The cutter layout of a full-face tunnel boring machine(TBM)directly affects its tunneling efficiency.The revolving diameter of the center cutter is small,and the double-edged design results in its rock breaking mechan...The cutter layout of a full-face tunnel boring machine(TBM)directly affects its tunneling efficiency.The revolving diameter of the center cutter is small,and the double-edged design results in its rock breaking mechanism and force characteristics being significantly different from those of the single-edged cutter.The gage cutter is installed on the transition arc of the cutterhead,and the installation inclination complicates its movement and force.In this paper,by taking sandstone as the research object,the composite rock breaking models of the center cutter group and the gage cutter group of a compound TBM are separately established based on the three-dimensional particle discrete element method.The numerical models are verified by comparing results with the full-scale rotary cutting laboratory test.From the view point of the force characteristics of a single cutter,the propagation of rock cracks between adjacent cutters,the overall mechanical properties of the cutterhead,the load characteristics and layout form of the double-edged center cutter,and the installation angle range of the gage cutter were studied.Results demonstrate that the use of a cross-shaped center cutter layout can reduce the force of a single cutter ring and the overall load of the cutterhead,which is conducive to TBM stability during tunneling.Therefore,it is recommended that a cross-shaped layout for the double-edged center cutter of a rock formation compound TBM should be used.To improve the stability and service life of the cutter,we recommend setting the installation angle of the innermost gage cutter of the rock formation compound TBM to about 9°,and the installation angle of the outermost gage cutter should not exceed 70°.展开更多
A novel technique for calibrating crucial parameters of chassis components is proposed,which utilizes the machine vision metrology to measure 3D coordinates of the center of a component's hole for assembling in th...A novel technique for calibrating crucial parameters of chassis components is proposed,which utilizes the machine vision metrology to measure 3D coordinates of the center of a component's hole for assembling in the 3D world coordinate system.In the measurement,encoding marks with special patterns will be assembled on the chassis component associated with cross drone and staff gauge located near the chassis.The geometry and coordinates of the cross drone consist of two planes orthogonal to each other and the staff gauge is in 3D space with high precision.A few images are taken by a highresolution camera in different orientations and perspectives.The 3D coordinates of 5 key points on the encoding marks will be calculated by the machine vision technique and those of the center of the holes to be calibrated will be calculated by the deduced algorithm in this paper.Experimental results show that the algorithm and the technique can satisfy the precision requirement when the components are assembled,and the average measurement precision provided by the algorithm is 0.0174 mm.展开更多
A novel fiber Bragg grating (FBG) rain gauge is proposed in this paper to achieve high precision rainfall measurement. One core sensitive FBG, a temperature compensation FBG and a mechanical transition system constr...A novel fiber Bragg grating (FBG) rain gauge is proposed in this paper to achieve high precision rainfall measurement. One core sensitive FBG, a temperature compensation FBG and a mechanical transition system construct this novel FBG rain gauge. Sensing principle of this FBG rain gauge is explained in detail, and its theoretical calculation model is also established, which shows that the relationship between center wavelength of sensitive FBG and external rainfall has very good linearity. To verify its detection performance, the calibration experiment on one prototype of this FBG rain gauge is carried out. After experiment data analysis, the detection precision of this FBG rain gauge is 15.4/.tm which is almost two orders of magnitude higher than that of the existing rainfall measurement device. The experimental data confirm that this FBG rain gauge can achieve rainfall measurement with high precision.展开更多
Using effective width of load and distribution coefficient of moment is a kind of simplified method in the design of continuous reinforced concrete slabs, which is widely used in engineering design. In this paper, thr...Using effective width of load and distribution coefficient of moment is a kind of simplified method in the design of continuous reinforced concrete slabs, which is widely used in engineering design. In this paper, through the analysis of load-bearing states of continuous slabs restricted by the main beams under concentrated loads, the effective width of load and distribution coefficients of moment of a continuous slab are obtained with the principle of equivalent loads. On the basis of the data of a 5-span continuous reinforced concrete slab, the formula of effective width is deduced and the distribution coefficients of moment for the mid-span and supports are given.展开更多
基金the National Natural Science Foundation of China(No.U1934213)the Sichuan Science and Technology Program(No.2019YFG0460)。
文摘The cutter layout of a full-face tunnel boring machine(TBM)directly affects its tunneling efficiency.The revolving diameter of the center cutter is small,and the double-edged design results in its rock breaking mechanism and force characteristics being significantly different from those of the single-edged cutter.The gage cutter is installed on the transition arc of the cutterhead,and the installation inclination complicates its movement and force.In this paper,by taking sandstone as the research object,the composite rock breaking models of the center cutter group and the gage cutter group of a compound TBM are separately established based on the three-dimensional particle discrete element method.The numerical models are verified by comparing results with the full-scale rotary cutting laboratory test.From the view point of the force characteristics of a single cutter,the propagation of rock cracks between adjacent cutters,the overall mechanical properties of the cutterhead,the load characteristics and layout form of the double-edged center cutter,and the installation angle range of the gage cutter were studied.Results demonstrate that the use of a cross-shaped center cutter layout can reduce the force of a single cutter ring and the overall load of the cutterhead,which is conducive to TBM stability during tunneling.Therefore,it is recommended that a cross-shaped layout for the double-edged center cutter of a rock formation compound TBM should be used.To improve the stability and service life of the cutter,we recommend setting the installation angle of the innermost gage cutter of the rock formation compound TBM to about 9°,and the installation angle of the outermost gage cutter should not exceed 70°.
基金supported by the National Natural Science Foundation of China (Nos.60808020 and 61078041)the Tianjin Research Program of Application Foundation and Advanced Technology (No.10JCYBJC07200)
文摘A novel technique for calibrating crucial parameters of chassis components is proposed,which utilizes the machine vision metrology to measure 3D coordinates of the center of a component's hole for assembling in the 3D world coordinate system.In the measurement,encoding marks with special patterns will be assembled on the chassis component associated with cross drone and staff gauge located near the chassis.The geometry and coordinates of the cross drone consist of two planes orthogonal to each other and the staff gauge is in 3D space with high precision.A few images are taken by a highresolution camera in different orientations and perspectives.The 3D coordinates of 5 key points on the encoding marks will be calculated by the machine vision technique and those of the center of the holes to be calibrated will be calculated by the deduced algorithm in this paper.Experimental results show that the algorithm and the technique can satisfy the precision requirement when the components are assembled,and the average measurement precision provided by the algorithm is 0.0174 mm.
文摘A novel fiber Bragg grating (FBG) rain gauge is proposed in this paper to achieve high precision rainfall measurement. One core sensitive FBG, a temperature compensation FBG and a mechanical transition system construct this novel FBG rain gauge. Sensing principle of this FBG rain gauge is explained in detail, and its theoretical calculation model is also established, which shows that the relationship between center wavelength of sensitive FBG and external rainfall has very good linearity. To verify its detection performance, the calibration experiment on one prototype of this FBG rain gauge is carried out. After experiment data analysis, the detection precision of this FBG rain gauge is 15.4/.tm which is almost two orders of magnitude higher than that of the existing rainfall measurement device. The experimental data confirm that this FBG rain gauge can achieve rainfall measurement with high precision.
文摘Using effective width of load and distribution coefficient of moment is a kind of simplified method in the design of continuous reinforced concrete slabs, which is widely used in engineering design. In this paper, through the analysis of load-bearing states of continuous slabs restricted by the main beams under concentrated loads, the effective width of load and distribution coefficients of moment of a continuous slab are obtained with the principle of equivalent loads. On the basis of the data of a 5-span continuous reinforced concrete slab, the formula of effective width is deduced and the distribution coefficients of moment for the mid-span and supports are given.