One of the main challenges in oil-water separation of traditional Chinese medicines(TCM)is to obtain essential oils from the aromatic water of TCM.In this study,silicon dioxide/polyvinylidene fluoride(SiO_(2)/PVDF)mem...One of the main challenges in oil-water separation of traditional Chinese medicines(TCM)is to obtain essential oils from the aromatic water of TCM.In this study,silicon dioxide/polyvinylidene fluoride(SiO_(2)/PVDF)membranes were prepared using nonsolvent induce phase separation.Then polydimethylsiloxane(PDMS)was coated to obtain PDMS/SiO_(2/)PVDF membranes.Separated essential oils and water from aromatic water in the gaseous state by vapor permeation membrane separation technology.The relationship between membrane structure and membrane separation effect was investigated.Response surface methodology was used to develop a quadratic model for the separation factor,membrane permeation separation index and membrane preparation process.The optimal process parameters for the membrane separation were 12.31%(mass)concentration of PVDF solution,9.6%(mass)of N,Ndimethylacetamide in the solidification bath,and 0.2 g hydrophobic nano-SiO_(2)incorporation,with a separation factor of 14.45,and a membrane flux of 1203.04 g·m^(-2)·h^(-1).Compared with the PDMS/PVDF membranes,the separation factor and membrane flux were increased by 68.59%and 3.46%,respectively.Compared with the SiO_(2)/PVDF membranes,the separation factor and membrane flux were increased by478%and 79.33%,respectively.Effectively mitigated the limitations of traditional polymer membrane material performance affected by the"trade-off"effect.Attenuated total internal reflection-Fourier transform infrared spectroscopy,contact angle,scanning electron microscopy and energy dispersive spectroscopy were used to characterize the PDMS/SiO_(2)/PVDF membranes,and gas chromatography was used to characterize the permeate.In addition,the contents of L-menthol,L-menthone,menthyl acetate and limonene in the permeate,conformed to the European Pharmacopoeia standards.This study provided an effective preparation strategy of a feasible hydrophobic powder polymer membrane for the separation of essential oils from gaseous peppermint aromatic water.展开更多
The application of organic fertilizers has become an increasingly popular practice in maize production to reduce thegaseous nitrogen(N) loss and soil degradation caused by inorganic fertilizers. Organic fertilizer pla...The application of organic fertilizers has become an increasingly popular practice in maize production to reduce thegaseous nitrogen(N) loss and soil degradation caused by inorganic fertilizers. Organic fertilizer plays a key rolein improving soil quality and stabilizing maize yields, but few studies have compared different substitution rates. Afield study was carried out in 2021 and 2022, based on a long-term trial initiated in 2016, which included five organicfertilizer N substitution rates with equal inputs of 200 kg N ha^(–1): 0% organic fertilizer(T1, 100% inorganic fertilizer),50.0% organic+50.0% inorganic fertilizer(T2), 37.5% organic+62.5% inorganic fertilizer(T3), 25.0% organic+75.0%inorganic fertilizer(T4), and 12.5% organic+87.5% inorganic fertilizer(T5), as well as a no fertilizer control(T6). Theresults of the two years showed that T3 and T1 had the highest grain yield and biomass, respectively, and there wasno significant difference between T1 and T3. Compared with T1, the 12.5, 25.0, 37.5, and 50.0% substitution rates in T5, T4, T3, and T2 significantly reduced total nitrogen losses(NH_(3), N_(2)O) by 8.3, 16.1, 18.7, and 27.0%, respectively.Nitrogen use efficiency(NUE) was higher in T5, T3, and T1, and there were no significant differences among them.Organic fertilizer substitution directly reduced NH_(3)volatilization and N_(2)O emission from farmland by lowering theammonium nitrogen and alkali-dissolved N contents and by increasing soil moisture. These substitution treatmentsreduced N_(2)O emissions indirectly by regulating the abundances of AOB and nirK-harboring genes by promotingsoil moisture. Specifically, the 37.5% organic fertilizer substitution reduces NH_(3)volatilization and N_(2)O emission from farmland by reducing the ammonium nitrogen and alkali-dissolved N contents and increasing moisture, which negatively regulate the abundance of AOB and nir K-harboring genes to reduce N_(2)O emissions indirectly in rainfed maize fields on the Loess Plateau of China.展开更多
Persulfate is considered a convenient and efficient remediation agent for organic contaminated soil.However,the potential risk of sulfur into the soil remediation by persulfate remains ignored.In this study,glass bott...Persulfate is considered a convenient and efficient remediation agent for organic contaminated soil.However,the potential risk of sulfur into the soil remediation by persulfate remains ignored.In this study,glass bottles with different persulfate dosages and groundwater tables were set up to simulate persulfate remediation of organic pollutants(aniline).The results found sulfate to be the main end-product(83.0%–99.5%)of persulfate remediation after10 days.Moreover,H_(2)S accounted for 93.4%–99.4%of sulfur reduction end-products,suggesting that H_(2)S was the final fate of sulfur.H_(2)S was released rapidly after one to three days at a maximum concentration of 33.0 ppm,which is sufficient to make a person uncomfortable.According to the fitted curve results,H_(2)S concentration decreased to a safe concentration(0.15 ppm)after 20–85 days.Meanwhile,the maximum concentration of methanethiol reached 0.6 ppm.These results indicated that secondary pollution from persulfate remediation could release harmful gases over a long time.Therefore,persulfate should be used more carefully as a remediation agent for soil contamination.展开更多
Because of its high mobility and difficult capture,gaseous arsenic pollution control has become the focus of arsenic pollution control.It mainly exists in the form of highly toxic As_(2)O_(3)in the flue gas.Therefore,...Because of its high mobility and difficult capture,gaseous arsenic pollution control has become the focus of arsenic pollution control.It mainly exists in the form of highly toxic As_(2)O_(3)in the flue gas.Therefore,removing gaseous As_(2)O_(3)from flue gas is of great practical significance for arsenic pollution control.Stabilizing gaseous As_(2)O_(3)on the surface of adsorbents by physical or chemical adsorption is an effective way to reduce the content of arsenic in the flue gas and alleviate arsenic pollution.Over the past few decades,various adsorbents have been developed to capture gaseous As_(2)O_(3)in the flue gas,and their adsorption mechanisms have been studied in detail.Thus,it is necessary to review the strategies of arsenic removal from flue gas by adsorption,which can inspire further research.Based on summarizing the morphological distribution of gaseous As_(2)O_(3)in the flue gas,this review further summarizes the removal of gaseous As_(2)O_(3)by several adsorbents and the effect of temperature and the main components of the flue gas on arsenic adsorption.In addition,the mechanism of arsenic removal based on adsorption in the flue gas is discussed in depth through theoretical calculations,which is the particular focus of this review.Finally,prospects based on the present research state of arsenic removal by adsorption are proposed to provide ideas for developing effective and stable adsorbents for arsenic removal from flue gas.展开更多
Biofiltration may have clogging problems owing to excess biomass growth during the treatment of gaseous pollutants.In this study,we employed an UV(Ultraviolet)lamp and controlled the nutrient supply to conduct a biofi...Biofiltration may have clogging problems owing to excess biomass growth during the treatment of gaseous pollutants.In this study,we employed an UV(Ultraviolet)lamp and controlled the nutrient supply to conduct a biofiltration process for treating 2-butanone(MEK:Methyl Ethyl Ketone)and toluene in a gas stream.Two methods of UV lamp usage(direct and indirect irradiation)and several nutrient supply methods were tested.However,no clear effect was observed with either UV usage.Under the optimal conditions,97%of the MEK and 69%of the toluene gases were removed after 29 s of EBRT(Empty Bed Retention Time).The inlet loads were 18 and 19 mg/(m^(3)·h)for MEK and toluene,respectively.Under these conditions,23 g-N/(m^(3)·day)of nitrate-nitrogen was consumed.Excess biomass growth occurred during simultaneous excess nutrient supply and a persistent irrigation schedule.In this study,we demonstrated the effective use of a dense nitrate solution to deliver an appropriate amount of nutrients and moisture,and the optimal irrigation frequency was four times per week.展开更多
An investigation of gaseous elemental mercury concentration in atmosphere was conducted at Beijing and Guangzhou urban, Yangtze Delta regional sites and China Global Atmosphere Watch Baseline Observatory (CGAWBO) in...An investigation of gaseous elemental mercury concentration in atmosphere was conducted at Beijing and Guangzhou urban, Yangtze Delta regional sites and China Global Atmosphere Watch Baseline Observatory (CGAWBO) in Mt. Waliguan of remote continental area of China. High temporal resolved data were obtained using automated mercury analyzer RA-915^+. Results showed that the overall hourly mean Hg^0 concentrations in Mt. Waliguan were 1.7±1.1 ng/m3 in summer and 0.6±0.08 ng/m^3 in winter. The concentration in Yangtze Delta regional site was 5.4±4.1 ng/m^3, which was much higher than those in Waliguan continental background area and also higher than that found in North America and Europe rural areas. In Beijing urban area the overall hourly mean Hg^0 concentrations were 8.3±3.6 ng/m^3 in winter, 6.5±5.2 ng/m^3 in spring, 4.9±3.3 ng/m^3 in summer, and 6.7±3.5 ng/m^3 in autumn, respectively, and the concentration was 13.5±7.1 ng/m^3 in Guangzhou site. The mean concentration reached the lowest value at 14:00 and the highest at 02:00 or 20:00 in all monitoring campaigns in Beijing and Guangzhou urban areas, which contrasted with the results measured in Yangtze Delta regional site and Mr. Waliguan. The features of concentration and diurnal variation of Hg^0 in Beijing and Guangzhou implied the importance of local anthropogenic sources in contributing to the high Hg^0 concentration in urban areas of China. Contrary seasonal variation patterns of Hg^0 concentration were found between urban and remote sites. In Beijing the highest Hg^0 concentration was in winter and the lowest in summer, while in Mt. Waliguan the Hg^0 concentration in summer was higher than that in winter. These indicated that different processes and factors controlled Hg^0 concentration in urban, regional and remote areas.展开更多
To better understand the characteristics and transformation mechanisms of secondary inorganic aerosols,hourly mass concentrations of water-soluble inorganic ions(WSIIs)in PM_(2.5)and their gaseous precursors were meas...To better understand the characteristics and transformation mechanisms of secondary inorganic aerosols,hourly mass concentrations of water-soluble inorganic ions(WSIIs)in PM_(2.5)and their gaseous precursors were measured online from 2016 to 2018 at an urban site in Beijing.Seasonal and diurnal variations in water-soluble ions and gaseous precursors were discussed and their gas-particle conversion and partitioning were also examined,some related parameters were characterized.The(TNH_(3))Rich was also defined to describe the variations of the excess NH_(3)in different seasons.In addition,a sensitivity test was carried out by using ISORROPIA II to outline the driving factors of gas-particle partitioning.In Beijing,the relative contribution of nitrate to PM_(2.5)has increased markedly in recent years,especially under polluted conditions.In the four seasons,only a small portion of NO_(2)in the atmosphere was converted into total nitrate(TNO_(3)),and more than 80%of TNO_(3)occurred in the form of nitrate due to the abundant ammonia.The concentration of total ammonia(TNH_(3))was much higher than that required to neutralize acid gases,and most of the TNH_(3)occurred as gaseous NH_(3).The nitrous acid(HONO)concentration was highly correlated with NH_(3)concentration and had increased significantly in Beijing compared with previous studies.The total chloride(TCl)was the highest in winter,andε(Cl^(-))was more sensitive to variations in the ambient temperature(T)and relative humidity(RH)thanε(NO_(3)^(-)).展开更多
Photocatalytic degradation of gaseous pollutants on Bi-based semiconductors under solar lightirradiation has attracted significant attention.However,their application in gaseous straight-chainalkane purification is st...Photocatalytic degradation of gaseous pollutants on Bi-based semiconductors under solar lightirradiation has attracted significant attention.However,their application in gaseous straight-chainalkane purification is still rare.Here,a series of Bi/BiOBr composites were solvothermally synthe-sized and applied in solar-light-driven photocatalytic degradation of gaseous n-hexane.The charac-terization results revealed that both increasing number of functional groups of alcohol solvent(from methanol and ethylene glycol to glycerol)and solvothermal temperature(from 160 and 180to 200℃)facilitated the in-situ formation of metallic Bi nanospheres on BiOBr nanoplates withexposed(110)facets.Meanwhile,chemical bonding between Bi and BiOBr was observed on theseexposed facets that resulted in the formation of surface oxygen vacancy.Furthermore,the synergis-tic effect of optimum surface oxygen vacancy on exposed(110)facets led to a high visible light re-sponse,narrow band gap,great photocurrent,low recombination rate of the charge carriers,andstrong·O2-and h*formation,all of which resulted in the highest removal efficiency of 97.4%within120 min of 15 ppmv of n-hexane on Bi/BiOBr.Our findings efficiently broaden the application ofBi-based photocatalysis technology in the purification of gaseous straight-chain pollutants emittedby the petrochemical industry.展开更多
Long-term monitoring programs for measurement of atmospheric mercury concentrations are presently recognized as powerful tools for local,regional and global studies of atmospheric long-range transport processes,and th...Long-term monitoring programs for measurement of atmospheric mercury concentrations are presently recognized as powerful tools for local,regional and global studies of atmospheric long-range transport processes,and they could also provide valuable information about the impact of emission controls on the global budget of atmospheric mercury,their observance and an insight into the global mercury cycle. China is believed to be an increasing atmospheric mercury emission source. However,only a few measurements of mercury,to our knowledge,have been done in ambient air over China. The highly-time resolved atmospheric mercury concen-trations have been measured at Moxi Base Station (102°72′E 29°92′N,1640 m asl) of the Gongga Alpine Ecosystem Observation and Experiment Station of Chinese Academy of Sciences (CAS) from May 2005 to June 2006 by using a set of Automatic Atmospheric Mercury Speciation Analyzers (Tekran 2537A). Measurements were carried out with a time resolution of every 15 minutes. The overall average total gaseous mercury (TGM) covering the measurement periods was 4±1.38 ng·m-3 (N=57310),which is higher than the global background level of approximately 1.5~2.0 ng·m-3. The measurements in all seasons showed a similar diurnal change pattern with a high concentration during daytime relative to nighttime and maximum concentration near solar noon and minimum concentration immediately before sunrise. The presence of diurnal TGM peaks during spring and summer was found earlier than that during autumn and winter. When divided seasonally,it was found that the concentrations of TGM were highest in winter with 6.13 ± 1.78 ng·m-3 and lowest in summer with 3.17 ± 0.67 ng·m-3. There were no significant differences in TGM among wind sectors during each season. Whereas Hg generally exhibited significant correlations with the parameters,such as temperature,saturated vapor pressure,precipitation,ultraviolet radiation (UV) and atmospheric pressure at the whole measurement stage,and the correlations varied seasonally. Our results suggest that the local or regional abundant geothermal activities,such as thermal spring,anthropogenic source processes and changes in meteorological conditions,regulate and affect Hg behavior in the study area.展开更多
The present paper renders a modeling and a 2D numerical simulation for the removal of CO_2from CO_2/CH_4gaseous stream utilizing sodium hydroxide(NaOH),monoethanolamine(MEA)and triethanolamine(TEA)liquid absorbents in...The present paper renders a modeling and a 2D numerical simulation for the removal of CO_2from CO_2/CH_4gaseous stream utilizing sodium hydroxide(NaOH),monoethanolamine(MEA)and triethanolamine(TEA)liquid absorbents inside the hollow fiber membrane contactor.Counter-current arrangement of absorbing agents and CO_2/CH_4gaseous mixture flows are implemented in the modeling and numerical simulation.Non-wetting and partial wetting modes of operation are considered where in the partial wetting mode,CO_2/CH_4gaseous mixture and liquid absorbents fill the membrane pores.The deteriorated removal of CO_2in the partial wetting mode of operation is mainly due to the mass transfer resistance imposed by the liquid in the pores of membrane.The validation of numerical simulation is done based on the comparison of simulation results of CO_2removal using Na OH and experimental data under non-wetting mode of operation.The comparison illustrates a desirable agreement with an average deviation of less than 5%.According to the results,MEA provides higher efficiency for CO_2removal in comparison with the other liquid absorbents.The order for CO_2removal performance is MEAN Na OHN TEA.The influence of non-wetting and partial wetting modes of operation on CO_2removal are evaluated in this article as one of the novelties.Besides,the percentage of CO_2sequestration as a function of gas velocity for various percentages of membrane pores wetting ranging from 0(non-wetting mode of operation)to 100%(complete wetting mode of operation)is studied in this research paper,which can be proposed as the other novelty.The results indicate that increase in some operational parameters such as module length,membrane porosity and absorbents concentration encourage the removal percentage of CO_2from CO_2/CH_4gaseous mixture while increasing in membrane tortuosity,gas velocity and initial CO_2concentration has unfavorable influence on the separation efficiency of CO_2.展开更多
O3 and PM2.5 were introduced into the newly revised air quality standard system in February 2012, representing a milestone in the history of air pollution control, and China's urban air quality will be evaluated usin...O3 and PM2.5 were introduced into the newly revised air quality standard system in February 2012, representing a milestone in the history of air pollution control, and China's urban air quality will be evaluated using six factors (SO2, NO2, O3, CO, PM2.5 and PM10) from the beginning of 2013. To achieve the new air quality standard, it is extremely important to have a primary understanding of the current pollution status in various cities. The spatial and temporal variations of the air pollutants were investigated in 26 pilot cities in China from August 2011 to February 2012, just before the new standard was executed. Hourly averaged SO2, NO2 and PMlo were observed in 26 cities, and the pollutants O3, CO and PM2.5 were measured in 15 of the 26 cities. The concentrations of SO2 and CO were much higher in the cities in north China than those in the south. As for O3 and NO2, however, there was no significant difference between northern and southern cities. Fine particles were found to account for a large proportion of airborne particles, with the ratio of PM2.5 to PMI0 ranging from 55% to 77%. The concentrations of PM2.5 (57.5 μg/m3) and PMlo (91.2 μg/m3) were much higher than the values (PM2.5:11.2μg/m3; PMI0:35.6 μg/m3) recommended by the World Health Organization. The attainment of the new urban air quality standard in the investigated cities is decreased by 20% in comparison with the older standard without considering O3, CO and PM2.5, suggesting a great challenge in urban air quality improvement, and more efforts will to be taken to control air pollution in China.展开更多
Gaseous reduction kinetics of the high phosphorus iron ore fines from Hubei in China and effect of microwave pretreatment on the gaseous reduction behavior were studied. Gaseous reduction kinetics were investigated by...Gaseous reduction kinetics of the high phosphorus iron ore fines from Hubei in China and effect of microwave pretreatment on the gaseous reduction behavior were studied. Gaseous reduction kinetics were investigated by TG (Thermogravimetric) methods using LINSEIS STA PT 1600 thermal analysis equipment. Microwave pretreatments to the ore fines with four power levels were performed using a high temperature microwave reactor. Its effect was examined by TG methods and its mechanism was analyzed by SEM (scanning electron microscope) and EDS (energy dispersive spectrometer). Gaseous reduction tests were carried out using a tubular furnace. Results of kinetic study indicate that controlling step of the gaseous reduction of the ore fines is a mixing control of gas internal diffusion and interface chemical reaction when reduction fraction is less than 0.8 and is solid state diffusion when reduction fraction is more than 0.8. Microwave pretreatment of the ore fines could change the pore structure of the oolitic unit to generate cracks, fissures and loose zones, which promotes reduction in the early stage and delays the occurrence of sintering. Gaseous reduction tests show in the condition that the ore fines are pretreated with a microwave power of 450 W for 4 min and reduced under temperature of 1 273 K, the gaseous reduction of the ore fines could be apparently intensified. Using CO or H2 as a reductant and ore fines being reduced for 1.5 to 2 h , increase of metallization rate of the ore fines is 10% to 13%.展开更多
Gaseous jets injected into water are typically found in underwater propulsion, and the flow is essentially unsteady and turbulent. Additionally, the high water-to-gas density ratio can result in complicated flow struc...Gaseous jets injected into water are typically found in underwater propulsion, and the flow is essentially unsteady and turbulent. Additionally, the high water-to-gas density ratio can result in complicated flow structures; hence measuring the flow structures numerically and experimentally remains a challenge. To investigate the performance of the underwater propulsion, this paper uses detailed NavierStokes flow computations to elucidate the gas-water interactions under the framework of the volume of fluid (VOF) model. Furthermore, these computations take the fluid compressibility, viscosity, and energy transfer into consideration. This paper compares the numerical results and experimental data, showing that phenomena including expansion, bulge, necking/breaking, and back-attack are highlighted in the jet process. The resulting analysis indicates that the pressure difference on the rear and front surfaces of the propul- sion system can generate an additional thrust. The strong and oscillatory thrust of the underwater propulsion system is caused by the intermittent pulses of the back pressure and the nozzle exit pressure. As a result, the total thrust in underwater propulsion is not only determined by the nozzle geometry but also by the flow structures and associated pressure distri- butions.展开更多
As compared to conventional diesel heavy-duty vehicles,natural gas vehicles have been proved to be more eco-friendly due to their lower production of greenhouse gas and pollu-tant emissions,which are causing enormous ...As compared to conventional diesel heavy-duty vehicles,natural gas vehicles have been proved to be more eco-friendly due to their lower production of greenhouse gas and pollu-tant emissions,which are causing enormous adverse effects on global warming and air pol-lution.However,natural gas vehicles were rarely studied before,especially through on-road measurements.In this study,a portable emission measurement system(PEMS)was em-ployed to investigate the real-world emissions of nitrogen oxides(NO_(x))(nitrogen monoxide(NO),nitrogen dioxide(NO_(2))),total hydrocarbons(THC),carbon monoxide(CO),and carbon dioxide(CO_(2))from two liquified natural gas(LNG)China V heavy-duty cleaning sanitation trucks with different weight.Associated with the more aggressive driving behaviors,the ve-hicle with lower weight exhibited higher CO_(2)(3%)but lower NO_(x)(48.3%)(NO_(2)(78.2%)and NO(29.4%)),CO(44.8%),and THC(3.7%)emission factors.Aggressive driving behaviors were also favorable to the production of THC,especially those in the medium-speed range but sig-nificantly negative to the production of CO and NO_(2),especially those in the low-speed range with high engine load.In particular,the emission rate ratio of NO_(2)/NO decreased with the increase of speed/scaled tractive power in different speed ranges.展开更多
Aiming to solve the problem of corrosion and high cost of the conductive fillers, the powders with the properties of anti-oxidation, corrosion resistance and thermal stability should be developed. A new modification t...Aiming to solve the problem of corrosion and high cost of the conductive fillers, the powders with the properties of anti-oxidation, corrosion resistance and thermal stability should be developed. A new modification technology, rare earth gaseous penetration, was applied to enhance the conductivity of maifanite in this paper, and the mechanism for improving the conductivity of maifanite effectively was speculated in detail for the variations of the composition, structure and morphology between the original and Er-penetration maifanite powders. The results of the resistivity show that Er-penetration can really improve the conductivity of maifanite powders. When the penetration temperature is 500 ℃, the resistivity of maifanite surprisingly declines to 93.2 Ω·m. Moreover, XRD and XPS patterns display that the cations in maifanite are substituted by Er^(3+) successfully, resulting in the production of electrons in the system, which is the key reason to heighten the conductivity of maifanite. Most importantly, Erpenetration maifanite, whose price is really low, can replace the expensive conductive powders and be used in the electronic industry to decrease the cost of the electronic devices.展开更多
New polyoxometalate α-K 12H 3[Y(BW 11O 39) 2]·25H 2O was synthesized and treated by high temperature gaseous rare earth permeation to prepare tungsten bronze K 0.475WO 3. XRD, TG-DTA, XPS, ...New polyoxometalate α-K 12H 3[Y(BW 11O 39) 2]·25H 2O was synthesized and treated by high temperature gaseous rare earth permeation to prepare tungsten bronze K 0.475WO 3. XRD, TG-DTA, XPS, 183W-NMR,CV and AC impedance spectra were used to characterize the resulting material. The results of XPS indicate that La has permeated and diffused into the body of the sample and exists in the forms of binding with other components. The crystal structure parameters of K 0.475WO 3 were obtained by the analysis of XRD, which shows tetragonal crystal system with lattice parameters: a=12 28 nm, c=3.833 nm, V=578.48 nm -3. The conductivities calculated from the results of AC impedance spectra of the material increase with the increasing of temperature, which shows a semiconductor character.展开更多
ZnCl2 is one of the dominant aggressive species in waste incinerators or other advanced combustion power generation systems. In this study, the influence of minor amount of gaseous ZnCl2 on the corrosion behavior of p...ZnCl2 is one of the dominant aggressive species in waste incinerators or other advanced combustion power generation systems. In this study, the influence of minor amount of gaseous ZnCl2 on the corrosion behavior of pure iron was examined at 600-800℃ in a pure oxygen environment. The corrosion rate usually increased markedly with increasing temperatures at a fixed ZnCl2 content or with increased ZnCl2 contents at a constant temperature. The corrosion products were composed of a thin outer layer of ZnFe2O4 spinel and an inner zone with a much thicker layer of Fe2O3, which exhibited a serious separation from the matrix. Moreover, a molten FeCl2 layer was observed at the scale substrate interface. The accelerated corrosion of pure iron was attributed to the existence of FeCl2 with low melting point on the metal surface, which destroyed the cohesion and adhesion of the oxide scale. The results are discussed in relation to the thermodynamic factors and the presence of volatile compounds in the reaction system.展开更多
It is necessary to identify a gaseous pollutant source rapidly so that prompt actions can be taken, but this is one of the difficulties in the inverse problem areas. In this paper, an approach to identifying a sudden ...It is necessary to identify a gaseous pollutant source rapidly so that prompt actions can be taken, but this is one of the difficulties in the inverse problem areas. In this paper, an approach to identifying a sudden continuous emission pollutant source based on single sensor information is developed to locate a source in an enclosed space with a steady velocity field. Because the gravity has a very important influence on the gaseous pollutant transport and the source identification, its influence is analyzed theoretically and a conclusion is drawn that the velocity of fluid is a key factor to effectively help weaken the gravitational influence. Further studies for a given 2-D case by using the computational fluid dynamics (CFD) method show that when the velocity of inlet is less than one certain value, the influence of gravity on the pollutant transport is very significant, which will change the velocity field obviously. In order to quantitatively judge the practical applicability of identification approach, a synergy degree of the velocity fields before and after a source appearing is proposed as a condition for considering the influence of gravity. An experimental device simulating pollutant transmission was set up and some experiments were conducted to verify the practical application of the above studies in the actual gravitational environment. The results show that the proposed approach can successfully locate the sudden constant source when the experimental situations meet the identified conditions.展开更多
As more attention is being paid to the characteristics of atmospheric amines,there is also an increasing demand for reliable detection technologies.Herein,a method was developed for simultaneous detection of atmospher...As more attention is being paid to the characteristics of atmospheric amines,there is also an increasing demand for reliable detection technologies.Herein,a method was developed for simultaneous detection of atmospheric amines in both gaseous and particulate phases using gas chromatography-mass spectrometry(GC-MS).The amine samples were collected with and without phosphoric acid filters,followed by derivatization with benzenesulfonyl chloride under alkaline condition prior to GC-MS analysis.Furthermore,the method was optimized and validated for determining 14 standard amines.The detection limits ranged from0.0408-0.421μg/mL(for gaseous samples)and 0.163-1.69μg/mL(for particulate samples),respectively.The obtained recoveries ranged from 68.8%-180%and the relative standard deviation was less than 30%,indicating high precision and good reliability of the method.Seven amines were simultaneously detected in gaseous and particulate samples in an industrial park using the developed method successfully.Methylamine,dimethylamine and diethylamine together accounted for 76.7%and 75.6%of particulate and gaseous samples,respectively.By comparing the measured and predicted values of gas-particle partition fractions,it was found that absorption process of aqueous phase played a more important role in the gas-partition of amines than physical adsorption.Moreover,the reaction between unprotonated amines and acid(aq.)in water phase likely promoted water absorption.Higher measured partition fraction of dibutylamine was likely due to the reaction with gaseous HCl.The developed method would help provide a deeper understanding of gas-particle partitioning as well as atmospheric evolution of amines.展开更多
Objective To investigate the photocatalytic degradation of gaseous ammonia in static state by using nano-TiO2 as photoeatalyst supported on latex paint film under UV-irradiation. Methods Experiments were conducted to ...Objective To investigate the photocatalytic degradation of gaseous ammonia in static state by using nano-TiO2 as photoeatalyst supported on latex paint film under UV-irradiation. Methods Experiments were conducted to study the relationship between the initial concentration of ammonia and the degradation products competing to be adsorbed on catalyst surface. Degradation of ammonia and its products were detected by spectrophotometry and catalytic kinetic spectrophotometry, respectively. Results On the one hand, TiO2 catalyst was excellent for degradation of ammonia, and the crystal phase of TiO2, anatase or ruffle, had little effect on degradation of ammonia, but the conversion of ammonia grew with the increase of catalyst content. On the other hand, apparent rate constant and conversion of ammonia decreased with the increase of initial concentration of ammonia, and the photocatalytic degradation reaction followed a pseudo-first-order expression due to-the evidence of linear correlation between -lnC/C0 vs. irradiation time t, but the relationship between initial concentration and the degradation products was not linear in low initial concentration. Conclusion Whether the photocatalytic degradation of ammonia in static state follows a first-order reaction depends on the initial ammonia concentration due to competition in adsorption between reactant and the degradation products.展开更多
基金supported by the National Natural Science Foundation of China(22478007)the National Key Research and Development Program of China(2022YFB3805100)the Anhui Provincial Natural Science Foundation(2023AH050728)。
文摘One of the main challenges in oil-water separation of traditional Chinese medicines(TCM)is to obtain essential oils from the aromatic water of TCM.In this study,silicon dioxide/polyvinylidene fluoride(SiO_(2)/PVDF)membranes were prepared using nonsolvent induce phase separation.Then polydimethylsiloxane(PDMS)was coated to obtain PDMS/SiO_(2/)PVDF membranes.Separated essential oils and water from aromatic water in the gaseous state by vapor permeation membrane separation technology.The relationship between membrane structure and membrane separation effect was investigated.Response surface methodology was used to develop a quadratic model for the separation factor,membrane permeation separation index and membrane preparation process.The optimal process parameters for the membrane separation were 12.31%(mass)concentration of PVDF solution,9.6%(mass)of N,Ndimethylacetamide in the solidification bath,and 0.2 g hydrophobic nano-SiO_(2)incorporation,with a separation factor of 14.45,and a membrane flux of 1203.04 g·m^(-2)·h^(-1).Compared with the PDMS/PVDF membranes,the separation factor and membrane flux were increased by 68.59%and 3.46%,respectively.Compared with the SiO_(2)/PVDF membranes,the separation factor and membrane flux were increased by478%and 79.33%,respectively.Effectively mitigated the limitations of traditional polymer membrane material performance affected by the"trade-off"effect.Attenuated total internal reflection-Fourier transform infrared spectroscopy,contact angle,scanning electron microscopy and energy dispersive spectroscopy were used to characterize the PDMS/SiO_(2)/PVDF membranes,and gas chromatography was used to characterize the permeate.In addition,the contents of L-menthol,L-menthone,menthyl acetate and limonene in the permeate,conformed to the European Pharmacopoeia standards.This study provided an effective preparation strategy of a feasible hydrophobic powder polymer membrane for the separation of essential oils from gaseous peppermint aromatic water.
基金supported by the State Key Laboratory of Arid Land Crop Science, Gansu Agricultural University,China (GSCS-2022-Z02)the National Key R&D Program of China (2022YFD1900300)+2 种基金the National Natural Science Foundation of China (32260549)the Innovation Group of Basic Research in Gansu Province, China (25JRRA807)the Major Special Research Projects in Gansu Province, China (22ZD6NA009)。
文摘The application of organic fertilizers has become an increasingly popular practice in maize production to reduce thegaseous nitrogen(N) loss and soil degradation caused by inorganic fertilizers. Organic fertilizer plays a key rolein improving soil quality and stabilizing maize yields, but few studies have compared different substitution rates. Afield study was carried out in 2021 and 2022, based on a long-term trial initiated in 2016, which included five organicfertilizer N substitution rates with equal inputs of 200 kg N ha^(–1): 0% organic fertilizer(T1, 100% inorganic fertilizer),50.0% organic+50.0% inorganic fertilizer(T2), 37.5% organic+62.5% inorganic fertilizer(T3), 25.0% organic+75.0%inorganic fertilizer(T4), and 12.5% organic+87.5% inorganic fertilizer(T5), as well as a no fertilizer control(T6). Theresults of the two years showed that T3 and T1 had the highest grain yield and biomass, respectively, and there wasno significant difference between T1 and T3. Compared with T1, the 12.5, 25.0, 37.5, and 50.0% substitution rates in T5, T4, T3, and T2 significantly reduced total nitrogen losses(NH_(3), N_(2)O) by 8.3, 16.1, 18.7, and 27.0%, respectively.Nitrogen use efficiency(NUE) was higher in T5, T3, and T1, and there were no significant differences among them.Organic fertilizer substitution directly reduced NH_(3)volatilization and N_(2)O emission from farmland by lowering theammonium nitrogen and alkali-dissolved N contents and by increasing soil moisture. These substitution treatmentsreduced N_(2)O emissions indirectly by regulating the abundances of AOB and nirK-harboring genes by promotingsoil moisture. Specifically, the 37.5% organic fertilizer substitution reduces NH_(3)volatilization and N_(2)O emission from farmland by reducing the ammonium nitrogen and alkali-dissolved N contents and increasing moisture, which negatively regulate the abundance of AOB and nir K-harboring genes to reduce N_(2)O emissions indirectly in rainfed maize fields on the Loess Plateau of China.
基金supported by the National Key R&D Program of China (No.2018YFC1800506)the Key R&D Program of Zhejiang Province (No.2020C03083)。
文摘Persulfate is considered a convenient and efficient remediation agent for organic contaminated soil.However,the potential risk of sulfur into the soil remediation by persulfate remains ignored.In this study,glass bottles with different persulfate dosages and groundwater tables were set up to simulate persulfate remediation of organic pollutants(aniline).The results found sulfate to be the main end-product(83.0%–99.5%)of persulfate remediation after10 days.Moreover,H_(2)S accounted for 93.4%–99.4%of sulfur reduction end-products,suggesting that H_(2)S was the final fate of sulfur.H_(2)S was released rapidly after one to three days at a maximum concentration of 33.0 ppm,which is sufficient to make a person uncomfortable.According to the fitted curve results,H_(2)S concentration decreased to a safe concentration(0.15 ppm)after 20–85 days.Meanwhile,the maximum concentration of methanethiol reached 0.6 ppm.These results indicated that secondary pollution from persulfate remediation could release harmful gases over a long time.Therefore,persulfate should be used more carefully as a remediation agent for soil contamination.
基金supported by the National Science Fund for Excellent Young Scholars of China (No.52022111)the Foundation for Innovative Research Groups of the National Natural Science Foundation of China (No.52121004)+1 种基金the Hunan High Tech Industry Science and Technology Innovation Leading Plan Project (No.2020SK2006)the Huxiang Youth Talent Support Program (No.2020RC3012)。
文摘Because of its high mobility and difficult capture,gaseous arsenic pollution control has become the focus of arsenic pollution control.It mainly exists in the form of highly toxic As_(2)O_(3)in the flue gas.Therefore,removing gaseous As_(2)O_(3)from flue gas is of great practical significance for arsenic pollution control.Stabilizing gaseous As_(2)O_(3)on the surface of adsorbents by physical or chemical adsorption is an effective way to reduce the content of arsenic in the flue gas and alleviate arsenic pollution.Over the past few decades,various adsorbents have been developed to capture gaseous As_(2)O_(3)in the flue gas,and their adsorption mechanisms have been studied in detail.Thus,it is necessary to review the strategies of arsenic removal from flue gas by adsorption,which can inspire further research.Based on summarizing the morphological distribution of gaseous As_(2)O_(3)in the flue gas,this review further summarizes the removal of gaseous As_(2)O_(3)by several adsorbents and the effect of temperature and the main components of the flue gas on arsenic adsorption.In addition,the mechanism of arsenic removal based on adsorption in the flue gas is discussed in depth through theoretical calculations,which is the particular focus of this review.Finally,prospects based on the present research state of arsenic removal by adsorption are proposed to provide ideas for developing effective and stable adsorbents for arsenic removal from flue gas.
文摘Biofiltration may have clogging problems owing to excess biomass growth during the treatment of gaseous pollutants.In this study,we employed an UV(Ultraviolet)lamp and controlled the nutrient supply to conduct a biofiltration process for treating 2-butanone(MEK:Methyl Ethyl Ketone)and toluene in a gas stream.Two methods of UV lamp usage(direct and indirect irradiation)and several nutrient supply methods were tested.However,no clear effect was observed with either UV usage.Under the optimal conditions,97%of the MEK and 69%of the toluene gases were removed after 29 s of EBRT(Empty Bed Retention Time).The inlet loads were 18 and 19 mg/(m^(3)·h)for MEK and toluene,respectively.Under these conditions,23 g-N/(m^(3)·day)of nitrate-nitrogen was consumed.Excess biomass growth occurred during simultaneous excess nutrient supply and a persistent irrigation schedule.In this study,we demonstrated the effective use of a dense nitrate solution to deliver an appropriate amount of nutrients and moisture,and the optimal irrigation frequency was four times per week.
基金Project supported by the National Basic Research Program (973) of China (No. 2003CB415003)the Pilot Project of Knowledge Innovation Program of the Chinese Academy of Sciences (No. KZCX3-SW-443)the National Natural Science Foundation of China (No. 40473055).
文摘An investigation of gaseous elemental mercury concentration in atmosphere was conducted at Beijing and Guangzhou urban, Yangtze Delta regional sites and China Global Atmosphere Watch Baseline Observatory (CGAWBO) in Mt. Waliguan of remote continental area of China. High temporal resolved data were obtained using automated mercury analyzer RA-915^+. Results showed that the overall hourly mean Hg^0 concentrations in Mt. Waliguan were 1.7±1.1 ng/m3 in summer and 0.6±0.08 ng/m^3 in winter. The concentration in Yangtze Delta regional site was 5.4±4.1 ng/m^3, which was much higher than those in Waliguan continental background area and also higher than that found in North America and Europe rural areas. In Beijing urban area the overall hourly mean Hg^0 concentrations were 8.3±3.6 ng/m^3 in winter, 6.5±5.2 ng/m^3 in spring, 4.9±3.3 ng/m^3 in summer, and 6.7±3.5 ng/m^3 in autumn, respectively, and the concentration was 13.5±7.1 ng/m^3 in Guangzhou site. The mean concentration reached the lowest value at 14:00 and the highest at 02:00 or 20:00 in all monitoring campaigns in Beijing and Guangzhou urban areas, which contrasted with the results measured in Yangtze Delta regional site and Mr. Waliguan. The features of concentration and diurnal variation of Hg^0 in Beijing and Guangzhou implied the importance of local anthropogenic sources in contributing to the high Hg^0 concentration in urban areas of China. Contrary seasonal variation patterns of Hg^0 concentration were found between urban and remote sites. In Beijing the highest Hg^0 concentration was in winter and the lowest in summer, while in Mt. Waliguan the Hg^0 concentration in summer was higher than that in winter. These indicated that different processes and factors controlled Hg^0 concentration in urban, regional and remote areas.
基金supported by the National Natural Science Foundation of China(No.42005079,41675131)the Beijing Natural Science Foundation(No.8131003)the Beijing Talents Fund(No.2014000021223ZK49)。
文摘To better understand the characteristics and transformation mechanisms of secondary inorganic aerosols,hourly mass concentrations of water-soluble inorganic ions(WSIIs)in PM_(2.5)and their gaseous precursors were measured online from 2016 to 2018 at an urban site in Beijing.Seasonal and diurnal variations in water-soluble ions and gaseous precursors were discussed and their gas-particle conversion and partitioning were also examined,some related parameters were characterized.The(TNH_(3))Rich was also defined to describe the variations of the excess NH_(3)in different seasons.In addition,a sensitivity test was carried out by using ISORROPIA II to outline the driving factors of gas-particle partitioning.In Beijing,the relative contribution of nitrate to PM_(2.5)has increased markedly in recent years,especially under polluted conditions.In the four seasons,only a small portion of NO_(2)in the atmosphere was converted into total nitrate(TNO_(3)),and more than 80%of TNO_(3)occurred in the form of nitrate due to the abundant ammonia.The concentration of total ammonia(TNH_(3))was much higher than that required to neutralize acid gases,and most of the TNH_(3)occurred as gaseous NH_(3).The nitrous acid(HONO)concentration was highly correlated with NH_(3)concentration and had increased significantly in Beijing compared with previous studies.The total chloride(TCl)was the highest in winter,andε(Cl^(-))was more sensitive to variations in the ambient temperature(T)and relative humidity(RH)thanε(NO_(3)^(-)).
文摘Photocatalytic degradation of gaseous pollutants on Bi-based semiconductors under solar lightirradiation has attracted significant attention.However,their application in gaseous straight-chainalkane purification is still rare.Here,a series of Bi/BiOBr composites were solvothermally synthe-sized and applied in solar-light-driven photocatalytic degradation of gaseous n-hexane.The charac-terization results revealed that both increasing number of functional groups of alcohol solvent(from methanol and ethylene glycol to glycerol)and solvothermal temperature(from 160 and 180to 200℃)facilitated the in-situ formation of metallic Bi nanospheres on BiOBr nanoplates withexposed(110)facets.Meanwhile,chemical bonding between Bi and BiOBr was observed on theseexposed facets that resulted in the formation of surface oxygen vacancy.Furthermore,the synergis-tic effect of optimum surface oxygen vacancy on exposed(110)facets led to a high visible light re-sponse,narrow band gap,great photocurrent,low recombination rate of the charge carriers,andstrong·O2-and h*formation,all of which resulted in the highest removal efficiency of 97.4%within120 min of 15 ppmv of n-hexane on Bi/BiOBr.Our findings efficiently broaden the application ofBi-based photocatalysis technology in the purification of gaseous straight-chain pollutants emittedby the petrochemical industry.
文摘Long-term monitoring programs for measurement of atmospheric mercury concentrations are presently recognized as powerful tools for local,regional and global studies of atmospheric long-range transport processes,and they could also provide valuable information about the impact of emission controls on the global budget of atmospheric mercury,their observance and an insight into the global mercury cycle. China is believed to be an increasing atmospheric mercury emission source. However,only a few measurements of mercury,to our knowledge,have been done in ambient air over China. The highly-time resolved atmospheric mercury concen-trations have been measured at Moxi Base Station (102°72′E 29°92′N,1640 m asl) of the Gongga Alpine Ecosystem Observation and Experiment Station of Chinese Academy of Sciences (CAS) from May 2005 to June 2006 by using a set of Automatic Atmospheric Mercury Speciation Analyzers (Tekran 2537A). Measurements were carried out with a time resolution of every 15 minutes. The overall average total gaseous mercury (TGM) covering the measurement periods was 4±1.38 ng·m-3 (N=57310),which is higher than the global background level of approximately 1.5~2.0 ng·m-3. The measurements in all seasons showed a similar diurnal change pattern with a high concentration during daytime relative to nighttime and maximum concentration near solar noon and minimum concentration immediately before sunrise. The presence of diurnal TGM peaks during spring and summer was found earlier than that during autumn and winter. When divided seasonally,it was found that the concentrations of TGM were highest in winter with 6.13 ± 1.78 ng·m-3 and lowest in summer with 3.17 ± 0.67 ng·m-3. There were no significant differences in TGM among wind sectors during each season. Whereas Hg generally exhibited significant correlations with the parameters,such as temperature,saturated vapor pressure,precipitation,ultraviolet radiation (UV) and atmospheric pressure at the whole measurement stage,and the correlations varied seasonally. Our results suggest that the local or regional abundant geothermal activities,such as thermal spring,anthropogenic source processes and changes in meteorological conditions,regulate and affect Hg behavior in the study area.
文摘The present paper renders a modeling and a 2D numerical simulation for the removal of CO_2from CO_2/CH_4gaseous stream utilizing sodium hydroxide(NaOH),monoethanolamine(MEA)and triethanolamine(TEA)liquid absorbents inside the hollow fiber membrane contactor.Counter-current arrangement of absorbing agents and CO_2/CH_4gaseous mixture flows are implemented in the modeling and numerical simulation.Non-wetting and partial wetting modes of operation are considered where in the partial wetting mode,CO_2/CH_4gaseous mixture and liquid absorbents fill the membrane pores.The deteriorated removal of CO_2in the partial wetting mode of operation is mainly due to the mass transfer resistance imposed by the liquid in the pores of membrane.The validation of numerical simulation is done based on the comparison of simulation results of CO_2removal using Na OH and experimental data under non-wetting mode of operation.The comparison illustrates a desirable agreement with an average deviation of less than 5%.According to the results,MEA provides higher efficiency for CO_2removal in comparison with the other liquid absorbents.The order for CO_2removal performance is MEAN Na OHN TEA.The influence of non-wetting and partial wetting modes of operation on CO_2removal are evaluated in this article as one of the novelties.Besides,the percentage of CO_2sequestration as a function of gas velocity for various percentages of membrane pores wetting ranging from 0(non-wetting mode of operation)to 100%(complete wetting mode of operation)is studied in this research paper,which can be proposed as the other novelty.The results indicate that increase in some operational parameters such as module length,membrane porosity and absorbents concentration encourage the removal percentage of CO_2from CO_2/CH_4gaseous mixture while increasing in membrane tortuosity,gas velocity and initial CO_2concentration has unfavorable influence on the separation efficiency of CO_2.
基金supported by the National Natural Scientific Foundation of China(No.41005065,41375132)the National Department Public Benefit Research Foundation(Ministry of Environmental Protection of the People’s Republic of China(No.201009001,201409003,201309011)Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDB05030400)
文摘O3 and PM2.5 were introduced into the newly revised air quality standard system in February 2012, representing a milestone in the history of air pollution control, and China's urban air quality will be evaluated using six factors (SO2, NO2, O3, CO, PM2.5 and PM10) from the beginning of 2013. To achieve the new air quality standard, it is extremely important to have a primary understanding of the current pollution status in various cities. The spatial and temporal variations of the air pollutants were investigated in 26 pilot cities in China from August 2011 to February 2012, just before the new standard was executed. Hourly averaged SO2, NO2 and PMlo were observed in 26 cities, and the pollutants O3, CO and PM2.5 were measured in 15 of the 26 cities. The concentrations of SO2 and CO were much higher in the cities in north China than those in the south. As for O3 and NO2, however, there was no significant difference between northern and southern cities. Fine particles were found to account for a large proportion of airborne particles, with the ratio of PM2.5 to PMI0 ranging from 55% to 77%. The concentrations of PM2.5 (57.5 μg/m3) and PMlo (91.2 μg/m3) were much higher than the values (PM2.5:11.2μg/m3; PMI0:35.6 μg/m3) recommended by the World Health Organization. The attainment of the new urban air quality standard in the investigated cities is decreased by 20% in comparison with the older standard without considering O3, CO and PM2.5, suggesting a great challenge in urban air quality improvement, and more efforts will to be taken to control air pollution in China.
基金Sponsored by National Natural Science Foundation of China(51144010)
文摘Gaseous reduction kinetics of the high phosphorus iron ore fines from Hubei in China and effect of microwave pretreatment on the gaseous reduction behavior were studied. Gaseous reduction kinetics were investigated by TG (Thermogravimetric) methods using LINSEIS STA PT 1600 thermal analysis equipment. Microwave pretreatments to the ore fines with four power levels were performed using a high temperature microwave reactor. Its effect was examined by TG methods and its mechanism was analyzed by SEM (scanning electron microscope) and EDS (energy dispersive spectrometer). Gaseous reduction tests were carried out using a tubular furnace. Results of kinetic study indicate that controlling step of the gaseous reduction of the ore fines is a mixing control of gas internal diffusion and interface chemical reaction when reduction fraction is less than 0.8 and is solid state diffusion when reduction fraction is more than 0.8. Microwave pretreatment of the ore fines could change the pore structure of the oolitic unit to generate cracks, fissures and loose zones, which promotes reduction in the early stage and delays the occurrence of sintering. Gaseous reduction tests show in the condition that the ore fines are pretreated with a microwave power of 450 W for 4 min and reduced under temperature of 1 273 K, the gaseous reduction of the ore fines could be apparently intensified. Using CO or H2 as a reductant and ore fines being reduced for 1.5 to 2 h , increase of metallization rate of the ore fines is 10% to 13%.
文摘Gaseous jets injected into water are typically found in underwater propulsion, and the flow is essentially unsteady and turbulent. Additionally, the high water-to-gas density ratio can result in complicated flow structures; hence measuring the flow structures numerically and experimentally remains a challenge. To investigate the performance of the underwater propulsion, this paper uses detailed NavierStokes flow computations to elucidate the gas-water interactions under the framework of the volume of fluid (VOF) model. Furthermore, these computations take the fluid compressibility, viscosity, and energy transfer into consideration. This paper compares the numerical results and experimental data, showing that phenomena including expansion, bulge, necking/breaking, and back-attack are highlighted in the jet process. The resulting analysis indicates that the pressure difference on the rear and front surfaces of the propul- sion system can generate an additional thrust. The strong and oscillatory thrust of the underwater propulsion system is caused by the intermittent pulses of the back pressure and the nozzle exit pressure. As a result, the total thrust in underwater propulsion is not only determined by the nozzle geometry but also by the flow structures and associated pressure distri- butions.
基金This work was supported by the National Key Research and Development Project(No.2016YFC0201004)the National Natural Science Foundation of China(No.42005108)the Science and Technological Fund of Anhui Province for Outstanding Youth(No.1808085J19).
文摘As compared to conventional diesel heavy-duty vehicles,natural gas vehicles have been proved to be more eco-friendly due to their lower production of greenhouse gas and pollu-tant emissions,which are causing enormous adverse effects on global warming and air pol-lution.However,natural gas vehicles were rarely studied before,especially through on-road measurements.In this study,a portable emission measurement system(PEMS)was em-ployed to investigate the real-world emissions of nitrogen oxides(NO_(x))(nitrogen monoxide(NO),nitrogen dioxide(NO_(2))),total hydrocarbons(THC),carbon monoxide(CO),and carbon dioxide(CO_(2))from two liquified natural gas(LNG)China V heavy-duty cleaning sanitation trucks with different weight.Associated with the more aggressive driving behaviors,the ve-hicle with lower weight exhibited higher CO_(2)(3%)but lower NO_(x)(48.3%)(NO_(2)(78.2%)and NO(29.4%)),CO(44.8%),and THC(3.7%)emission factors.Aggressive driving behaviors were also favorable to the production of THC,especially those in the medium-speed range but sig-nificantly negative to the production of CO and NO_(2),especially those in the low-speed range with high engine load.In particular,the emission rate ratio of NO_(2)/NO decreased with the increase of speed/scaled tractive power in different speed ranges.
基金Project supported by the Projects of Application Technology and Development of Harbin(2016RAXXJ024)
文摘Aiming to solve the problem of corrosion and high cost of the conductive fillers, the powders with the properties of anti-oxidation, corrosion resistance and thermal stability should be developed. A new modification technology, rare earth gaseous penetration, was applied to enhance the conductivity of maifanite in this paper, and the mechanism for improving the conductivity of maifanite effectively was speculated in detail for the variations of the composition, structure and morphology between the original and Er-penetration maifanite powders. The results of the resistivity show that Er-penetration can really improve the conductivity of maifanite powders. When the penetration temperature is 500 ℃, the resistivity of maifanite surprisingly declines to 93.2 Ω·m. Moreover, XRD and XPS patterns display that the cations in maifanite are substituted by Er^(3+) successfully, resulting in the production of electrons in the system, which is the key reason to heighten the conductivity of maifanite. Most importantly, Erpenetration maifanite, whose price is really low, can replace the expensive conductive powders and be used in the electronic industry to decrease the cost of the electronic devices.
文摘New polyoxometalate α-K 12H 3[Y(BW 11O 39) 2]·25H 2O was synthesized and treated by high temperature gaseous rare earth permeation to prepare tungsten bronze K 0.475WO 3. XRD, TG-DTA, XPS, 183W-NMR,CV and AC impedance spectra were used to characterize the resulting material. The results of XPS indicate that La has permeated and diffused into the body of the sample and exists in the forms of binding with other components. The crystal structure parameters of K 0.475WO 3 were obtained by the analysis of XRD, which shows tetragonal crystal system with lattice parameters: a=12 28 nm, c=3.833 nm, V=578.48 nm -3. The conductivities calculated from the results of AC impedance spectra of the material increase with the increasing of temperature, which shows a semiconductor character.
文摘ZnCl2 is one of the dominant aggressive species in waste incinerators or other advanced combustion power generation systems. In this study, the influence of minor amount of gaseous ZnCl2 on the corrosion behavior of pure iron was examined at 600-800℃ in a pure oxygen environment. The corrosion rate usually increased markedly with increasing temperatures at a fixed ZnCl2 content or with increased ZnCl2 contents at a constant temperature. The corrosion products were composed of a thin outer layer of ZnFe2O4 spinel and an inner zone with a much thicker layer of Fe2O3, which exhibited a serious separation from the matrix. Moreover, a molten FeCl2 layer was observed at the scale substrate interface. The accelerated corrosion of pure iron was attributed to the existence of FeCl2 with low melting point on the metal surface, which destroyed the cohesion and adhesion of the oxide scale. The results are discussed in relation to the thermodynamic factors and the presence of volatile compounds in the reaction system.
基金supported by the National Natural Science Foundation of China (No. 50808007)
文摘It is necessary to identify a gaseous pollutant source rapidly so that prompt actions can be taken, but this is one of the difficulties in the inverse problem areas. In this paper, an approach to identifying a sudden continuous emission pollutant source based on single sensor information is developed to locate a source in an enclosed space with a steady velocity field. Because the gravity has a very important influence on the gaseous pollutant transport and the source identification, its influence is analyzed theoretically and a conclusion is drawn that the velocity of fluid is a key factor to effectively help weaken the gravitational influence. Further studies for a given 2-D case by using the computational fluid dynamics (CFD) method show that when the velocity of inlet is less than one certain value, the influence of gravity on the pollutant transport is very significant, which will change the velocity field obviously. In order to quantitatively judge the practical applicability of identification approach, a synergy degree of the velocity fields before and after a source appearing is proposed as a condition for considering the influence of gravity. An experimental device simulating pollutant transmission was set up and some experiments were conducted to verify the practical application of the above studies in the actual gravitational environment. The results show that the proposed approach can successfully locate the sudden constant source when the experimental situations meet the identified conditions.
基金supported from the National Natural Science Foundation of China(Nos.42020104001 and 41805103)Local Innovative and Research Team Project of Guangdong Pearl River Talents Program(No.2017BT01Z032)the Fund from Chemistry and Chemical Engineering Guangdong Laboratory(No.1922009)
文摘As more attention is being paid to the characteristics of atmospheric amines,there is also an increasing demand for reliable detection technologies.Herein,a method was developed for simultaneous detection of atmospheric amines in both gaseous and particulate phases using gas chromatography-mass spectrometry(GC-MS).The amine samples were collected with and without phosphoric acid filters,followed by derivatization with benzenesulfonyl chloride under alkaline condition prior to GC-MS analysis.Furthermore,the method was optimized and validated for determining 14 standard amines.The detection limits ranged from0.0408-0.421μg/mL(for gaseous samples)and 0.163-1.69μg/mL(for particulate samples),respectively.The obtained recoveries ranged from 68.8%-180%and the relative standard deviation was less than 30%,indicating high precision and good reliability of the method.Seven amines were simultaneously detected in gaseous and particulate samples in an industrial park using the developed method successfully.Methylamine,dimethylamine and diethylamine together accounted for 76.7%and 75.6%of particulate and gaseous samples,respectively.By comparing the measured and predicted values of gas-particle partition fractions,it was found that absorption process of aqueous phase played a more important role in the gas-partition of amines than physical adsorption.Moreover,the reaction between unprotonated amines and acid(aq.)in water phase likely promoted water absorption.Higher measured partition fraction of dibutylamine was likely due to the reaction with gaseous HCl.The developed method would help provide a deeper understanding of gas-particle partitioning as well as atmospheric evolution of amines.
基金This work has been supported by Shandong Provincial Scientific Council, People’s Republic of China (Grant No. Z2000B01)
文摘Objective To investigate the photocatalytic degradation of gaseous ammonia in static state by using nano-TiO2 as photoeatalyst supported on latex paint film under UV-irradiation. Methods Experiments were conducted to study the relationship between the initial concentration of ammonia and the degradation products competing to be adsorbed on catalyst surface. Degradation of ammonia and its products were detected by spectrophotometry and catalytic kinetic spectrophotometry, respectively. Results On the one hand, TiO2 catalyst was excellent for degradation of ammonia, and the crystal phase of TiO2, anatase or ruffle, had little effect on degradation of ammonia, but the conversion of ammonia grew with the increase of catalyst content. On the other hand, apparent rate constant and conversion of ammonia decreased with the increase of initial concentration of ammonia, and the photocatalytic degradation reaction followed a pseudo-first-order expression due to-the evidence of linear correlation between -lnC/C0 vs. irradiation time t, but the relationship between initial concentration and the degradation products was not linear in low initial concentration. Conclusion Whether the photocatalytic degradation of ammonia in static state follows a first-order reaction depends on the initial ammonia concentration due to competition in adsorption between reactant and the degradation products.