This study develops a GWO-optimized cascaded fuzzy-PID controller with triangular membership functions for load frequency control in interconnected power systems.The controller’s effectiveness is demonstrated on ther...This study develops a GWO-optimized cascaded fuzzy-PID controller with triangular membership functions for load frequency control in interconnected power systems.The controller’s effectiveness is demonstrated on thermal–thermal and hybrid thermal–hydro–gas power systems.The controller parameters were tuned using the Integral Time Absolute Error(ITAE)objective function,which was also evaluated alongside other objective functions(IAE,ISE,and ITSE)to ensure high precision in frequency stabilization.To validate the effectiveness of the triangular membership function,comparisons were made with fuzzy-PID controllers employing trapezoidal and Gaussian membership functions.Performance metrics,including ITAE,settling time,overshoot,and undershoot of frequency deviation,as well as tie-line power deviation,were evaluated.Robustness was established through a comprehensive sensitivity analysis with T_(G),T_(T),andT_(R) parameter variations(±50%),a non-linearity analysis incorporating Generation Rate Constraint(GRC)and Governor Deadband(GDB),a random Step Load Perturbation(SLP)over 0–100 s,and also Stability analysis of the proposed scheme is conducted using multiple approaches,including frequency-domain analysis,Lyapunov stability theory,and eigenvalue analysis.Additionally,the system incorporating thermal,hydro,and gas turbines,along with advanced components like CES and HVDC links,was analysed.Comparisons were conducted against controllers optimized using Modified Grasshopper Optimization Algorithm(MGOA),Honey Badger Algorithm(HBA),Particle Swarm Optimization(PSO),Artificial Bee Colony(ABC),and Spider Monkey Optimization(SMO)algorithms.Results demonstrate that the GWO-based fuzzy-PID controller outperforms the alternatives,exhibiting superior performance across all evaluated metrics.This highlights the potential of the proposed approach as a robust solution for load frequency control in complex and dynamic power systems.展开更多
The design of a compound control is presented for the servo system of hydraulic flight motion simulator, which suffers from highly nonlinear dynamics, large parameter time-variation and severe load coupling among chan...The design of a compound control is presented for the servo system of hydraulic flight motion simulator, which suffers from highly nonlinear dynamics, large parameter time-variation and severe load coupling among channels. The compound control is composed of a robust feedback controller and a feedforward compensator. The design aim is to achieve high tracking perform- ance even in the presence of considerable uncertainty, external disturbance and load coupling among channels. Toward this aim the feedback controller for rejecting perturbation and disturbance is designed by usingμ synthesis optimization technique and the feedforward compensator for compensating time lag of dynamic system is established based on the basic idea of zero phase error tracking. To validate the proposed control strategy, simulations and experiments are implemented, and show that the result- ing system is highly robust against model perturbation and possesses excellent capability of suppressing the load coupling and improving the tracking performance.展开更多
Multivariables, strong coupling, nonlinearity, and large delays characterize the boiler-turbine coordinated control systems for ship power equipment. To better deal with these conditions, a compound control strategy b...Multivariables, strong coupling, nonlinearity, and large delays characterize the boiler-turbine coordinated control systems for ship power equipment. To better deal with these conditions, a compound control strategy based on a support vector machine (SVM) with inverse identification was proposed and applied to research simulating coordinated control systems. This method combines SVM inverse control and fuzzy control, taking advantage of the merits of SVM inverse controls which can be designed easily and have high reliability, and those of fuzzy controls, which respond rapidly and have good anti-jamming capability and robustness. It ensures the controller can be controlled with near instantaneous adjustments to maintain a steady state, even if the SVM is not trained well. The simulation results show that the control quality of this fuzzy-SVM compound control algorithm is high, with good performance in dynamic response speed, static stability, restraint of overshoot, and robustness.展开更多
Aiming at characteristic of time delay, time-varying parameters and much disturb in glass greenhouse heating system, fuzzy smith cascade compound control policy based on typical PID cascade compound control policy is ...Aiming at characteristic of time delay, time-varying parameters and much disturb in glass greenhouse heating system, fuzzy smith cascade compound control policy based on typical PID cascade compound control policy is proposed. Simulation results show that it is effective to overcome the influence of time delay on stability of control system and the system possesses strong robust and good dynamic performance..展开更多
Objective To explore the feasibility of electroacupuncture compound anesthesia in radiofrequency ablation for hypertrophic inferior turbinate.Methods The patients confirmed to the enrolled criteria were randomly divid...Objective To explore the feasibility of electroacupuncture compound anesthesia in radiofrequency ablation for hypertrophic inferior turbinate.Methods The patients confirmed to the enrolled criteria were randomly divided into an observation group(n=31) and a control group(n=30).In the observation group,electroacupuncture was applied to Sìbái(四白 ST 2),Xiàguān(下关 ST 7),Hégǔ(合谷 LI 4) and Zhīgōu(支沟 TE 6) on the left side for the anesthesia and the routine local anesthesia was done on the right side.In the control group,the routine local anesthesia was adopted on both sides.The feelings of pain,circulatory index and operation effect were observed and compared between the two groups.Results During radiofrequency ablation,the pain grades of two measurements on the left side and the 2nd measurement on the right in the observation group were all lower than those in the control group(all P〈0.05).In the observation group,the pain grade on the left side was lower than that on the right side(P〈0.05),and the systolic blood pressure and the heart rate were lower than those in the control group when undergoing the 2nd radiofrequency ablation on the right side and on the left side,respectively(all P〈0.05).There was no significant difference in operation effect between the two groups.Conclusion Electroacupuncture compound anesthesia can meet the analgesia requirement of radiofrequency ablation for hypertrophic inferior turbinate,and would be helpful to prevent cyclic fluctuation during the operation at the same time.展开更多
A compound controller is proposed to alleviate the considerable chattering in output of zero phase error tracking controller (ZPETC), when the flight simulator losses command data of simulation signal. Besides, the ...A compound controller is proposed to alleviate the considerable chattering in output of zero phase error tracking controller (ZPETC), when the flight simulator losses command data of simulation signal. Besides, the shortcomings, caused by conventional differential methods in retrieving velocity and acceleration signals, are avoided to a certain extent. The compound controller based on disturbance observer (DOB) is composed of a feed-forward controller and a feedback controller. It estimates velocity and acceleration of unknown tracking signal, and also velocity response with an approximate method for differential. The experiments on a single-axis flight simulator show that the proposed method has strong robustness against parameter perturbations and external disturbances, owing to the introduced DOB. Compared with the scheme with ZPETC, the proposed scheme possesses more simple design and better tracking performance. Moreover, it is less sensitive to position command distortion of flight simulator.展开更多
The coaxial compound helicopter has two possible strategies for heading control: collective differential and rudder deflection. A flight dynamics model is developed to assess the effect of different heading control st...The coaxial compound helicopter has two possible strategies for heading control: collective differential and rudder deflection. A flight dynamics model is developed to assess the effect of different heading control strategies. This includes the trim characteristics, steady flight performance,controllability, and manoeuvrability. The trim study demonstrates that heading control strategies are less influential on trim results, and the steady flight performance is also not significantly affected by the heading control strategy adopted. The controllability analysis shows although heading bandwidth and phase delay results at various speeds with different heading control strategies are all satisfied, the control derivative of the collective differential decreases as speed increases, and its heading aggressive agility is degraded into Level 3 in high-speed flight. In addition, using collective differential would lead to severe heading-rolling coupling as forward speed increases. On the contrary, the control derivative and aggressive agility of the rudder deflection is improved with forward speed, and there is no evidence of heading-rolling coupling. Finally, the transient turn MissionTask-Element(MTE) is utilized to investigate the heading manoeuvre characteristics in different heading control strategies, which indicates that the collective differential would add the amplitude of control input and the power consumption during this MTE.展开更多
The impact dynamics, impact effect, and post-impact unstable motion sup- pression of free-floating space manipulator capturing a satellite on orbit are analyzed. Firstly, the dynamics equation of free-floating space m...The impact dynamics, impact effect, and post-impact unstable motion sup- pression of free-floating space manipulator capturing a satellite on orbit are analyzed. Firstly, the dynamics equation of free-floating space manipulator is derived using the sec- ond Lagrangian equation. Combining the momentum conservation principle, the impact dynamics and effect between the space manipulator end-effector and satellite of the cap- ture process are analyzed with the momentum impulse method. Focusing on the unstable motion of space manipulator due to the above impact effect, a robust adaptive compound control algorithm is designed to suppress the above unstable motion. There is no need to control the free-floating base position to save the jet fuel. Finally, the simulation is proposed to show the impact effect and verify the validity of the control algorithm.展开更多
A robust controller for bank to turn(BTT) missiles with aerodynamic fins and reaction jet control system(RCS) is developed based on nonlinear control dynamic models comprising couplings and aerodynamic uncertainties. ...A robust controller for bank to turn(BTT) missiles with aerodynamic fins and reaction jet control system(RCS) is developed based on nonlinear control dynamic models comprising couplings and aerodynamic uncertainties. The fixed time convergence theory is incorporated with the sliding mode control technique to ensure that the system tracks the desired command within uniform bounded time under different initial conditions. Unlike previous terminal sliding mode approaches, the bound of settling time is independent of the initial state, which means performance metrics like convergence rate can be predicted beforehand. To reduce the burden of control design in terms of robustness, extended state observer(ESO) is introduced for uncertainty estimation with the output substituted into the controller as feedforward compensation. Cascade control structure is employed with the proposed control law and therein the compound control signal is obtained.Afterwards, control inputs for two kinds of actuators are allocated on the basis of their inherent characteristics. Finally, a number of simulations are carried out and demonstrate the effectiveness of the designed controller.展开更多
To solve the control allocation problem of dual aero/jet vane control missile, dynamics e- quations in longitudinal plane are derived, and the structure of compound control loop is designed based on attitude autopilot...To solve the control allocation problem of dual aero/jet vane control missile, dynamics e- quations in longitudinal plane are derived, and the structure of compound control loop is designed based on attitude autopilot. Four brief compound control allocation strategies are researched and an- alyzed. Furthermore, a new strategy called chain combination variable proportional coefficient strat- egy based on rudder effect is presented. By simulation of initial climb trajectory, the characteristics of all the strategies are researched, and the results illustrate that the new strategy can meet the re- quirement well.展开更多
The principle of electric braking system is analyzed and an anti-skid braking system based on the slip rate control is proposed.The fuzzy-PID controller with parameter self-adjustment feature is designed for the anti-...The principle of electric braking system is analyzed and an anti-skid braking system based on the slip rate control is proposed.The fuzzy-PID controller with parameter self-adjustment feature is designed for the anti-skid braking system.The dynamic model of aircraft ground braking is established in the simulation environment of MATLAB/SIMULINK,and simulation results of dry runway and wet runway are presented.The results show that the fuzzy-PID controller with parameter self-adjustment feature for the electric anti-skid braking system keeps working in the state of stability and the brake efficiencies are increased to 93%on dry runway and 82%on wet runway respectively.展开更多
To weaken the nonlinear coupling influence among the variables in the speed and tension system of reversible cold strip mill, a compound control(CC) strategy based on invariance principle was proposed. Firstly, invari...To weaken the nonlinear coupling influence among the variables in the speed and tension system of reversible cold strip mill, a compound control(CC) strategy based on invariance principle was proposed. Firstly, invariance principle was used to realize static decoupling between the speed and tension of reversible cold strip mill. Then, considering the influence caused by the time variation of steel coil radius and rotational inertia of the left and right coilers, as well as the uncertainties, a CC strategy that is composed of extended state observer(ESO) and global sliding mode control(GSMC) with backstepping adaptive was proposed,which further realized dynamic decoupling and coordination control for the speed and tension system. Theoretical analysis shows that the resulting closed-loop system is global bounded stable. Finally, the simulation was carried out on the speed and tension system of a 1422 mm reversible cold strip mill by using the actual data, and through the comparison of the other control strategies, validity of the proposed CC strategy was shown by the results.展开更多
The five degree freedom magnetic bearing is researched and its structure and working principles are introduced also. Based on the fuzzy control technology, combining fuzzy algorithm and PID control method, identifying...The five degree freedom magnetic bearing is researched and its structure and working principles are introduced also. Based on the fuzzy control technology, combining fuzzy algorithm and PID control method, identifying the transition process mode of the online system to get the PID parameters' self-adjusting, the magnetic beating system's Fuzzy-PID nonlinear controller is designed by analyzing the system control demands. The Fuzzy-PID nonlinear controller can deal with the magnetic bearing system' s open loop instability and strong nonlinearity, and the approach could improve the system's rapidity, adaptability, stability and dynamic characteristics. Comparative analysis and experiments are conducted between linear PID and nonlinear fuzzy- PID control methods, the results show that the fuzzy-PID controller is better, and the five-freedom magnetic bearing' s rotary precision experiments are conducted by the fuzzy-PID controller, it satisfies the control rotary precision demands and realizes the hearing's steady floating and rotating.展开更多
The present study investigated quantitatively the significance of HNLC (high-nutrient low-chlorophyll) regions and its grazing control with the improved iron fertilization for climate change. The limitation of iron (F...The present study investigated quantitatively the significance of HNLC (high-nutrient low-chlorophyll) regions and its grazing control with the improved iron fertilization for climate change. The limitation of iron (Fe) for phytoplankton growth in HNLC regions was confirmed by sulfur compounds (S) such as volcanic ash and hydrogen sulfide (H2S) in batch cultures, whose chemical sediment of Fe3S4 showed 4.06 wt%. The technologies developed for iron fertilization since 1993 till now were not practical to provide sufficient amounts of bioavailable iron due to sedimentary iron sulfides induced by undersea volcanic sulfur compounds. The proposed technology for iron fertilization was improved to enhance the bioavailable iron to phytoplankton by keeping minimal sulfur compounds in HNLC regions. The low productivity of phytoplankton by grazing control in HNLC regions was 6% diatoms whose 52% was grazed by copepods and 42% by krill on the basis of data analysis in 2000 EisenEx Experiment at boundary of Antarctic and African tectonic plates. All of the previous iron fertilization experiments were conducted at volcanic sulfur compounds enriched HNLC regions. The present study revealed that the enhanced phytoplankton productivity in batch culture without sedimentary iron sulfides can be possible only if sulfur compounds are minimal, as is in Shag Rocks (53°S, 42°W) of South Georgia in Scotia Sea in the Southern Ocean.展开更多
Electric load simulator(ELS) systems are employed for electric power steering(EPS) test benches to load rack force by precise control. Precise ELS control is strongly influenced by nonlinear factors. When the steering...Electric load simulator(ELS) systems are employed for electric power steering(EPS) test benches to load rack force by precise control. Precise ELS control is strongly influenced by nonlinear factors. When the steering motor rapidly rotates, extra force is directly superimposed on the original static loading error, which becomes one of the main sources of the final error. It is key to achieve ELS precise loading control for the entire EPS test bench. Therefore, a three-part compound control algorithm is proposed to improve the loading accuracy. First, a fuzzy proportional–integral plus feedforward controller with force feedback is presented. Second, a friction compensation algorithm is established to reduce the influence of friction. Then, the relationships between each quantity and the extra force are analyzed when the steering motor rapidly rotates, and a net torque feedforward compensation algorithm is proposed to eliminate the extra force. The compound control algorithm was verified through simulations and experiments. The results show that the tracking performance of the compound control algorithm satisfies the demands of engineering practice, and the extra force in the ELS system can be suppressed by the net torque corresponding to the actuator’s acceleration.展开更多
Volatile organic compounds(VOCs),important precursors of ozone(O_(3))and fine particulate matter(PM_(2.5)),are the key to curb the momentum of O_(3)growth and further reducing PM_(2.5)in China.Container manufacturing ...Volatile organic compounds(VOCs),important precursors of ozone(O_(3))and fine particulate matter(PM_(2.5)),are the key to curb the momentum of O_(3)growth and further reducing PM_(2.5)in China.Container manufacturing industry is one of the major VOC emitters,and more than 96%containers of the world are produced in China,with the annual usage of coatings of over 200,000 tons in recent years.This is the first research on the emission characteristics of VOCs in Chinese container manufacturing industry,including concentration and ozone formation potential(OFP)of each species.The result shows that the largest amounts of VOCs are emitted during the pretreatment process,followed by the paint mixing process and primer painting process,and finally other sprays process.The average VOC concentrations in the workshops,the exhausts before treatment and the exhausts after treatment are ranging from 82.67–797.46,170–1,812.65,66.20–349.63 mg/m^(3),respectively.Benzenes,alcohols and ethers are main species,which contribute more than 90%OFP together.Based on the emission characteristics of VOCs and the technical feasibility,it is recommended to set the emission limit in standard of benzene to 1.0 mg/m^(3),toluene to 10 mg/m^(3),xylene to 20 mg/m^(3),benzenes to 40 mg/m^(3),alcohols and ethers to 50 mg/m^(3),and VOCs to 100 mg/m^(3).The study reports the industry emission characteristics and discusses the standard limits,which is a powerful support to promote VOCs emission reduction,and to promote the coordinated control of PM_(2.5)and O_(3)pollution.展开更多
In order to evaluate the performance of semi-active cab’s hydraulic mounts(SHM)of the off-road vibratory roller with the optimal fuzzy-PID(proportional integral derivative)control,a nonlinear dynamic model of the veh...In order to evaluate the performance of semi-active cab’s hydraulic mounts(SHM)of the off-road vibratory roller with the optimal fuzzy-PID(proportional integral derivative)control,a nonlinear dynamic model of the vehicle interacting with off-road terrains is established based on Matlab/Simulink software.The weighted root-mean-square(RMS)acceleration responses of the driver’s seat heave and the cab’s pitch angle are chosen as objective functions.The SHM is then optimized and analyzed via the optimal fuzzy-PID control under different operation conditions.The simulations results show that the driver’s ride comfort and the cab shaking are greatly affected by the off-road terrains under various operating conditions of the vehicle,especially at the speed from 8 to 12 km/h on a very poor terrain surface of Grenville soil ground under the vehicle travelling.With SHM using the optimal fuzzy-PID control,the driver’s ride comfort and the cab shaking are clearly improved under various operation conditions of the vehicle,particularly at the speed from 6 to 7 km/h of the vehicle traveling.展开更多
Based on the pressure regulation circuit adopting electro-hydraulic proportional relief valve to control tension, a new type of electro-hydraulic compound control circuit with throttle control unit is presented, which...Based on the pressure regulation circuit adopting electro-hydraulic proportional relief valve to control tension, a new type of electro-hydraulic compound control circuit with throttle control unit is presented, which can obtain optimal dynamic damping ratio through real-time altering pressure-flow gain of the throttle control unit, improve the dynamic characteristic of tension follow-up control for the tension system with high inertia loads. Moreover, the characteristic when the cable linear velocity variation causes change of tension is investigated, and a compound control strategy is proposed. The theoretical analysis and experimental results show that the electro-hydraulic compound control circuit is effective and the characteristic of the compound control strategy is satisfactory.展开更多
An investigation is conducted on optimizing the control allocation for trimmed flight on the compound helicopter.The compound helicopter features a single main rotor,a vectored thrust ducted propeller(VTDP)and lifting...An investigation is conducted on optimizing the control allocation for trimmed flight on the compound helicopter.The compound helicopter features a single main rotor,a vectored thrust ducted propeller(VTDP)and lifting wings.Due to the redundant controls for thrust,elevator deflection,and differential and symmetric flap deflection,there is a wide range of trim solutions in forward flight for compound helicopter.A method is developed to calculate optimal trim solutions.Firstly,aerodynamics models for deferent subsystems of the compound helicopter are conducted,which consider the mutual interaction of each part.Secondly,a flight dynamics model is developed based on which the method of trim optimization is performed.Finally,the method is demonstrated using a compound helicopter UH 60L/VTDP.The trim optimization of flight conditions from hover to 370 km/h is conducted using the optimization method.The controls,fuselage attitudes as well as the allocation of lift and thrust along with the flight speed are obtained.展开更多
Based on the analysis of the failure characteristics and backfilling effect of the compound roof at 1801 backfilling workface in Taiyuan coal mine, China, we propose a method of controlling the pre- subsidence of a co...Based on the analysis of the failure characteristics and backfilling effect of the compound roof at 1801 backfilling workface in Taiyuan coal mine, China, we propose a method of controlling the pre- subsidence of a compound roof by using pre-stressed bolts to improve the backfilling ratio of the work- face so as to maintain the global stability of the stope roof. In addition, PHASE simulation software was employed to analyze the influence law of pre-stressing force, length, and interval on roof subsidence at the workface. On the basis of the numerical simulation results, a model for calculating the pre-stressing force and length of the bolts, the interval between the bolts, as well as roof subsidence at the workface, was established by using SPSS regression analysis software. Moreover, the research results were applied successfully to the 1801 filling workface. According to the monitoring data of roof closure, it was found that the final subsidence value for the goal roof was 350 mm and the filling ratio at the workface was 86%, which could fully meet the demand for safety production at the workface. The safe and effective control of the stope roof was therefore realized, which achieves the goal of safe and efficient backfilling mining under a compound roof.展开更多
文摘This study develops a GWO-optimized cascaded fuzzy-PID controller with triangular membership functions for load frequency control in interconnected power systems.The controller’s effectiveness is demonstrated on thermal–thermal and hybrid thermal–hydro–gas power systems.The controller parameters were tuned using the Integral Time Absolute Error(ITAE)objective function,which was also evaluated alongside other objective functions(IAE,ISE,and ITSE)to ensure high precision in frequency stabilization.To validate the effectiveness of the triangular membership function,comparisons were made with fuzzy-PID controllers employing trapezoidal and Gaussian membership functions.Performance metrics,including ITAE,settling time,overshoot,and undershoot of frequency deviation,as well as tie-line power deviation,were evaluated.Robustness was established through a comprehensive sensitivity analysis with T_(G),T_(T),andT_(R) parameter variations(±50%),a non-linearity analysis incorporating Generation Rate Constraint(GRC)and Governor Deadband(GDB),a random Step Load Perturbation(SLP)over 0–100 s,and also Stability analysis of the proposed scheme is conducted using multiple approaches,including frequency-domain analysis,Lyapunov stability theory,and eigenvalue analysis.Additionally,the system incorporating thermal,hydro,and gas turbines,along with advanced components like CES and HVDC links,was analysed.Comparisons were conducted against controllers optimized using Modified Grasshopper Optimization Algorithm(MGOA),Honey Badger Algorithm(HBA),Particle Swarm Optimization(PSO),Artificial Bee Colony(ABC),and Spider Monkey Optimization(SMO)algorithms.Results demonstrate that the GWO-based fuzzy-PID controller outperforms the alternatives,exhibiting superior performance across all evaluated metrics.This highlights the potential of the proposed approach as a robust solution for load frequency control in complex and dynamic power systems.
文摘The design of a compound control is presented for the servo system of hydraulic flight motion simulator, which suffers from highly nonlinear dynamics, large parameter time-variation and severe load coupling among channels. The compound control is composed of a robust feedback controller and a feedforward compensator. The design aim is to achieve high tracking perform- ance even in the presence of considerable uncertainty, external disturbance and load coupling among channels. Toward this aim the feedback controller for rejecting perturbation and disturbance is designed by usingμ synthesis optimization technique and the feedforward compensator for compensating time lag of dynamic system is established based on the basic idea of zero phase error tracking. To validate the proposed control strategy, simulations and experiments are implemented, and show that the result- ing system is highly robust against model perturbation and possesses excellent capability of suppressing the load coupling and improving the tracking performance.
文摘Multivariables, strong coupling, nonlinearity, and large delays characterize the boiler-turbine coordinated control systems for ship power equipment. To better deal with these conditions, a compound control strategy based on a support vector machine (SVM) with inverse identification was proposed and applied to research simulating coordinated control systems. This method combines SVM inverse control and fuzzy control, taking advantage of the merits of SVM inverse controls which can be designed easily and have high reliability, and those of fuzzy controls, which respond rapidly and have good anti-jamming capability and robustness. It ensures the controller can be controlled with near instantaneous adjustments to maintain a steady state, even if the SVM is not trained well. The simulation results show that the control quality of this fuzzy-SVM compound control algorithm is high, with good performance in dynamic response speed, static stability, restraint of overshoot, and robustness.
文摘Aiming at characteristic of time delay, time-varying parameters and much disturb in glass greenhouse heating system, fuzzy smith cascade compound control policy based on typical PID cascade compound control policy is proposed. Simulation results show that it is effective to overcome the influence of time delay on stability of control system and the system possesses strong robust and good dynamic performance..
基金Supported by Foundation Project in Guang'anmen Hospital,China Academy of Chinese Medical Sciences:2006 S 195
文摘Objective To explore the feasibility of electroacupuncture compound anesthesia in radiofrequency ablation for hypertrophic inferior turbinate.Methods The patients confirmed to the enrolled criteria were randomly divided into an observation group(n=31) and a control group(n=30).In the observation group,electroacupuncture was applied to Sìbái(四白 ST 2),Xiàguān(下关 ST 7),Hégǔ(合谷 LI 4) and Zhīgōu(支沟 TE 6) on the left side for the anesthesia and the routine local anesthesia was done on the right side.In the control group,the routine local anesthesia was adopted on both sides.The feelings of pain,circulatory index and operation effect were observed and compared between the two groups.Results During radiofrequency ablation,the pain grades of two measurements on the left side and the 2nd measurement on the right in the observation group were all lower than those in the control group(all P〈0.05).In the observation group,the pain grade on the left side was lower than that on the right side(P〈0.05),and the systolic blood pressure and the heart rate were lower than those in the control group when undergoing the 2nd radiofrequency ablation on the right side and on the left side,respectively(all P〈0.05).There was no significant difference in operation effect between the two groups.Conclusion Electroacupuncture compound anesthesia can meet the analgesia requirement of radiofrequency ablation for hypertrophic inferior turbinate,and would be helpful to prevent cyclic fluctuation during the operation at the same time.
基金Program for New Century Excellent Talents in University (NCET-07-0044)
文摘A compound controller is proposed to alleviate the considerable chattering in output of zero phase error tracking controller (ZPETC), when the flight simulator losses command data of simulation signal. Besides, the shortcomings, caused by conventional differential methods in retrieving velocity and acceleration signals, are avoided to a certain extent. The compound controller based on disturbance observer (DOB) is composed of a feed-forward controller and a feedback controller. It estimates velocity and acceleration of unknown tracking signal, and also velocity response with an approximate method for differential. The experiments on a single-axis flight simulator show that the proposed method has strong robustness against parameter perturbations and external disturbances, owing to the introduced DOB. Compared with the scheme with ZPETC, the proposed scheme possesses more simple design and better tracking performance. Moreover, it is less sensitive to position command distortion of flight simulator.
基金supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions of China, the program of China Scholarships Council (No. 201706830016)the National Natural Science Foundation of China (No. 11672128)
文摘The coaxial compound helicopter has two possible strategies for heading control: collective differential and rudder deflection. A flight dynamics model is developed to assess the effect of different heading control strategies. This includes the trim characteristics, steady flight performance,controllability, and manoeuvrability. The trim study demonstrates that heading control strategies are less influential on trim results, and the steady flight performance is also not significantly affected by the heading control strategy adopted. The controllability analysis shows although heading bandwidth and phase delay results at various speeds with different heading control strategies are all satisfied, the control derivative of the collective differential decreases as speed increases, and its heading aggressive agility is degraded into Level 3 in high-speed flight. In addition, using collective differential would lead to severe heading-rolling coupling as forward speed increases. On the contrary, the control derivative and aggressive agility of the rudder deflection is improved with forward speed, and there is no evidence of heading-rolling coupling. Finally, the transient turn MissionTask-Element(MTE) is utilized to investigate the heading manoeuvre characteristics in different heading control strategies, which indicates that the collective differential would add the amplitude of control input and the power consumption during this MTE.
基金supported by the National Natural Science Foundation of China(Nos.11072061 and 11372073)the Natural Science Foundation of Fujian Province(No.2010J01003)
文摘The impact dynamics, impact effect, and post-impact unstable motion sup- pression of free-floating space manipulator capturing a satellite on orbit are analyzed. Firstly, the dynamics equation of free-floating space manipulator is derived using the sec- ond Lagrangian equation. Combining the momentum conservation principle, the impact dynamics and effect between the space manipulator end-effector and satellite of the cap- ture process are analyzed with the momentum impulse method. Focusing on the unstable motion of space manipulator due to the above impact effect, a robust adaptive compound control algorithm is designed to suppress the above unstable motion. There is no need to control the free-floating base position to save the jet fuel. Finally, the simulation is proposed to show the impact effect and verify the validity of the control algorithm.
基金supported by the National Natural Science Foundation of China(11572036)
文摘A robust controller for bank to turn(BTT) missiles with aerodynamic fins and reaction jet control system(RCS) is developed based on nonlinear control dynamic models comprising couplings and aerodynamic uncertainties. The fixed time convergence theory is incorporated with the sliding mode control technique to ensure that the system tracks the desired command within uniform bounded time under different initial conditions. Unlike previous terminal sliding mode approaches, the bound of settling time is independent of the initial state, which means performance metrics like convergence rate can be predicted beforehand. To reduce the burden of control design in terms of robustness, extended state observer(ESO) is introduced for uncertainty estimation with the output substituted into the controller as feedforward compensation. Cascade control structure is employed with the proposed control law and therein the compound control signal is obtained.Afterwards, control inputs for two kinds of actuators are allocated on the basis of their inherent characteristics. Finally, a number of simulations are carried out and demonstrate the effectiveness of the designed controller.
文摘To solve the control allocation problem of dual aero/jet vane control missile, dynamics e- quations in longitudinal plane are derived, and the structure of compound control loop is designed based on attitude autopilot. Four brief compound control allocation strategies are researched and an- alyzed. Furthermore, a new strategy called chain combination variable proportional coefficient strat- egy based on rudder effect is presented. By simulation of initial climb trajectory, the characteristics of all the strategies are researched, and the results illustrate that the new strategy can meet the re- quirement well.
基金Supported by the National Natural Science Foundation of China(51105197,51305198,11372129)the Project Funded by the Priority Academic Program Department of Jiangsu Higher Education Instructions
文摘The principle of electric braking system is analyzed and an anti-skid braking system based on the slip rate control is proposed.The fuzzy-PID controller with parameter self-adjustment feature is designed for the anti-skid braking system.The dynamic model of aircraft ground braking is established in the simulation environment of MATLAB/SIMULINK,and simulation results of dry runway and wet runway are presented.The results show that the fuzzy-PID controller with parameter self-adjustment feature for the electric anti-skid braking system keeps working in the state of stability and the brake efficiencies are increased to 93%on dry runway and 82%on wet runway respectively.
基金Project(61074099)supported by the National Natural Science Foundation of ChinaProject(LJRC013)supported by Cultivation Program for Leading Talent of Innovation Team in Colleges and Universities of Hebei Province,ChinaProject(B705)supported by Doctor Foundation of Yanshan University,China
文摘To weaken the nonlinear coupling influence among the variables in the speed and tension system of reversible cold strip mill, a compound control(CC) strategy based on invariance principle was proposed. Firstly, invariance principle was used to realize static decoupling between the speed and tension of reversible cold strip mill. Then, considering the influence caused by the time variation of steel coil radius and rotational inertia of the left and right coilers, as well as the uncertainties, a CC strategy that is composed of extended state observer(ESO) and global sliding mode control(GSMC) with backstepping adaptive was proposed,which further realized dynamic decoupling and coordination control for the speed and tension system. Theoretical analysis shows that the resulting closed-loop system is global bounded stable. Finally, the simulation was carried out on the speed and tension system of a 1422 mm reversible cold strip mill by using the actual data, and through the comparison of the other control strategies, validity of the proposed CC strategy was shown by the results.
文摘The five degree freedom magnetic bearing is researched and its structure and working principles are introduced also. Based on the fuzzy control technology, combining fuzzy algorithm and PID control method, identifying the transition process mode of the online system to get the PID parameters' self-adjusting, the magnetic beating system's Fuzzy-PID nonlinear controller is designed by analyzing the system control demands. The Fuzzy-PID nonlinear controller can deal with the magnetic bearing system' s open loop instability and strong nonlinearity, and the approach could improve the system's rapidity, adaptability, stability and dynamic characteristics. Comparative analysis and experiments are conducted between linear PID and nonlinear fuzzy- PID control methods, the results show that the fuzzy-PID controller is better, and the five-freedom magnetic bearing' s rotary precision experiments are conducted by the fuzzy-PID controller, it satisfies the control rotary precision demands and realizes the hearing's steady floating and rotating.
文摘The present study investigated quantitatively the significance of HNLC (high-nutrient low-chlorophyll) regions and its grazing control with the improved iron fertilization for climate change. The limitation of iron (Fe) for phytoplankton growth in HNLC regions was confirmed by sulfur compounds (S) such as volcanic ash and hydrogen sulfide (H2S) in batch cultures, whose chemical sediment of Fe3S4 showed 4.06 wt%. The technologies developed for iron fertilization since 1993 till now were not practical to provide sufficient amounts of bioavailable iron due to sedimentary iron sulfides induced by undersea volcanic sulfur compounds. The proposed technology for iron fertilization was improved to enhance the bioavailable iron to phytoplankton by keeping minimal sulfur compounds in HNLC regions. The low productivity of phytoplankton by grazing control in HNLC regions was 6% diatoms whose 52% was grazed by copepods and 42% by krill on the basis of data analysis in 2000 EisenEx Experiment at boundary of Antarctic and African tectonic plates. All of the previous iron fertilization experiments were conducted at volcanic sulfur compounds enriched HNLC regions. The present study revealed that the enhanced phytoplankton productivity in batch culture without sedimentary iron sulfides can be possible only if sulfur compounds are minimal, as is in Shag Rocks (53°S, 42°W) of South Georgia in Scotia Sea in the Southern Ocean.
基金Supported by National Natural Science Foundation of China (Grant No. 51505178)China Postdoctoral Science Foundation (Grant No. 2014M561289)。
文摘Electric load simulator(ELS) systems are employed for electric power steering(EPS) test benches to load rack force by precise control. Precise ELS control is strongly influenced by nonlinear factors. When the steering motor rapidly rotates, extra force is directly superimposed on the original static loading error, which becomes one of the main sources of the final error. It is key to achieve ELS precise loading control for the entire EPS test bench. Therefore, a three-part compound control algorithm is proposed to improve the loading accuracy. First, a fuzzy proportional–integral plus feedforward controller with force feedback is presented. Second, a friction compensation algorithm is established to reduce the influence of friction. Then, the relationships between each quantity and the extra force are analyzed when the steering motor rapidly rotates, and a net torque feedforward compensation algorithm is proposed to eliminate the extra force. The compound control algorithm was verified through simulations and experiments. The results show that the tracking performance of the compound control algorithm satisfies the demands of engineering practice, and the extra force in the ELS system can be suppressed by the net torque corresponding to the actuator’s acceleration.
基金supported by the National Key Research and Development Project of Research(No.2017YFC0212805)the Natural Science Foundation of Guangdong Province,China(NO.2015B020236002)+2 种基金the Project of Emission Standard of Air Pollutants for Freight Container Manufacturing(No.2017.413)the National Natural Science Foundation of China(No.41605092)Project of the establishment of the VOCs organic solvent database in industrial use for the second national survey of pollution sources(No.20182061)。
文摘Volatile organic compounds(VOCs),important precursors of ozone(O_(3))and fine particulate matter(PM_(2.5)),are the key to curb the momentum of O_(3)growth and further reducing PM_(2.5)in China.Container manufacturing industry is one of the major VOC emitters,and more than 96%containers of the world are produced in China,with the annual usage of coatings of over 200,000 tons in recent years.This is the first research on the emission characteristics of VOCs in Chinese container manufacturing industry,including concentration and ozone formation potential(OFP)of each species.The result shows that the largest amounts of VOCs are emitted during the pretreatment process,followed by the paint mixing process and primer painting process,and finally other sprays process.The average VOC concentrations in the workshops,the exhausts before treatment and the exhausts after treatment are ranging from 82.67–797.46,170–1,812.65,66.20–349.63 mg/m^(3),respectively.Benzenes,alcohols and ethers are main species,which contribute more than 90%OFP together.Based on the emission characteristics of VOCs and the technical feasibility,it is recommended to set the emission limit in standard of benzene to 1.0 mg/m^(3),toluene to 10 mg/m^(3),xylene to 20 mg/m^(3),benzenes to 40 mg/m^(3),alcohols and ethers to 50 mg/m^(3),and VOCs to 100 mg/m^(3).The study reports the industry emission characteristics and discusses the standard limits,which is a powerful support to promote VOCs emission reduction,and to promote the coordinated control of PM_(2.5)and O_(3)pollution.
基金The National Key Research and Development Plan(No.2019YFB2006402)
文摘In order to evaluate the performance of semi-active cab’s hydraulic mounts(SHM)of the off-road vibratory roller with the optimal fuzzy-PID(proportional integral derivative)control,a nonlinear dynamic model of the vehicle interacting with off-road terrains is established based on Matlab/Simulink software.The weighted root-mean-square(RMS)acceleration responses of the driver’s seat heave and the cab’s pitch angle are chosen as objective functions.The SHM is then optimized and analyzed via the optimal fuzzy-PID control under different operation conditions.The simulations results show that the driver’s ride comfort and the cab shaking are greatly affected by the off-road terrains under various operating conditions of the vehicle,especially at the speed from 8 to 12 km/h on a very poor terrain surface of Grenville soil ground under the vehicle travelling.With SHM using the optimal fuzzy-PID control,the driver’s ride comfort and the cab shaking are clearly improved under various operation conditions of the vehicle,particularly at the speed from 6 to 7 km/h of the vehicle traveling.
基金This project is supported by National Natural Science Foundation of China (No.50475105).
文摘Based on the pressure regulation circuit adopting electro-hydraulic proportional relief valve to control tension, a new type of electro-hydraulic compound control circuit with throttle control unit is presented, which can obtain optimal dynamic damping ratio through real-time altering pressure-flow gain of the throttle control unit, improve the dynamic characteristic of tension follow-up control for the tension system with high inertia loads. Moreover, the characteristic when the cable linear velocity variation causes change of tension is investigated, and a compound control strategy is proposed. The theoretical analysis and experimental results show that the electro-hydraulic compound control circuit is effective and the characteristic of the compound control strategy is satisfactory.
基金supported by the National Natural Science Foundation of China(No.51505216)
文摘An investigation is conducted on optimizing the control allocation for trimmed flight on the compound helicopter.The compound helicopter features a single main rotor,a vectored thrust ducted propeller(VTDP)and lifting wings.Due to the redundant controls for thrust,elevator deflection,and differential and symmetric flap deflection,there is a wide range of trim solutions in forward flight for compound helicopter.A method is developed to calculate optimal trim solutions.Firstly,aerodynamics models for deferent subsystems of the compound helicopter are conducted,which consider the mutual interaction of each part.Secondly,a flight dynamics model is developed based on which the method of trim optimization is performed.Finally,the method is demonstrated using a compound helicopter UH 60L/VTDP.The trim optimization of flight conditions from hover to 370 km/h is conducted using the optimization method.The controls,fuselage attitudes as well as the allocation of lift and thrust along with the flight speed are obtained.
基金the Qinglan Project,the National Key Basic Research Program of China (No.2013CB227905)the Science Fund for Creative Research Groups of the National Natural Science Foundation of China (No.51421003)
文摘Based on the analysis of the failure characteristics and backfilling effect of the compound roof at 1801 backfilling workface in Taiyuan coal mine, China, we propose a method of controlling the pre- subsidence of a compound roof by using pre-stressed bolts to improve the backfilling ratio of the work- face so as to maintain the global stability of the stope roof. In addition, PHASE simulation software was employed to analyze the influence law of pre-stressing force, length, and interval on roof subsidence at the workface. On the basis of the numerical simulation results, a model for calculating the pre-stressing force and length of the bolts, the interval between the bolts, as well as roof subsidence at the workface, was established by using SPSS regression analysis software. Moreover, the research results were applied successfully to the 1801 filling workface. According to the monitoring data of roof closure, it was found that the final subsidence value for the goal roof was 350 mm and the filling ratio at the workface was 86%, which could fully meet the demand for safety production at the workface. The safe and effective control of the stope roof was therefore realized, which achieves the goal of safe and efficient backfilling mining under a compound roof.