针对退役动力电池规模大、单体筛选复杂、重组后动态特性差异大以及寿命损耗加剧等问题,该文考虑电池模组的功能状态(state of function,SOF)特性,提出基于数字孪生技术的退役电池模组筛选方法。首先,通过电压、电流、荷电状态(state of...针对退役动力电池规模大、单体筛选复杂、重组后动态特性差异大以及寿命损耗加剧等问题,该文考虑电池模组的功能状态(state of function,SOF)特性,提出基于数字孪生技术的退役电池模组筛选方法。首先,通过电压、电流、荷电状态(state of charge,SOC)及健康状态(state of health,SOH)等参量表征SOF特性,估计梯次利用过程中SOF动态安全裕度;其次,搭建耦合物理模型、信息流及数字孪生映射体的电池模组筛选架构,提出基于生成对抗网络(generative adversarial networks,GAN)与长短期记忆网络(long short-term memory,LSTM)的电池数据缺失及偏移预测方法,优化退役动力电池模组表征SOF的多性能参量;最后,采用k-means算法对综合考虑SOH及SOF特性的退役电池模组进行聚类筛选。仿真结果表明:所提筛选方法可以提高退役动力电池动态一致性,并延长梯次利用过程中电池的运行寿命。展开更多
针对生成对抗网络(GAN)生成伪随机数的质量不高和生成速度较慢的问题,提出一种基于长短时记忆(LSTM)网络和可分离自注意力(SA)机制的模型LSA-WGAN-GP(Wasserstein GAN with Gradient Penalty based on LSTM and separable SA)。该模型...针对生成对抗网络(GAN)生成伪随机数的质量不高和生成速度较慢的问题,提出一种基于长短时记忆(LSTM)网络和可分离自注意力(SA)机制的模型LSA-WGAN-GP(Wasserstein GAN with Gradient Penalty based on LSTM and separable SA)。该模型通过将数据从一维扩展为二维,改进数据的表示方式,从而提取更深层次的特征。并且,创新性地提出LSA(LSTM and separable Self-Attention)模块,以融合LSTM和SA机制,从而显著提升伪随机数的不可回溯性和不可预测性。此外,通过精简网络结构有效减小模型参数量,并提高生成速度。实验结果表明,LSAWGAN-GP生成的伪随机数可以100%通过NIST(National Institute of Standards and Technology)测试;与WGAN-GP(Wasserstein GAN with Gradient Penalty)和GAN相比,LSA-WGAN-GP在频率和全局通用测试项的P值和通过率上均有提升;在伪随机数生成速度上,LSA-WGAN-GP比WGAN-GP和GAN分别提升了164%和976%。可见,LSA-WGANGP在保证生成的伪随机数质量的同时,减少了模型的参数量,并提高了生成伪随机数的速度。展开更多
法律文本的自动生成能缓解我国法律服务行业中的人力资源不足的问题,对抗生成网络模型的出现为法律文本的自动生成提供了新思路.本文提出一种基于对抗生成网络的文本自动生成模型——ED-GAN(Generative Adversarial Networks based on E...法律文本的自动生成能缓解我国法律服务行业中的人力资源不足的问题,对抗生成网络模型的出现为法律文本的自动生成提供了新思路.本文提出一种基于对抗生成网络的文本自动生成模型——ED-GAN(Generative Adversarial Networks based on Encoder-Decoder).在该模型的生成器中,首先将案情要素的关键词序列输入至编码器Encoder阶段的LSTM中编码成一隐含层向量,再将这个隐含层向量输入到解码器Decoder的LSTM中,并结合其各时间步的输出生成下一时间步的隐含层向量,进而得到各时间步的输出,生成文本序列.模型最后采用CNN网络来鉴别生成文本和真实文本之间的差距.实验验证表明,采用所提模型能够生成较理想的法律文本.展开更多
随着高通量测序技术的迅猛发展,基因组学领域迎来了数据量的爆炸性增长,这对传统生物信息学处理复杂数据模式的能力构成了严峻挑战。在此技术革新的关键时刻,深度学习作为人工智能领域的前沿技术,以其强大的数据解析与模式识别能力,为...随着高通量测序技术的迅猛发展,基因组学领域迎来了数据量的爆炸性增长,这对传统生物信息学处理复杂数据模式的能力构成了严峻挑战。在此技术革新的关键时刻,深度学习作为人工智能领域的前沿技术,以其强大的数据解析与模式识别能力,为基因组学研究注入了新的活力。本文聚焦于4种核心深度学习模型——卷积神经网络(convolution neural network,CNN)、循环神经网络(recurrent neural network,RNN)、长短期记忆网络(long short term memory,LSTM)及生成对抗网络(generative adversarial network,GAN),系统阐述了它们的基础原理,重点回顾了这些模型近5年在DNA、RNA和蛋白质研究领域的广泛应用。此外,文章进一步探讨了深度学习在畜禽基因组学中的应用案例,揭示了其在遗传特征解析、疾病预防以及遗传改良等领域的潜在应用价值与面临的挑战。通过深入分析,本文旨在阐述深度学习技术在增强基因组数据分析的准确性和处理能力方面的作用,并构建一个概念性框架,以指导畜禽基因组学研究策略的发展及其在具体场景下的应用,进而推动精准农业和遗传改良技术的发展。展开更多
文摘针对退役动力电池规模大、单体筛选复杂、重组后动态特性差异大以及寿命损耗加剧等问题,该文考虑电池模组的功能状态(state of function,SOF)特性,提出基于数字孪生技术的退役电池模组筛选方法。首先,通过电压、电流、荷电状态(state of charge,SOC)及健康状态(state of health,SOH)等参量表征SOF特性,估计梯次利用过程中SOF动态安全裕度;其次,搭建耦合物理模型、信息流及数字孪生映射体的电池模组筛选架构,提出基于生成对抗网络(generative adversarial networks,GAN)与长短期记忆网络(long short-term memory,LSTM)的电池数据缺失及偏移预测方法,优化退役动力电池模组表征SOF的多性能参量;最后,采用k-means算法对综合考虑SOH及SOF特性的退役电池模组进行聚类筛选。仿真结果表明:所提筛选方法可以提高退役动力电池动态一致性,并延长梯次利用过程中电池的运行寿命。
文摘针对生成对抗网络(GAN)生成伪随机数的质量不高和生成速度较慢的问题,提出一种基于长短时记忆(LSTM)网络和可分离自注意力(SA)机制的模型LSA-WGAN-GP(Wasserstein GAN with Gradient Penalty based on LSTM and separable SA)。该模型通过将数据从一维扩展为二维,改进数据的表示方式,从而提取更深层次的特征。并且,创新性地提出LSA(LSTM and separable Self-Attention)模块,以融合LSTM和SA机制,从而显著提升伪随机数的不可回溯性和不可预测性。此外,通过精简网络结构有效减小模型参数量,并提高生成速度。实验结果表明,LSAWGAN-GP生成的伪随机数可以100%通过NIST(National Institute of Standards and Technology)测试;与WGAN-GP(Wasserstein GAN with Gradient Penalty)和GAN相比,LSA-WGAN-GP在频率和全局通用测试项的P值和通过率上均有提升;在伪随机数生成速度上,LSA-WGAN-GP比WGAN-GP和GAN分别提升了164%和976%。可见,LSA-WGANGP在保证生成的伪随机数质量的同时,减少了模型的参数量,并提高了生成伪随机数的速度。
文摘法律文本的自动生成能缓解我国法律服务行业中的人力资源不足的问题,对抗生成网络模型的出现为法律文本的自动生成提供了新思路.本文提出一种基于对抗生成网络的文本自动生成模型——ED-GAN(Generative Adversarial Networks based on Encoder-Decoder).在该模型的生成器中,首先将案情要素的关键词序列输入至编码器Encoder阶段的LSTM中编码成一隐含层向量,再将这个隐含层向量输入到解码器Decoder的LSTM中,并结合其各时间步的输出生成下一时间步的隐含层向量,进而得到各时间步的输出,生成文本序列.模型最后采用CNN网络来鉴别生成文本和真实文本之间的差距.实验验证表明,采用所提模型能够生成较理想的法律文本.
文摘随着高通量测序技术的迅猛发展,基因组学领域迎来了数据量的爆炸性增长,这对传统生物信息学处理复杂数据模式的能力构成了严峻挑战。在此技术革新的关键时刻,深度学习作为人工智能领域的前沿技术,以其强大的数据解析与模式识别能力,为基因组学研究注入了新的活力。本文聚焦于4种核心深度学习模型——卷积神经网络(convolution neural network,CNN)、循环神经网络(recurrent neural network,RNN)、长短期记忆网络(long short term memory,LSTM)及生成对抗网络(generative adversarial network,GAN),系统阐述了它们的基础原理,重点回顾了这些模型近5年在DNA、RNA和蛋白质研究领域的广泛应用。此外,文章进一步探讨了深度学习在畜禽基因组学中的应用案例,揭示了其在遗传特征解析、疾病预防以及遗传改良等领域的潜在应用价值与面临的挑战。通过深入分析,本文旨在阐述深度学习技术在增强基因组数据分析的准确性和处理能力方面的作用,并构建一个概念性框架,以指导畜禽基因组学研究策略的发展及其在具体场景下的应用,进而推动精准农业和遗传改良技术的发展。