Shale gas production involves complex gas-water two-phase flow,with flow patterns in proppant-filled fractures playing a critical role in determining production efficiency.In this study,3D geometric models of 40/70 me...Shale gas production involves complex gas-water two-phase flow,with flow patterns in proppant-filled fractures playing a critical role in determining production efficiency.In this study,3D geometric models of 40/70 mesh ceramic particles and quartz sand proppant clusters were elaborated using computed tomography(CT)scanning.These models were used to develop a numerical simulation framework based on the lattice Boltzmann method(LBM),enabling the investigation of gas-water flow behavior within proppant-filled fractures under varying driving forces and surface tensions.Simulation results at a closure pressure of 15 MPa have revealed that ceramic particles exhibit a simpler and more porous internal structure than quartz sand of the same size.Under identical flow conditions,ceramic proppants demonstrate higher fluid replacement efficiency.Replacement efficiency increases with higher porosity,greater driving force,and lower surface tension.Furthermore,fluid displacement is strongly influenced by pore geometry:flow is faster in straighter and wider channels,with preferential movement through larger pores forming dominant flow paths.The replacement velocity exhibits a characteristic time evolution,initially rapid,then gradually decreasing,correlating positively with the development of these dominant channels.展开更多
Based on the displacement discontinuity method and the discrete fracture unified pipe network model,a sequential iterative numerical method was used to build a fracturing-production integrated numerical model of shale...Based on the displacement discontinuity method and the discrete fracture unified pipe network model,a sequential iterative numerical method was used to build a fracturing-production integrated numerical model of shale gas well considering the two-phase flow of gas and water.The model accounts for the influence of natural fractures and matrix properties on the fracturing process and directly applies post-fracturing formation pressure and water saturation distribution to subsequent well shut-in and production simulation,allowing for a more accurate fracturing-production integrated simulation.The results show that the reservoir physical properties have great impacts on fracture propagation,and the reasonable prediction of formation pressure and reservoir fluid distribution after the fracturing is critical to accurately predict the gas and fluid production of the shale gas wells.Compared with the conventional method,the proposed model can more accurately simulate the water and gas production by considering the impact of fracturing on both matrix pressure and water saturation.The established model is applied to the integrated fracturing-production simulation of practical horizontal shale gas wells.The simulation results are in good agreement with the practical production data,thus verifying the accuracy of the model.展开更多
With the aim of better understanding the tight gas reservoirs in the Zizhou area of east Ordos Basin,a total of 222 samples were collected from 50 wells for a series of experiments.In this study,three pore-throat comb...With the aim of better understanding the tight gas reservoirs in the Zizhou area of east Ordos Basin,a total of 222 samples were collected from 50 wells for a series of experiments.In this study,three pore-throat combination types in sandstones were revealed and confirmed to play a controlling role in the distribution of throat size and the characteristics of gas-water relative permeability.The type-I sandstones are dominated by intercrystalline micropores connected by cluster throats,of which the distribution curves of throat size are narrow and have a strong single peak(peak ratio>30%).The pores in the type-II sandstones dominantly consist of secondary dissolution pores and intercrystalline micropores,and throats mainly occur as slice-shaped throats along cleavages between rigid grain margins and cluster throats in clay cement.The distribution curves of throat size for the type-II sandstones show a bimodal distribution with a substantial low-value region between the peaks(peak ratio<15%).Primary intergranular pores and secondary intergranular pores are mainly found in type-III samples,which are connected by various throats.The throat size distribution curves of type-III sandstones show a nearly normal distribution with low kurtosis(peak ratio<10%),and the micro-scale throat radii(>0.5μm)constitute a large proportion.From type-I to type-III sandstones,the irreducible water saturation(Swo)decreased;furthermore,the slope of the curves of Krw/Krg in two-phase saturation zone decreased and the two-phase saturation zone increased,indicating that the gas relative flow ability increased.Variations of the permeability exist in sandstones with different porethroat combination types,which indicate the type-III sandstones are better reservoirs,followed by type-II sandstones and type-I sandstones.As an important factor affecting the reservoir quality,the pore-throat combination type in sandstones is the cumulative expression of lithology and diagenetic modifications with strong heterogeneity.展开更多
Because of gravitational differentiation of multi-phase fluids, gas-water flow is usually stratified in highly inclined or horizontal gas wells. By using electrode arrays to scan flowing fluids, electromagnetic tomogr...Because of gravitational differentiation of multi-phase fluids, gas-water flow is usually stratified in highly inclined or horizontal gas wells. By using electrode arrays to scan flowing fluids, electromagnetic tomography can identify the flow patterns of mixed fluid from the different electrical properties of gas and water. The responses for different gas-water interface locations were calculated and then physical measurements were undertaken. We compared the results of the numerical simulation with the experimental data, and found that the response characteristics were consistent in the circumstances of uniform physical fields and stratified flows. By analyzing the signal characteristics, it is found that, with the change of the interface location, the response curves showed "steps" whose position and width were decided by the location of fluid interface. The measurement accuracy of this method depended on the vertical distance between adjacent electrodes. The results showed that computer simulation can simulate the measurement of the electromagnetic tomography accurately, so the physical experiment can be replaced.展开更多
By means of the pore-level simulation, the characteristics of gas-water flow and gas-water distribution during the alternative displacement of gas and water were observed directly from etched-glass micromodel. The res...By means of the pore-level simulation, the characteristics of gas-water flow and gas-water distribution during the alternative displacement of gas and water were observed directly from etched-glass micromodel. The results show that gas-water distribution styles are divided into continuous phase type and separate phase type. The water lock exists in pore and throat during the process of gas-water displacement, and it reduces the gas flow-rate and has some effects on the recovery efficiency during the operation of gas storage. According to the experimental results of aquifer gas storage in X area, the differences in available extent among reservoirs are significant, and the availability of pore space is 33% 45%.展开更多
A novel method was developed to establish a realistic three dimensional(3D) network model representing pore space in low permeability sandstone.Digital core of rock sample was established by the combination of micro-C...A novel method was developed to establish a realistic three dimensional(3D) network model representing pore space in low permeability sandstone.Digital core of rock sample was established by the combination of micro-CT scanning and image processing,then 3D pore-throat network model was extracted from the digital core through analyzing pore space topology,calculating pore-throat parameters and simplifying the shapes of pores and throats.The good agreements between predicted and measured porosity and absolute permeability verified the validity of this new network model.Gas-water flow mechanism was studied by using pore-scale simulations,and the influence of pore structure parameters,including coordination number,aspect ratio and shape factor,on gas-water flow,was investigated.The present simulation results show that with the increment of coordination number,gas flow ability in network improves and the effect of invading water on blocking gas flow weakens.The smaller the aspect ratio is,the stronger the anisotropy of the network is,resulting in the increase of seepage resistance.It is found that the shape factor mainly affects the end points in relative permeability curves,and for a highly irregular pore or throat with a small shape factor,the irreducible water saturation(Swi) and residual gas saturation(Sgr) are relatively high.展开更多
Droplet turbulence effect on gas-water separator with corrugated plates is explored using the Eulerian-Lagrangian two-way coupled multiphase approach of FLUENT. It is concluded that the inertial force is dominant in s...Droplet turbulence effect on gas-water separator with corrugated plates is explored using the Eulerian-Lagrangian two-way coupled multiphase approach of FLUENT. It is concluded that the inertial force is dominant in separating large droplets, while droplet turbulence dispersion plays a decisive role in separating fine droplets. Good agreement exists between calculations and air-water experiments. The numerical method developed provides a rea-sonable description of the droplet trajectories and separating efficiency, and it can be applied to predicting the performance of gas-water separator with corrugated plates.展开更多
The Puguang (普光) gas field is the largest gas field found in marine carbonate in China. The Puguang gas field experienced complicated evolution history from paleo-oil pool to gas pool. The purpose of this article ...The Puguang (普光) gas field is the largest gas field found in marine carbonate in China. The Puguang gas field experienced complicated evolution history from paleo-oil pool to gas pool. The purpose of this article is to reveal the evolution history of Puguang gas field through systematic study on the relationship between paleo-oil-water contact (POWC) and present-day gas-water contact (PGWC). POWC was recognized by observing the change of relative content of residual solid bitumen in the cores, and PGWC was observed using log and drilling stem test data. Two types of relationship between POWC and PGWC were observed in the Puguang gas field: POWC is above PGWC, and POWC is below PGWC. The former is normal as oil cracking may cause gas-water contact to move downward. The latter can be interpreted by lateral gas re-migration and re-accumulation caused by changes in structural configuration. The relationship between POWC and PGWC suggests that during oil charge, the southwestern and northwestern parts of the Puguang gas field were structurally lower than the northeastern and southeastern parts. Thrusting from Xuefengshan (雪峰山) since Yanshanian movement and from Dabashan (大巴山) since Himalayan movement resulted in the relative uplift of the southwestern and northwestern parts of the Puguang structure, which significantly changed the structural configuration. Based on the paleo-structure discussed in this article, the most probable migration directions of paleo-oil were from the northwest to the southeast and from the southwest to the northeast. Consequently, the evolution history of the Puguang gas field can be divided into three stages, namely,oil charging (200-170 Ma), cracking oil to gas (155-120 Ma), and gas pool adjustment (12-0 Ma).展开更多
A mathematical model for the gas-water two-phase flow in tight gas reservoirs is elaborated.The model can account for the gas slip effect,stress sensitivity,and high-speed non-Darcy factors.The related equations are s...A mathematical model for the gas-water two-phase flow in tight gas reservoirs is elaborated.The model can account for the gas slip effect,stress sensitivity,and high-speed non-Darcy factors.The related equations are solved in the framework of a finite element method.The results are validated against those obtained by using the commercial software CMG(Computer Modeling Group software for advanced recovery process simulation).It is shown that the proposed method is reliable.It can capture the fracture rejection characteristics of tight gas reservoirs better than the CMG.A sensitivity analysis of various control factors(initial water saturation,reservoir parameters,and fracturing parameters)affecting the production in tight gas wells is conducted accordingly.Finally,a series of theoretical arguments are provided for a rational and effective development/exploitation of tight sandstone gas reservoirs.展开更多
Carbonate gas reservoirs generally contain water,leading to uneven water invasion,explosive water flooding and other prominent phenomena,which is an important factor restricting the efficient development of gas reserv...Carbonate gas reservoirs generally contain water,leading to uneven water invasion,explosive water flooding and other prominent phenomena,which is an important factor restricting the efficient development of gas reservoirs.The study of gas-water two-phase flow behavior in carbonate gas reservoirs is of great significance for understanding the formation mechanism of residual water and trapped gas and improving the recovery of gas reservoirs.In this study,microscopic visualization physical models of fractured-vuggy and fractured-porous types were established based on CT images.And then gas-water two-phase flow experiments were conducted using the models,visually presenting the characteristics of gas-water two-phase flow and the formation mechanism of residual water and trapped gas in such reservoirs.On the basis of experiments,numerical simulation of gas-water two-phase flow at pore scale under high-temperature and high-pressure conditions was conducted using the VOF method,and the effect of capillary number on gas-water two-phase flow was quantitatively evaluated.The experiment results indicate the types of residual water and trapped gas formed in the fractured-vuggy and fractured-porous reservoirs.Compared with fractured-vuggy reservoir,the type of residual water in fractured-porous reservoir doesn't include water masses in the vugs,but includes network shaped residual water,and the type of trapped gas also includes network shaped trapped gas.The numerical simulation results indicate the residual water in the fractured-porous reservoir decreases with the increase of capillary number during gas flooding process,while the distribution of residual water in the fractured-vuggy reservoir is influenced by the combination of fractures and vugs.The distribution of trapped gas in different types of reservoirs shows a trend of first decreasing and then increasing with the increase of capillary number during water flooding process.The results in this study can provide theoretical support for revealing the formation mechanism of residual water and trapped gas in carbonate gas reservoirs and improve gas recovery.展开更多
The acoustic response of gas and/or water saturated coal rock is fundamental for establishing the correspondence between the physical properties of the coal reservoir and the characteristics of the well-logging respon...The acoustic response of gas and/or water saturated coal rock is fundamental for establishing the correspondence between the physical properties of the coal reservoir and the characteristics of the well-logging response,which is the technology essential for the geophysical exploration of coalbed methane(CBM).This acoustic response depends on water(Sw)and gas(Sg)saturation among other factors.In this study,we performed acoustic tests on dry and different gas-water saturated coal samples with different degrees of metamorphism and deformation,collected from several coal mining areas in China.These tests enabled us to analyze the influence of coal type and gas-water saturation on the acoustic response of CBM formations.Our results show that the acoustic velocity of P-wave and S-wave(Vp and Vs,respectively),and the relative anisotropy of and Vs,increased with increasing vitrinite reflectance,density,Vp and Sw.WithSw increasing from 0 to 100%,the growth rate of the acoustic velocity decreased with increasing vitrinite reflectance.The Vp/Vs ratio of tectonic coal was generally higher than that of primary coal.The growth rate of the relative anisotropy in tectonic coal was markedly higher than that in primary coal.展开更多
Tight gas reservoirs with mobile water exhibit multi-phase flow and high stress sensitivity.Accurately analyzing the reservoir and well parameters using conventional single-phase rate transient analysis methods proves...Tight gas reservoirs with mobile water exhibit multi-phase flow and high stress sensitivity.Accurately analyzing the reservoir and well parameters using conventional single-phase rate transient analysis methods proves challenging.This study introduces novel rate transient analysis methods incorporating evaluation processes based on the conventional flowing material balance method and the Blasingame type-curve method to examine fractured gas wells producing water.By positing a gas-water two-phase equivalent homogenous phase that considers characteristics of mobile water,gas,and high stress sensitivity,the conventional single-phase rate transient analysis methods can be applied by integrating the phase's characteristics and defining the phase's normalized parameters and material balance pseudotime.The rate transient analysis methods based on the equivalent homogenous phase can be used to quantitatively assess the parameters of wells and gas reservoirs,such as original gas-in-place,fracture half-length,reservoir permeability,and well drainage radius.This facilitates the analysis of production dynamics of fractured wells and well-controlled areas,subsequently aiding in locating residual gas and guiding the configuration of well patterns.The specific evaluation processes are detailed.Additionally,a numerical simulation mechanism model was constructed to verify the reliability of the developed methods.The methods introduced have been successfully implemented in field water-producing gas wells within tight gas reservoirs containing mobile water.展开更多
Based on the microfluidic technology,a microscopic visualization model was used to simulate the gas injection process in the initial construction stage and the bottom water invasion/gas injection process in the cyclic...Based on the microfluidic technology,a microscopic visualization model was used to simulate the gas injection process in the initial construction stage and the bottom water invasion/gas injection process in the cyclical injection-production stage of the underground gas storage(UGS)rebuilt from water-invaded gas reservoirs.Through analysis of the gas-liquid contact stabilization mechanism,flow and occurrence,the optimal control method for lifecycle efficient operation of UGS was explored.The results show that in the initial construction stage of UGS,the action of gravity should be fully utilized by regulating the gas injection rate,so as to ensure the macroscopically stable migration of the gas-liquid contact,and greatly improve the gas sweeping capacity,providing a large pore space for gas storage in the subsequent cyclical injection-production stage.In the cyclical injection-production stage of UGS,a constant gas storage and production rate leads to a low pore space utilization.Gradually increasing the gas storage and production rate,that is,transitioning from small volume to large volume,can continuously break the hydraulic equilibrium of the remaining fluid in the porous media,which then expands the pore space and flow channels.This is conducive to the expansion of UGS capacity and efficiency for purpose of peak shaving and supply guarantee.展开更多
The gas-water two-phaseflow occurring as a result of fracturingfluidflowback phenomena is known to impact significantly the productivity of shale gas well.In this work,this two-phaseflow has been simulated in the framework...The gas-water two-phaseflow occurring as a result of fracturingfluidflowback phenomena is known to impact significantly the productivity of shale gas well.In this work,this two-phaseflow has been simulated in the framework of a hybrid approach partially relying on the embedded discrete fracture model(EDFM).This model assumes the region outside the stimulated reservoir volume(SRV)as a single-medium while the SRV region itself is described using a double-medium strategy which can account for thefluid exchange between the matrix and the micro-fractures.The shale gas adsorption,desorption,diffusion,gas slippage effect,fracture stress sensitivity,and capillary imbibition have been considered.The shale gas production,pore pressure distribution and water saturation distribution in the reservoir have been simulated.The influences of hydraulic fracture geometry and nonorthogonal hydraulic fractures on gas production have been determined and discussed accordingly.The simulation results show that the daily gas production has an upward and downward trend due to the presence of a large amount of fracturingfluid in the reservoir around the hydraulic fracture.The smaller the angle between the hydraulic fracture and the wellbore,the faster the daily production of shale gas wells decreases,and the lower the cumulative production.Nonplanar fractures can increase the control volume of hydraulic fractures and improve the production of shale gas wells.展开更多
In this study, the types of micropores in a reservoir are analyzed using casting thin section(CTS) observation and scanning electron microscopy(SEM) experiments. The high-pressure mercury injection(HPMI) and constant-...In this study, the types of micropores in a reservoir are analyzed using casting thin section(CTS) observation and scanning electron microscopy(SEM) experiments. The high-pressure mercury injection(HPMI) and constant-rate mercury injection(CRMI) experiments are performed to study the micropore structure of the reservoir. Nuclear magnetic resonance(NMR), gas-water relative seepage, and gas-water two-phase displacement studies are performed to examine the seepage ability and parameters of the reservoir, and further analyses are done to confirm the controlling effects of reservoir micropore structures on seepage ability. The experimental results show that Benxi, Taiyuan, Shanxi, and Shihezi formations in the study area are typical ultra-low porosity and ultra-low permeability reservoirs. Owing to compaction and later diagenetic transformation, they contain few primary pores. Secondary pores are the main pore types of reservoirs in the study area. Six main types of secondary pores are: intergranular dissolved pores, intragranular dissolved pores, lithic dissolved pores, intercrystalline dissolved pores, micropores, and microfracture. The results show that reservoirs with small pore-throat radius, medium displacement pressure, and large differences in pore-throat structures are present in the study area. The four types of micropore structures observed are: lower displacement pressure and fine pores with medium-fine throats, low displacement pressure and fine micropores with fine throats, medium displacement pressure and micropores with micro-fine throats, and high displacement pressure and micropores with micro throats. The micropore structure is complex, and the reservoir seepage ability is poor in the study areas. The movable fluid saturation, range of the gas-water two-phase seepage zone, and displacement types are the three parameters that well represent the reservoir seepage ability. According to the characteristic parameters of microscopic pore structure and seepage characteristics, the reservoirs in the study area are classified into four types(Ⅰ–Ⅳ), and types Ⅰ, Ⅱ, and Ⅲ are the main types observed. From type Ⅰ to type Ⅳ, the displacement pressure increases, and the movable fluid saturation and gas-water two-phase seepage zone decrease, and the displacement type changes from the reticulation-uniform displacement to dendritic and snake like.展开更多
The almost completely dense copper was prepared by ultrafine copper powder prepared with both methods of electrolysis and novel water-gas atomization through cold isostatic pressing(CIP)and sintering under atmospheric...The almost completely dense copper was prepared by ultrafine copper powder prepared with both methods of electrolysis and novel water-gas atomization through cold isostatic pressing(CIP)and sintering under atmospheric hydrogen.Fine copper powder possesses the higher sintering driving force,thereby promoting shrinkage and densification during the sintering process.The grain size of sintered samples by electrolytic copper powder is smaller than that prepared by the atomized copper powder,and the twin crystals are particularly prone to forming in the former sintered microstructure due to the raw powder with low oxygen content and high residual stress originating from the CIP process.The relative density of samples by electrolytic and atomized powder at 1000℃ sintering temperature achieves 99.3%and 97.4%,respectively,significantly higher than that of the powder metallurgy copper parts reported in the literature.Correspondingly,the ultimate tensile strength and yield strength of samples by both kinds of copper powder are approximately similar,while the elongation of the sintered sample by the electrolytic powder(60%)is apparently higher than the atomized powder(44%).The superior performance of samples fabricated by electrolytic powder is inferred from the full density and low oxygen level for there is no cuprous oxide in the grain boundaries.展开更多
Gaseous jets injected into water are typically found in underwater propulsion, and the flow is essentially unsteady and turbulent. Additionally, the high water-to-gas density ratio can result in complicated flow struc...Gaseous jets injected into water are typically found in underwater propulsion, and the flow is essentially unsteady and turbulent. Additionally, the high water-to-gas density ratio can result in complicated flow structures; hence measuring the flow structures numerically and experimentally remains a challenge. To investigate the performance of the underwater propulsion, this paper uses detailed NavierStokes flow computations to elucidate the gas-water interactions under the framework of the volume of fluid (VOF) model. Furthermore, these computations take the fluid compressibility, viscosity, and energy transfer into consideration. This paper compares the numerical results and experimental data, showing that phenomena including expansion, bulge, necking/breaking, and back-attack are highlighted in the jet process. The resulting analysis indicates that the pressure difference on the rear and front surfaces of the propul- sion system can generate an additional thrust. The strong and oscillatory thrust of the underwater propulsion system is caused by the intermittent pulses of the back pressure and the nozzle exit pressure. As a result, the total thrust in underwater propulsion is not only determined by the nozzle geometry but also by the flow structures and associated pressure distri- butions.展开更多
Gas and water migration through the hydrate-bearing sediment are characteristic features in marine gas hydrate reservoirs worldwide.However,there are few experimental investigations on the effect of water-gas flow on ...Gas and water migration through the hydrate-bearing sediment are characteristic features in marine gas hydrate reservoirs worldwide.However,there are few experimental investigations on the effect of water-gas flow on the gas hydrate reservoir.In this study,gas-water migration in gas hydrate stability zone(GHSZ)was investigated visually employing a high-resolution magnetic resonance imaging(MRI)apparatus,and the formation of hydrate seal was experimentally investigated.Results revealed that normal flow of gas-water at the low flow rate of 1–0.25 mL/min will induce the hydrate reformation.Conversely,higher gas-water flow rates(at 2–0.5 and 4–1 mL/min)need higher reservoir pressure to induce the hydrate reformation.In addition,the hydrate reformation during the gas-water flow process produced the hydrate seal,which can withstand an over 9.0 MPa overpressure.This high overpressure provides the development condition for the underlying gas and/or water reservoir.A composite MRI image of the whole hydrate seal was obtained through the MRI.The pore difference between hydrate zone and coexistence zone produces a capillary sealing effect for hydrate seal.The hydrate saturation of hydrate seal was more than 51.6%,and the water saturation was more than 19.3%.However,the hydrate seal can be broken through when the overpressure exceeded the capillary pressure of the hydrate seal,which induced the sudden drop of reservoir pressure.This study provides a scientific explanation for the existence of high-pressure underlying gas below the hydrate layer and is significant for the safe exploitation of these common typical marine hydrate reservoirs.展开更多
Phase equilibrium in binary gas + water mixtures over wide ranges of temperatures and pressures are modeled and tested for thermodynamic consistency. For modeling, the Peng-Robinson equation of state was used and the ...Phase equilibrium in binary gas + water mixtures over wide ranges of temperatures and pressures are modeled and tested for thermodynamic consistency. For modeling, the Peng-Robinson equation of state was used and the Wong-Sandler mixing rules were incorporated into the equation of state parameters. In the Wong-Sandler mixing rules the van Laar model for the excess Gibbs energy was applied. In addition, a reasonable and flexible method is applied to test the thermodynamic consistency of pressure-temperature-concentration(P-T-x) data of these binary mixtures.Modeling is found acceptable in all cases, meaning that deviations in correlating the pressure and the gas phase concentration are low. For all cases the thermodynamic consistency method gives a clear conclusion about consistency or inconsistency of a set of experimental P-T-x data.展开更多
Based on the oil,gas and water distribution characteristics of Khasib reservoir in Halfaya oilfield,Iraq,a core displacement experiment is designed to evaluate the influence of different displacement methods and displ...Based on the oil,gas and water distribution characteristics of Khasib reservoir in Halfaya oilfield,Iraq,a core displacement experiment is designed to evaluate the influence of different displacement methods and displacement parameters on oil displacement efficiency.The research shows that,in the displacement method with water injected from the edge of the reservoir,early depletion production is conducive to the elastic expansion of the gas cap,forming the three-dimensional displacement of"upper pressure and lower pushing",and the oil displacement effect is good.When gas injection at the top and water injection at the edge are used for synergistic displacement,the injection timing has different influences on the oil displacement effects of high and low parts.Considering the overall oil displacement efficiency,the injection pressure should be greater than the bubble point pressure of crude oil.Two displacement methods are recommended with the reasonable injection time at 20–25 MPa.The injection speed has the same influence on different injection media.Appropriately reducing the injection speed is conducive to the stability of the displacement front,delaying the breakthrough of injection media and improving the oil displacement effect.The reasonable injection rate of water flooding is 0.075 mL/min,the reasonable injection rates of water and gas are 0.15 mL/min and 0.10 mL/min,respectively in gas-water synergistic displacement.Gas-water synergistic displacement is conducive to the production of crude oil at high position,and has crude oil recovery 5.0%–14.8%higher than water flooding from the edge,so it is recommended as the development mode of Khasib reservoir at the middle and late stages.展开更多
文摘Shale gas production involves complex gas-water two-phase flow,with flow patterns in proppant-filled fractures playing a critical role in determining production efficiency.In this study,3D geometric models of 40/70 mesh ceramic particles and quartz sand proppant clusters were elaborated using computed tomography(CT)scanning.These models were used to develop a numerical simulation framework based on the lattice Boltzmann method(LBM),enabling the investigation of gas-water flow behavior within proppant-filled fractures under varying driving forces and surface tensions.Simulation results at a closure pressure of 15 MPa have revealed that ceramic particles exhibit a simpler and more porous internal structure than quartz sand of the same size.Under identical flow conditions,ceramic proppants demonstrate higher fluid replacement efficiency.Replacement efficiency increases with higher porosity,greater driving force,and lower surface tension.Furthermore,fluid displacement is strongly influenced by pore geometry:flow is faster in straighter and wider channels,with preferential movement through larger pores forming dominant flow paths.The replacement velocity exhibits a characteristic time evolution,initially rapid,then gradually decreasing,correlating positively with the development of these dominant channels.
基金Supported by the National Natural Science Foundation of China(52374043)Key Program of the National Natural Science Foundation of China(52234003).
文摘Based on the displacement discontinuity method and the discrete fracture unified pipe network model,a sequential iterative numerical method was used to build a fracturing-production integrated numerical model of shale gas well considering the two-phase flow of gas and water.The model accounts for the influence of natural fractures and matrix properties on the fracturing process and directly applies post-fracturing formation pressure and water saturation distribution to subsequent well shut-in and production simulation,allowing for a more accurate fracturing-production integrated simulation.The results show that the reservoir physical properties have great impacts on fracture propagation,and the reasonable prediction of formation pressure and reservoir fluid distribution after the fracturing is critical to accurately predict the gas and fluid production of the shale gas wells.Compared with the conventional method,the proposed model can more accurately simulate the water and gas production by considering the impact of fracturing on both matrix pressure and water saturation.The established model is applied to the integrated fracturing-production simulation of practical horizontal shale gas wells.The simulation results are in good agreement with the practical production data,thus verifying the accuracy of the model.
基金supported by the Natural Science Foundation of China (grant No. 41772130)
文摘With the aim of better understanding the tight gas reservoirs in the Zizhou area of east Ordos Basin,a total of 222 samples were collected from 50 wells for a series of experiments.In this study,three pore-throat combination types in sandstones were revealed and confirmed to play a controlling role in the distribution of throat size and the characteristics of gas-water relative permeability.The type-I sandstones are dominated by intercrystalline micropores connected by cluster throats,of which the distribution curves of throat size are narrow and have a strong single peak(peak ratio>30%).The pores in the type-II sandstones dominantly consist of secondary dissolution pores and intercrystalline micropores,and throats mainly occur as slice-shaped throats along cleavages between rigid grain margins and cluster throats in clay cement.The distribution curves of throat size for the type-II sandstones show a bimodal distribution with a substantial low-value region between the peaks(peak ratio<15%).Primary intergranular pores and secondary intergranular pores are mainly found in type-III samples,which are connected by various throats.The throat size distribution curves of type-III sandstones show a nearly normal distribution with low kurtosis(peak ratio<10%),and the micro-scale throat radii(>0.5μm)constitute a large proportion.From type-I to type-III sandstones,the irreducible water saturation(Swo)decreased;furthermore,the slope of the curves of Krw/Krg in two-phase saturation zone decreased and the two-phase saturation zone increased,indicating that the gas relative flow ability increased.Variations of the permeability exist in sandstones with different porethroat combination types,which indicate the type-III sandstones are better reservoirs,followed by type-II sandstones and type-I sandstones.As an important factor affecting the reservoir quality,the pore-throat combination type in sandstones is the cumulative expression of lithology and diagenetic modifications with strong heterogeneity.
文摘Because of gravitational differentiation of multi-phase fluids, gas-water flow is usually stratified in highly inclined or horizontal gas wells. By using electrode arrays to scan flowing fluids, electromagnetic tomography can identify the flow patterns of mixed fluid from the different electrical properties of gas and water. The responses for different gas-water interface locations were calculated and then physical measurements were undertaken. We compared the results of the numerical simulation with the experimental data, and found that the response characteristics were consistent in the circumstances of uniform physical fields and stratified flows. By analyzing the signal characteristics, it is found that, with the change of the interface location, the response curves showed "steps" whose position and width were decided by the location of fluid interface. The measurement accuracy of this method depended on the vertical distance between adjacent electrodes. The results showed that computer simulation can simulate the measurement of the electromagnetic tomography accurately, so the physical experiment can be replaced.
基金Project(2011ZX05013-002)supported by National Science and Technology Major Projects of China
文摘By means of the pore-level simulation, the characteristics of gas-water flow and gas-water distribution during the alternative displacement of gas and water were observed directly from etched-glass micromodel. The results show that gas-water distribution styles are divided into continuous phase type and separate phase type. The water lock exists in pore and throat during the process of gas-water displacement, and it reduces the gas flow-rate and has some effects on the recovery efficiency during the operation of gas storage. According to the experimental results of aquifer gas storage in X area, the differences in available extent among reservoirs are significant, and the availability of pore space is 33% 45%.
基金Project(2013CB228005) supported by the National Program on Key Fundamental Research Project of ChinaProject(14ZB0047) supported by the Department of Education of Sichuan Province,China
文摘A novel method was developed to establish a realistic three dimensional(3D) network model representing pore space in low permeability sandstone.Digital core of rock sample was established by the combination of micro-CT scanning and image processing,then 3D pore-throat network model was extracted from the digital core through analyzing pore space topology,calculating pore-throat parameters and simplifying the shapes of pores and throats.The good agreements between predicted and measured porosity and absolute permeability verified the validity of this new network model.Gas-water flow mechanism was studied by using pore-scale simulations,and the influence of pore structure parameters,including coordination number,aspect ratio and shape factor,on gas-water flow,was investigated.The present simulation results show that with the increment of coordination number,gas flow ability in network improves and the effect of invading water on blocking gas flow weakens.The smaller the aspect ratio is,the stronger the anisotropy of the network is,resulting in the increase of seepage resistance.It is found that the shape factor mainly affects the end points in relative permeability curves,and for a highly irregular pore or throat with a small shape factor,the irreducible water saturation(Swi) and residual gas saturation(Sgr) are relatively high.
基金Supported by National Key Laboratory of Bubble Physics and Natural Circulation (2005)
文摘Droplet turbulence effect on gas-water separator with corrugated plates is explored using the Eulerian-Lagrangian two-way coupled multiphase approach of FLUENT. It is concluded that the inertial force is dominant in separating large droplets, while droplet turbulence dispersion plays a decisive role in separating fine droplets. Good agreement exists between calculations and air-water experiments. The numerical method developed provides a rea-sonable description of the droplet trajectories and separating efficiency, and it can be applied to predicting the performance of gas-water separator with corrugated plates.
基金supported by the National Basic Research Program of China (No. 2005CB422105)the National NaturalScience Foundation of China (No. 40772089)
文摘The Puguang (普光) gas field is the largest gas field found in marine carbonate in China. The Puguang gas field experienced complicated evolution history from paleo-oil pool to gas pool. The purpose of this article is to reveal the evolution history of Puguang gas field through systematic study on the relationship between paleo-oil-water contact (POWC) and present-day gas-water contact (PGWC). POWC was recognized by observing the change of relative content of residual solid bitumen in the cores, and PGWC was observed using log and drilling stem test data. Two types of relationship between POWC and PGWC were observed in the Puguang gas field: POWC is above PGWC, and POWC is below PGWC. The former is normal as oil cracking may cause gas-water contact to move downward. The latter can be interpreted by lateral gas re-migration and re-accumulation caused by changes in structural configuration. The relationship between POWC and PGWC suggests that during oil charge, the southwestern and northwestern parts of the Puguang gas field were structurally lower than the northeastern and southeastern parts. Thrusting from Xuefengshan (雪峰山) since Yanshanian movement and from Dabashan (大巴山) since Himalayan movement resulted in the relative uplift of the southwestern and northwestern parts of the Puguang structure, which significantly changed the structural configuration. Based on the paleo-structure discussed in this article, the most probable migration directions of paleo-oil were from the northwest to the southeast and from the southwest to the northeast. Consequently, the evolution history of the Puguang gas field can be divided into three stages, namely,oil charging (200-170 Ma), cracking oil to gas (155-120 Ma), and gas pool adjustment (12-0 Ma).
基金supported by the China Postdoctoral Science Foundation(2021M702304)and Natural Science Foundation of Shandong Province(ZR2021QE260).
文摘A mathematical model for the gas-water two-phase flow in tight gas reservoirs is elaborated.The model can account for the gas slip effect,stress sensitivity,and high-speed non-Darcy factors.The related equations are solved in the framework of a finite element method.The results are validated against those obtained by using the commercial software CMG(Computer Modeling Group software for advanced recovery process simulation).It is shown that the proposed method is reliable.It can capture the fracture rejection characteristics of tight gas reservoirs better than the CMG.A sensitivity analysis of various control factors(initial water saturation,reservoir parameters,and fracturing parameters)affecting the production in tight gas wells is conducted accordingly.Finally,a series of theoretical arguments are provided for a rational and effective development/exploitation of tight sandstone gas reservoirs.
基金support from the Science and Technology Cooperation Project of the CNPC-SWPU Innovation Alliance(No.2020CX010403)Natural Science Foundation of Sichuan Province(No.2022NSFSC0190,2022NSFSC0186)。
文摘Carbonate gas reservoirs generally contain water,leading to uneven water invasion,explosive water flooding and other prominent phenomena,which is an important factor restricting the efficient development of gas reservoirs.The study of gas-water two-phase flow behavior in carbonate gas reservoirs is of great significance for understanding the formation mechanism of residual water and trapped gas and improving the recovery of gas reservoirs.In this study,microscopic visualization physical models of fractured-vuggy and fractured-porous types were established based on CT images.And then gas-water two-phase flow experiments were conducted using the models,visually presenting the characteristics of gas-water two-phase flow and the formation mechanism of residual water and trapped gas in such reservoirs.On the basis of experiments,numerical simulation of gas-water two-phase flow at pore scale under high-temperature and high-pressure conditions was conducted using the VOF method,and the effect of capillary number on gas-water two-phase flow was quantitatively evaluated.The experiment results indicate the types of residual water and trapped gas formed in the fractured-vuggy and fractured-porous reservoirs.Compared with fractured-vuggy reservoir,the type of residual water in fractured-porous reservoir doesn't include water masses in the vugs,but includes network shaped residual water,and the type of trapped gas also includes network shaped trapped gas.The numerical simulation results indicate the residual water in the fractured-porous reservoir decreases with the increase of capillary number during gas flooding process,while the distribution of residual water in the fractured-vuggy reservoir is influenced by the combination of fractures and vugs.The distribution of trapped gas in different types of reservoirs shows a trend of first decreasing and then increasing with the increase of capillary number during water flooding process.The results in this study can provide theoretical support for revealing the formation mechanism of residual water and trapped gas in carbonate gas reservoirs and improve gas recovery.
基金This research was funded by the National Natural Science Foundation of China(Grant Nos.42130806,41922016,41830427 and 41772160).
文摘The acoustic response of gas and/or water saturated coal rock is fundamental for establishing the correspondence between the physical properties of the coal reservoir and the characteristics of the well-logging response,which is the technology essential for the geophysical exploration of coalbed methane(CBM).This acoustic response depends on water(Sw)and gas(Sg)saturation among other factors.In this study,we performed acoustic tests on dry and different gas-water saturated coal samples with different degrees of metamorphism and deformation,collected from several coal mining areas in China.These tests enabled us to analyze the influence of coal type and gas-water saturation on the acoustic response of CBM formations.Our results show that the acoustic velocity of P-wave and S-wave(Vp and Vs,respectively),and the relative anisotropy of and Vs,increased with increasing vitrinite reflectance,density,Vp and Sw.WithSw increasing from 0 to 100%,the growth rate of the acoustic velocity decreased with increasing vitrinite reflectance.The Vp/Vs ratio of tectonic coal was generally higher than that of primary coal.The growth rate of the relative anisotropy in tectonic coal was markedly higher than that in primary coal.
文摘Tight gas reservoirs with mobile water exhibit multi-phase flow and high stress sensitivity.Accurately analyzing the reservoir and well parameters using conventional single-phase rate transient analysis methods proves challenging.This study introduces novel rate transient analysis methods incorporating evaluation processes based on the conventional flowing material balance method and the Blasingame type-curve method to examine fractured gas wells producing water.By positing a gas-water two-phase equivalent homogenous phase that considers characteristics of mobile water,gas,and high stress sensitivity,the conventional single-phase rate transient analysis methods can be applied by integrating the phase's characteristics and defining the phase's normalized parameters and material balance pseudotime.The rate transient analysis methods based on the equivalent homogenous phase can be used to quantitatively assess the parameters of wells and gas reservoirs,such as original gas-in-place,fracture half-length,reservoir permeability,and well drainage radius.This facilitates the analysis of production dynamics of fractured wells and well-controlled areas,subsequently aiding in locating residual gas and guiding the configuration of well patterns.The specific evaluation processes are detailed.Additionally,a numerical simulation mechanism model was constructed to verify the reliability of the developed methods.The methods introduced have been successfully implemented in field water-producing gas wells within tight gas reservoirs containing mobile water.
文摘Based on the microfluidic technology,a microscopic visualization model was used to simulate the gas injection process in the initial construction stage and the bottom water invasion/gas injection process in the cyclical injection-production stage of the underground gas storage(UGS)rebuilt from water-invaded gas reservoirs.Through analysis of the gas-liquid contact stabilization mechanism,flow and occurrence,the optimal control method for lifecycle efficient operation of UGS was explored.The results show that in the initial construction stage of UGS,the action of gravity should be fully utilized by regulating the gas injection rate,so as to ensure the macroscopically stable migration of the gas-liquid contact,and greatly improve the gas sweeping capacity,providing a large pore space for gas storage in the subsequent cyclical injection-production stage.In the cyclical injection-production stage of UGS,a constant gas storage and production rate leads to a low pore space utilization.Gradually increasing the gas storage and production rate,that is,transitioning from small volume to large volume,can continuously break the hydraulic equilibrium of the remaining fluid in the porous media,which then expands the pore space and flow channels.This is conducive to the expansion of UGS capacity and efficiency for purpose of peak shaving and supply guarantee.
基金supported by the National Natural Science Foundation of China(Grant Nos.U19A2043 and 52174033)Natural Science Foundation of Sichuan Province(NSFSC)(No.2022NSFSC0971)the Science and Technology Cooperation Project of the CNPC-SWPU Innovation Alliance.
文摘The gas-water two-phaseflow occurring as a result of fracturingfluidflowback phenomena is known to impact significantly the productivity of shale gas well.In this work,this two-phaseflow has been simulated in the framework of a hybrid approach partially relying on the embedded discrete fracture model(EDFM).This model assumes the region outside the stimulated reservoir volume(SRV)as a single-medium while the SRV region itself is described using a double-medium strategy which can account for thefluid exchange between the matrix and the micro-fractures.The shale gas adsorption,desorption,diffusion,gas slippage effect,fracture stress sensitivity,and capillary imbibition have been considered.The shale gas production,pore pressure distribution and water saturation distribution in the reservoir have been simulated.The influences of hydraulic fracture geometry and nonorthogonal hydraulic fractures on gas production have been determined and discussed accordingly.The simulation results show that the daily gas production has an upward and downward trend due to the presence of a large amount of fracturingfluid in the reservoir around the hydraulic fracture.The smaller the angle between the hydraulic fracture and the wellbore,the faster the daily production of shale gas wells decreases,and the lower the cumulative production.Nonplanar fractures can increase the control volume of hydraulic fractures and improve the production of shale gas wells.
基金the National Natural Science Foundation of China(Grant No.41390451,41172101)the National Key Research Project of China(No.2016YFC0601003).
文摘In this study, the types of micropores in a reservoir are analyzed using casting thin section(CTS) observation and scanning electron microscopy(SEM) experiments. The high-pressure mercury injection(HPMI) and constant-rate mercury injection(CRMI) experiments are performed to study the micropore structure of the reservoir. Nuclear magnetic resonance(NMR), gas-water relative seepage, and gas-water two-phase displacement studies are performed to examine the seepage ability and parameters of the reservoir, and further analyses are done to confirm the controlling effects of reservoir micropore structures on seepage ability. The experimental results show that Benxi, Taiyuan, Shanxi, and Shihezi formations in the study area are typical ultra-low porosity and ultra-low permeability reservoirs. Owing to compaction and later diagenetic transformation, they contain few primary pores. Secondary pores are the main pore types of reservoirs in the study area. Six main types of secondary pores are: intergranular dissolved pores, intragranular dissolved pores, lithic dissolved pores, intercrystalline dissolved pores, micropores, and microfracture. The results show that reservoirs with small pore-throat radius, medium displacement pressure, and large differences in pore-throat structures are present in the study area. The four types of micropore structures observed are: lower displacement pressure and fine pores with medium-fine throats, low displacement pressure and fine micropores with fine throats, medium displacement pressure and micropores with micro-fine throats, and high displacement pressure and micropores with micro throats. The micropore structure is complex, and the reservoir seepage ability is poor in the study areas. The movable fluid saturation, range of the gas-water two-phase seepage zone, and displacement types are the three parameters that well represent the reservoir seepage ability. According to the characteristic parameters of microscopic pore structure and seepage characteristics, the reservoirs in the study area are classified into four types(Ⅰ–Ⅳ), and types Ⅰ, Ⅱ, and Ⅲ are the main types observed. From type Ⅰ to type Ⅳ, the displacement pressure increases, and the movable fluid saturation and gas-water two-phase seepage zone decrease, and the displacement type changes from the reticulation-uniform displacement to dendritic and snake like.
基金Project(92066205)supported by the National Natural Science Foundation of ChinaProject(2019-Z10)supported by the State Key Lab for Advanced Metals and Materials of ChinaProject(FRF-MP-20-52)supported by the Fundamental Research Funds for the Central Universities,China。
文摘The almost completely dense copper was prepared by ultrafine copper powder prepared with both methods of electrolysis and novel water-gas atomization through cold isostatic pressing(CIP)and sintering under atmospheric hydrogen.Fine copper powder possesses the higher sintering driving force,thereby promoting shrinkage and densification during the sintering process.The grain size of sintered samples by electrolytic copper powder is smaller than that prepared by the atomized copper powder,and the twin crystals are particularly prone to forming in the former sintered microstructure due to the raw powder with low oxygen content and high residual stress originating from the CIP process.The relative density of samples by electrolytic and atomized powder at 1000℃ sintering temperature achieves 99.3%and 97.4%,respectively,significantly higher than that of the powder metallurgy copper parts reported in the literature.Correspondingly,the ultimate tensile strength and yield strength of samples by both kinds of copper powder are approximately similar,while the elongation of the sintered sample by the electrolytic powder(60%)is apparently higher than the atomized powder(44%).The superior performance of samples fabricated by electrolytic powder is inferred from the full density and low oxygen level for there is no cuprous oxide in the grain boundaries.
文摘Gaseous jets injected into water are typically found in underwater propulsion, and the flow is essentially unsteady and turbulent. Additionally, the high water-to-gas density ratio can result in complicated flow structures; hence measuring the flow structures numerically and experimentally remains a challenge. To investigate the performance of the underwater propulsion, this paper uses detailed NavierStokes flow computations to elucidate the gas-water interactions under the framework of the volume of fluid (VOF) model. Furthermore, these computations take the fluid compressibility, viscosity, and energy transfer into consideration. This paper compares the numerical results and experimental data, showing that phenomena including expansion, bulge, necking/breaking, and back-attack are highlighted in the jet process. The resulting analysis indicates that the pressure difference on the rear and front surfaces of the propul- sion system can generate an additional thrust. The strong and oscillatory thrust of the underwater propulsion system is caused by the intermittent pulses of the back pressure and the nozzle exit pressure. As a result, the total thrust in underwater propulsion is not only determined by the nozzle geometry but also by the flow structures and associated pressure distri- butions.
基金supported by the National Key Research and Development Plan of China(2021YFC2800902)the National Natural Science Foundation of China(52206076,U19B2005)+1 种基金the Fundamental Research Funds for the Central Universities of China(DUT21ZD103)the Opening Fund of MOE Key Laboratory of Ocean Energy Utilization and Energy Conservation(LOEC-202204).
文摘Gas and water migration through the hydrate-bearing sediment are characteristic features in marine gas hydrate reservoirs worldwide.However,there are few experimental investigations on the effect of water-gas flow on the gas hydrate reservoir.In this study,gas-water migration in gas hydrate stability zone(GHSZ)was investigated visually employing a high-resolution magnetic resonance imaging(MRI)apparatus,and the formation of hydrate seal was experimentally investigated.Results revealed that normal flow of gas-water at the low flow rate of 1–0.25 mL/min will induce the hydrate reformation.Conversely,higher gas-water flow rates(at 2–0.5 and 4–1 mL/min)need higher reservoir pressure to induce the hydrate reformation.In addition,the hydrate reformation during the gas-water flow process produced the hydrate seal,which can withstand an over 9.0 MPa overpressure.This high overpressure provides the development condition for the underlying gas and/or water reservoir.A composite MRI image of the whole hydrate seal was obtained through the MRI.The pore difference between hydrate zone and coexistence zone produces a capillary sealing effect for hydrate seal.The hydrate saturation of hydrate seal was more than 51.6%,and the water saturation was more than 19.3%.However,the hydrate seal can be broken through when the overpressure exceeded the capillary pressure of the hydrate seal,which induced the sudden drop of reservoir pressure.This study provides a scientific explanation for the existence of high-pressure underlying gas below the hydrate layer and is significant for the safe exploitation of these common typical marine hydrate reservoirs.
基金the National Council for Scientific and Technological Research,CONICYT,for its grant FONDECYT 3020020the Center for Technological Information (La Serena-Chile) for computer and library support+1 种基金CAF thanks the Direction of Research of the University of Concepción for the support through the research grant DIUC 211.011.054-1.0JOV thanks the University of La Serena for especialsupport
文摘Phase equilibrium in binary gas + water mixtures over wide ranges of temperatures and pressures are modeled and tested for thermodynamic consistency. For modeling, the Peng-Robinson equation of state was used and the Wong-Sandler mixing rules were incorporated into the equation of state parameters. In the Wong-Sandler mixing rules the van Laar model for the excess Gibbs energy was applied. In addition, a reasonable and flexible method is applied to test the thermodynamic consistency of pressure-temperature-concentration(P-T-x) data of these binary mixtures.Modeling is found acceptable in all cases, meaning that deviations in correlating the pressure and the gas phase concentration are low. For all cases the thermodynamic consistency method gives a clear conclusion about consistency or inconsistency of a set of experimental P-T-x data.
基金Supported by the Scientific Research and Technology Development Project of CNPC(2019D-4410)。
文摘Based on the oil,gas and water distribution characteristics of Khasib reservoir in Halfaya oilfield,Iraq,a core displacement experiment is designed to evaluate the influence of different displacement methods and displacement parameters on oil displacement efficiency.The research shows that,in the displacement method with water injected from the edge of the reservoir,early depletion production is conducive to the elastic expansion of the gas cap,forming the three-dimensional displacement of"upper pressure and lower pushing",and the oil displacement effect is good.When gas injection at the top and water injection at the edge are used for synergistic displacement,the injection timing has different influences on the oil displacement effects of high and low parts.Considering the overall oil displacement efficiency,the injection pressure should be greater than the bubble point pressure of crude oil.Two displacement methods are recommended with the reasonable injection time at 20–25 MPa.The injection speed has the same influence on different injection media.Appropriately reducing the injection speed is conducive to the stability of the displacement front,delaying the breakthrough of injection media and improving the oil displacement effect.The reasonable injection rate of water flooding is 0.075 mL/min,the reasonable injection rates of water and gas are 0.15 mL/min and 0.10 mL/min,respectively in gas-water synergistic displacement.Gas-water synergistic displacement is conducive to the production of crude oil at high position,and has crude oil recovery 5.0%–14.8%higher than water flooding from the edge,so it is recommended as the development mode of Khasib reservoir at the middle and late stages.