提模型的有效性和稳定性,为齿轮箱故障诊断提供了一种可靠的解决方案。
关键词
行星齿轮
故障诊断
宽卷积神经网络
VMD
gbka
算法
Keywords
planetary gear
fault diagnosis
wide convolutional neural network
VMD
gbka algorithm
分类号
TH165.3 [机械工程—机械制造及自动化]
TN0 [电子电信—物理电子学]
原文传递
题名
作者
出处
发文年
被引量
操作
1
基于参数优化VMD与宽卷积神经网络的齿轮箱故障诊断
万佳诚
曾宪文
李靖超
《电子测量技术》
北大核心
2025
2
原文传递
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部