Ground-based interferometric synthetic aperture radar(GB-InSAR)can take deformation measurement with a high accuracy.Partition of the GB-InSAR deformation map benefits analyzing the deformation state of the monitoring...Ground-based interferometric synthetic aperture radar(GB-InSAR)can take deformation measurement with a high accuracy.Partition of the GB-InSAR deformation map benefits analyzing the deformation state of the monitoring scene better.Existing partition methods rely on labelled datasets or single deformation feature,and they cannot be effectively utilized in GBInSAR applications.This paper proposes an improved partition method of the GB-InSAR deformation map based on dynamic time warping(DTW)and k-means.The DTW similarities between a reference point and all the measurement points are calculated based on their time-series deformations.Then the DTW similarity and cumulative deformation are taken as two partition features.With the k-means algorithm and the score based on multi evaluation indexes,a deformation map can be partitioned into an appropriate number of classes.Experimental datasets of West Copper Mine are processed to validate the effectiveness of the proposed method,whose measurement points are divided into seven classes with a score of 0.3151.展开更多
文摘传统的GB-InSAR时序处理方法针对整个数据集或分组进行实时处理,该类方法占用大量的电脑内存,效率低,不能满足边坡监测的时效性,无法实现形变预测与灾害预警预报.针对此种情况,提出了基于Kalman滤波的GB-InSAR边坡形变监测实时处理方法.以河北省迁安市马兰庄铁矿边坡监测为例进行分析,提出方法在实验所用解算平台下,在1 min内可解算出研究区当前时刻形变量,并可以预测下一时刻的形变量,与传统时序InSAR的结果相比,时序形变标准差优于1 mm.
基金supported by the National Natural Science Foundation of China(61971037,61960206009,61601031)the Natural Science Foundation of Chongqing,China(cstc2020jcyj-msxm X0608,cstc2020jcyj-jq X0008)。
文摘Ground-based interferometric synthetic aperture radar(GB-InSAR)can take deformation measurement with a high accuracy.Partition of the GB-InSAR deformation map benefits analyzing the deformation state of the monitoring scene better.Existing partition methods rely on labelled datasets or single deformation feature,and they cannot be effectively utilized in GBInSAR applications.This paper proposes an improved partition method of the GB-InSAR deformation map based on dynamic time warping(DTW)and k-means.The DTW similarities between a reference point and all the measurement points are calculated based on their time-series deformations.Then the DTW similarity and cumulative deformation are taken as two partition features.With the k-means algorithm and the score based on multi evaluation indexes,a deformation map can be partitioned into an appropriate number of classes.Experimental datasets of West Copper Mine are processed to validate the effectiveness of the proposed method,whose measurement points are divided into seven classes with a score of 0.3151.