To investigate the impacts of uncertain parameters on simulated Pacific Walker circulation (PWC), a large number of perturbed parameter simulations are conducted using GAMIL2 (the Grid-point Atmospheric Model of IA...To investigate the impacts of uncertain parameters on simulated Pacific Walker circulation (PWC), a large number of perturbed parameter simulations are conducted using GAMIL2 (the Grid-point Atmospheric Model of IAP/LASG, version 2), and three different PWC indices are selected.The results show that the influences of some parameters on PWC are dependent on the selected index - a finding supported by the inconsistent responses of different indexes to these parameters. Among the nine parameters, the RH threshold for deep convection (RHCRIT) is the most sensitive in simulating PWC. Increased RHCRIT weakens deep convective heating and stratiform cooling, and strengthens shallow convective heating. Further analysis reveals that uncertain parameters affect the simulated PWC through changing the diabatic heating and vertical motion.展开更多
Biases in shortwave cloud radiative forcing(SWCF), which cause overestimates in tropical regions and underestimates in subtropical marine stratocumulus regions, are common in many climate models. Here, two boundary la...Biases in shortwave cloud radiative forcing(SWCF), which cause overestimates in tropical regions and underestimates in subtropical marine stratocumulus regions, are common in many climate models. Here, two boundary layer processes are investigated in the atmospheric model GAMIL2, entrainment at the top of the boundary layer and longwave radiative cooling at the top of stratocumulus clouds, in order to reduce biases and reveal the mechanisms underlying these processes. Our results show that including the entrainment process in the model can reduce negative SWCF biases in most tropical regions but increases positive SWCF biases in subtropical marine stratocumulus regions. This occurs because entrainment reduces the low-level cloud fraction and its cloud liquid water content by suppressing the vertical turbulent diffusion in the boundary layer and decreasing the relative humidity when warm and dry free atmosphere is entrained in the boundary layer. Longwave radiative cooling at the top of stratocumulus clouds can enhance turbulent diffusion within the stratocumulus-topped boundary layer. When combined with the entrainment process, longwave radiative cooling reduces the positive SWCF biases in subtropical marine stratocumulus regions that are observed using the entrainment process alone. The incorporation of these two boundary layer processes improves the simulated SWCF in tropical and subtropical regions in GAMIL2.展开更多
Climate drift refers to spurious long-term changes that may be inherent in coupled models when external forcing factors are fixed. Understanding the sources of this drift and tuning the drift are crucial for obtaining...Climate drift refers to spurious long-term changes that may be inherent in coupled models when external forcing factors are fixed. Understanding the sources of this drift and tuning the drift are crucial for obtaining reasonable simulations from coupled models. To prepare for the upcoming Coupled Model Intercomparison Project Phase 6, a new coupled model has been constructed based on the Community Earth System Model and the Grid-point Atmospheric Model of IAP LASG version 2. However, the surface temperature predicted by the new model is too underestimated, and this underestimation is caused by a type of climate drift, i.e., ‘‘initial shock.'' This study analyzes the source of the cold surface temperature from the perspective of energy balance and attempts to reduce the surface temperature drift by tuning the relative humidity threshold for low cloud.展开更多
基金jointly funded by the National Key Research Project[grant number 2016YFB0200805]the National Natural Science Foundation of China[grant number 41622503],[grant number 41475043],[grant number 41405073],and [grant number91530323]+1 种基金Open Fund of Key Laboratory of Data Analysis and Applications,SOA[grant number LDAA-2014-03]the National Key Basic Research Program of China[grant number2015CB954101]
文摘To investigate the impacts of uncertain parameters on simulated Pacific Walker circulation (PWC), a large number of perturbed parameter simulations are conducted using GAMIL2 (the Grid-point Atmospheric Model of IAP/LASG, version 2), and three different PWC indices are selected.The results show that the influences of some parameters on PWC are dependent on the selected index - a finding supported by the inconsistent responses of different indexes to these parameters. Among the nine parameters, the RH threshold for deep convection (RHCRIT) is the most sensitive in simulating PWC. Increased RHCRIT weakens deep convective heating and stratiform cooling, and strengthens shallow convective heating. Further analysis reveals that uncertain parameters affect the simulated PWC through changing the diabatic heating and vertical motion.
基金supported by the CAS Strategic Priority Research Program (Grant No. XDA05110304)the National Basic Research Program of China (Grant No. 2015CB954102)the National Natural Science Foundation of China (Grant Nos. 41205079 & 41305040)
文摘Biases in shortwave cloud radiative forcing(SWCF), which cause overestimates in tropical regions and underestimates in subtropical marine stratocumulus regions, are common in many climate models. Here, two boundary layer processes are investigated in the atmospheric model GAMIL2, entrainment at the top of the boundary layer and longwave radiative cooling at the top of stratocumulus clouds, in order to reduce biases and reveal the mechanisms underlying these processes. Our results show that including the entrainment process in the model can reduce negative SWCF biases in most tropical regions but increases positive SWCF biases in subtropical marine stratocumulus regions. This occurs because entrainment reduces the low-level cloud fraction and its cloud liquid water content by suppressing the vertical turbulent diffusion in the boundary layer and decreasing the relative humidity when warm and dry free atmosphere is entrained in the boundary layer. Longwave radiative cooling at the top of stratocumulus clouds can enhance turbulent diffusion within the stratocumulus-topped boundary layer. When combined with the entrainment process, longwave radiative cooling reduces the positive SWCF biases in subtropical marine stratocumulus regions that are observed using the entrainment process alone. The incorporation of these two boundary layer processes improves the simulated SWCF in tropical and subtropical regions in GAMIL2.
基金supported by the CAS Strategic Priority Research Program (XDA05110304)the National 973 Basic Research Program of China (2015CB954102)the National Natural Science Foundation of China (41330527, 41205079, and 41305040)
文摘Climate drift refers to spurious long-term changes that may be inherent in coupled models when external forcing factors are fixed. Understanding the sources of this drift and tuning the drift are crucial for obtaining reasonable simulations from coupled models. To prepare for the upcoming Coupled Model Intercomparison Project Phase 6, a new coupled model has been constructed based on the Community Earth System Model and the Grid-point Atmospheric Model of IAP LASG version 2. However, the surface temperature predicted by the new model is too underestimated, and this underestimation is caused by a type of climate drift, i.e., ‘‘initial shock.'' This study analyzes the source of the cold surface temperature from the perspective of energy balance and attempts to reduce the surface temperature drift by tuning the relative humidity threshold for low cloud.