We introduce G-Lévy processes which develop the theory of processes with independent and stationary increments under the framework of sublinear expectations.We then obtain the Lévy-Khintchine formula and the...We introduce G-Lévy processes which develop the theory of processes with independent and stationary increments under the framework of sublinear expectations.We then obtain the Lévy-Khintchine formula and the existence for G-Lévy processes.We also introduce G-Poisson processes.展开更多
Concepts of g-supersolution, g-manrtingale, g-supermartingale are introduced, which are related to BSDE with Brownian motion and Poisson point process. A strict comparison theorem, monotonic limit theorem related to t...Concepts of g-supersolution, g-manrtingale, g-supermartingale are introduced, which are related to BSDE with Brownian motion and Poisson point process. A strict comparison theorem, monotonic limit theorem related to this type of BSDE are also discussed. As an application of these results, a nonlinear Doob-Meyer decomposition theorem is obtained.展开更多
基金This work was supported by National Key R&D Program of China(Grant No.2018YFA0703900)National Natural Science Foundation of China(Grant No.11671231)+1 种基金Tian Yuan Fund of the National Natural Science Foundation of China(Grant Nos.11526205 and 11626247)National Basic Research Program of China(973 Program)(Grant No.2007CB814900).
文摘We introduce G-Lévy processes which develop the theory of processes with independent and stationary increments under the framework of sublinear expectations.We then obtain the Lévy-Khintchine formula and the existence for G-Lévy processes.We also introduce G-Poisson processes.
文摘Concepts of g-supersolution, g-manrtingale, g-supermartingale are introduced, which are related to BSDE with Brownian motion and Poisson point process. A strict comparison theorem, monotonic limit theorem related to this type of BSDE are also discussed. As an application of these results, a nonlinear Doob-Meyer decomposition theorem is obtained.