期刊文献+
共找到123,375篇文章
< 1 2 250 >
每页显示 20 50 100
Modified Watermarking Scheme Using Informed Embedding and Fuzzy c-Means–Based Informed Coding
1
作者 Jyun-Jie Wang Yin-Chen Lin Chi-Chun Chen 《Computers, Materials & Continua》 2025年第12期5595-5624,共30页
Digital watermarking must balance imperceptibility,robustness,complexity,and security.To address the challenge of computational efficiency in trellis-based informed embedding,we propose a modified watermarking framewo... Digital watermarking must balance imperceptibility,robustness,complexity,and security.To address the challenge of computational efficiency in trellis-based informed embedding,we propose a modified watermarking framework that integrates fuzzy c-means(FCM)clustering into the generation off block codewords for labeling trellis arcs.The system incorporates a parallel trellis structure,controllable embedding parameters,and a novel informed embedding algorithm with reduced complexity.Two types of embedding schemes—memoryless and memory-based—are designed to flexibly trade-off between imperceptibility and robustness.Experimental results demonstrate that the proposed method outperforms existing approaches in bit error rate(BER)and computational complexity under various attacks,including additive noise,filtering,JPEG compression,cropping,and rotation.The integration of FCM enhances robustness by increasing the codeword distance,while preserving perceptual quality.Overall,the proposed framework is suitable for real-time and secure watermarking applications. 展开更多
关键词 WATERMARKING informed embedding fuzzy c-means informed coding
在线阅读 下载PDF
Grouped machine learning methods for predicting rock mass parameters in a tunnel boring machine-driven tunnel based on fuzzy C-means clustering
2
作者 Ruirui Wang Yaodong Ni +1 位作者 Lingli Zhang Boyang Gao 《Deep Underground Science and Engineering》 2025年第1期55-71,共17页
To guarantee safe and efficient tunneling of a tunnel boring machine(TBM),rapid and accurate judgment of the rock mass condition is essential.Based on fuzzy C-means clustering,this paper proposes a grouped machine lea... To guarantee safe and efficient tunneling of a tunnel boring machine(TBM),rapid and accurate judgment of the rock mass condition is essential.Based on fuzzy C-means clustering,this paper proposes a grouped machine learning method for predicting rock mass parameters.An elaborate data set on field rock mass is collected,which also matches field TBM tunneling.Meanwhile,target stratum samples are divided into several clusters by fuzzy C-means clustering,and multiple submodels are trained by samples in different clusters with the input of pretreated TBM tunneling data and the output of rock mass parameter data.Each testing sample or newly encountered tunneling condition can be predicted by multiple submodels with the weight of the membership degree of the sample to each cluster.The proposed method has been realized by 100 training samples and verified by 30 testing samples collected from the C1 part of the Pearl Delta water resources allocation project.The average percentage error of uniaxial compressive strength and joint frequency(Jf)of the 30 testing samples predicted by the pure back propagation(BP)neural network is 13.62%and 12.38%,while that predicted by the BP neural network combined with fuzzy C-means is 7.66%and6.40%,respectively.In addition,by combining fuzzy C-means clustering,the prediction accuracies of support vector regression and random forest are also improved to different degrees,which demonstrates that fuzzy C-means clustering is helpful for improving the prediction accuracy of machine learning and thus has good applicability.Accordingly,the proposed method is valuable for predicting rock mass parameters during TBM tunneling. 展开更多
关键词 fuzzy c-means clustering machine learning rock mass parameter tunnel boring machine
原文传递
Unknown DDoS Attack Detection with Fuzzy C-Means Clustering and Spatial Location Constraint Prototype Loss
3
作者 Thanh-Lam Nguyen HaoKao +2 位作者 Thanh-Tuan Nguyen Mong-Fong Horng Chin-Shiuh Shieh 《Computers, Materials & Continua》 SCIE EI 2024年第2期2181-2205,共25页
Since its inception,the Internet has been rapidly evolving.With the advancement of science and technology and the explosive growth of the population,the demand for the Internet has been on the rise.Many applications i... Since its inception,the Internet has been rapidly evolving.With the advancement of science and technology and the explosive growth of the population,the demand for the Internet has been on the rise.Many applications in education,healthcare,entertainment,science,and more are being increasingly deployed based on the internet.Concurrently,malicious threats on the internet are on the rise as well.Distributed Denial of Service(DDoS)attacks are among the most common and dangerous threats on the internet today.The scale and complexity of DDoS attacks are constantly growing.Intrusion Detection Systems(IDS)have been deployed and have demonstrated their effectiveness in defense against those threats.In addition,the research of Machine Learning(ML)and Deep Learning(DL)in IDS has gained effective results and significant attention.However,one of the challenges when applying ML and DL techniques in intrusion detection is the identification of unknown attacks.These attacks,which are not encountered during the system’s training,can lead to misclassification with significant errors.In this research,we focused on addressing the issue of Unknown Attack Detection,combining two methods:Spatial Location Constraint Prototype Loss(SLCPL)and Fuzzy C-Means(FCM).With the proposed method,we achieved promising results compared to traditional methods.The proposed method demonstrates a very high accuracy of up to 99.8%with a low false positive rate for known attacks on the Intrusion Detection Evaluation Dataset(CICIDS2017)dataset.Particularly,the accuracy is also very high,reaching 99.7%,and the precision goes up to 99.9%for unknown DDoS attacks on the DDoS Evaluation Dataset(CICDDoS2019)dataset.The success of the proposed method is due to the combination of SLCPL,an advanced Open-Set Recognition(OSR)technique,and FCM,a traditional yet highly applicable clustering technique.This has yielded a novel method in the field of unknown attack detection.This further expands the trend of applying DL and ML techniques in the development of intrusion detection systems and cybersecurity.Finally,implementing the proposed method in real-world systems can enhance the security capabilities against increasingly complex threats on computer networks. 展开更多
关键词 CYBERSECURITY DDoS unknown attack detection machine learning deep learning incremental learning convolutional neural networks(CNN) open-set recognition(OSR) spatial location constraint prototype loss fuzzy c-means CICIDS2017 CICDDoS2019
在线阅读 下载PDF
Fuzzy C-Means Algorithm Based on Density Canopy and Manifold Learning
4
作者 Jili Chen Hailan Wang Xiaolan Xie 《Computer Systems Science & Engineering》 2024年第3期645-663,共19页
Fuzzy C-Means(FCM)is an effective and widely used clustering algorithm,but there are still some problems.considering the number of clusters must be determined manually,the local optimal solutions is easily influenced ... Fuzzy C-Means(FCM)is an effective and widely used clustering algorithm,but there are still some problems.considering the number of clusters must be determined manually,the local optimal solutions is easily influenced by the random selection of initial cluster centers,and the performance of Euclid distance in complex high-dimensional data is poor.To solve the above problems,the improved FCM clustering algorithm based on density Canopy and Manifold learning(DM-FCM)is proposed.First,a density Canopy algorithm based on improved local density is proposed to automatically deter-mine the number of clusters and initial cluster centers,which improves the self-adaptability and stability of the algorithm.Then,considering that high-dimensional data often present a nonlinear structure,the manifold learning method is applied to construct a manifold spatial structure,which preserves the global geometric properties of complex high-dimensional data and improves the clustering effect of the algorithm on complex high-dimensional datasets.Fowlkes-Mallows Index(FMI),the weighted average of homogeneity and completeness(V-measure),Adjusted Mutual Information(AMI),and Adjusted Rand Index(ARI)are used as performance measures of clustering algorithms.The experimental results show that the manifold learning method is the superior distance measure,and the algorithm improves the clustering accuracy and performs superiorly in the clustering of low-dimensional and complex high-dimensional data. 展开更多
关键词 fuzzy c-means(FCM) cluster center density canopy ISOMAP clustering
在线阅读 下载PDF
ALLIED FUZZY c-MEANS CLUSTERING MODEL 被引量:2
5
作者 武小红 周建江 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2006年第3期208-213,共6页
A novel model of fuzzy clustering, i.e. an allied fuzzy c means (AFCM) model is proposed based on the combination of advantages of fuzzy c means (FCM) and possibilistic c means (PCM) clustering. PCM is sensitive... A novel model of fuzzy clustering, i.e. an allied fuzzy c means (AFCM) model is proposed based on the combination of advantages of fuzzy c means (FCM) and possibilistic c means (PCM) clustering. PCM is sensitive to initializations and often generates coincident clusters. AFCM overcomes this shortcoming and it is an ex tension of PCM. Membership and typicality values can be simultaneously produced in AFCM. Experimental re- suits show that noise data can be well processed, coincident clusters are avoided and clustering accuracy is better. 展开更多
关键词 fuzzy c-means clustering possibilistic c means clustering allied fuzzy c-means clustering
在线阅读 下载PDF
Fuzzy c-means text clustering based on topic concept sub-space 被引量:3
6
作者 吉翔华 陈超 +1 位作者 邵正荣 俞能海 《Journal of Southeast University(English Edition)》 EI CAS 2007年第3期439-442,共4页
To improve the accuracy of text clustering, fuzzy c-means clustering based on topic concept sub-space (TCS2FCM) is introduced for classifying texts. Five evaluation functions are combined to extract key phrases. Con... To improve the accuracy of text clustering, fuzzy c-means clustering based on topic concept sub-space (TCS2FCM) is introduced for classifying texts. Five evaluation functions are combined to extract key phrases. Concept phrases, as well as the descriptions of final clusters, are presented using WordNet origin from key phrases. Initial centers and membership matrix are the most important factors affecting clustering performance. Orthogonal concept topic sub-spaces are built with the topic concept phrases representing topics of the texts and the initialization of centers and the membership matrix depend on the concept vectors in sub-spaces. The results show that, different from random initialization of traditional fuzzy c-means clustering, the initialization related to text content contributions can improve clustering precision. 展开更多
关键词 TCS2FCM topic concept space fuzzy c-means clustering text clustering
在线阅读 下载PDF
Residual-driven Fuzzy C-Means Clustering for Image Segmentation 被引量:12
7
作者 Cong Wang Witold Pedrycz +1 位作者 ZhiWu Li MengChu Zhou 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2021年第4期876-889,共14页
In this paper,we elaborate on residual-driven Fuzzy C-Means(FCM)for image segmentation,which is the first approach that realizes accurate residual(noise/outliers)estimation and enables noise-free image to participate ... In this paper,we elaborate on residual-driven Fuzzy C-Means(FCM)for image segmentation,which is the first approach that realizes accurate residual(noise/outliers)estimation and enables noise-free image to participate in clustering.We propose a residual-driven FCM framework by integrating into FCM a residual-related regularization term derived from the distribution characteristic of different types of noise.Built on this framework,a weighted?2-norm regularization term is presented by weighting mixed noise distribution,thus resulting in a universal residual-driven FCM algorithm in presence of mixed or unknown noise.Besides,with the constraint of spatial information,the residual estimation becomes more reliable than that only considering an observed image itself.Supporting experiments on synthetic,medical,and real-world images are conducted.The results demonstrate the superior effectiveness and efficiency of the proposed algorithm over its peers. 展开更多
关键词 fuzzy c-means image segmentation mixed or unknown noise residual-driven weighted regularization
在线阅读 下载PDF
Fuzzy c-means clustering based on spatial neighborhood information for image segmentation 被引量:15
8
作者 Yanling Li Yi Shen 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2010年第2期323-328,共6页
Fuzzy c-means (FCM) algorithm is one of the most popular methods for image segmentation. However, the standard FCM algorithm is sensitive to noise because of not taking into account the spatial information in the im... Fuzzy c-means (FCM) algorithm is one of the most popular methods for image segmentation. However, the standard FCM algorithm is sensitive to noise because of not taking into account the spatial information in the image. An improved FCM algorithm is proposed to improve the antinoise performance of FCM algorithm. The new algorithm is formulated by incorporating the spatial neighborhood information into the membership function for clustering. The distribution statistics of the neighborhood pixels and the prior probability are used to form a new membership func- tion. It is not only effective to remove the noise spots but also can reduce the misclassified pixels. Experimental results indicate that the proposed algorithm is more accurate and robust to noise than the standard FCM algorithm. 展开更多
关键词 image segmentation fuzzy c-means spatial informa- tion. robust.
在线阅读 下载PDF
Multimode Process Monitoring Based on Fuzzy C-means in Locality Preserving Projection Subspace 被引量:5
9
作者 解翔 侍洪波 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2012年第6期1174-1179,共6页
For complex industrial processes with multiple operational conditions, it is important to develop effective monitoring algorithms to ensure the safety of production processes. This paper proposes a novel monitoring st... For complex industrial processes with multiple operational conditions, it is important to develop effective monitoring algorithms to ensure the safety of production processes. This paper proposes a novel monitoring strategy based on fuzzy C-means. The high dimensional historical data are transferred to a low dimensional subspace spanned by locality preserving projection. Then the scores in the novel subspace are classified into several overlapped clusters, each representing an operational mode. The distance statistics of each cluster are integrated though the membership values into a novel BID (Bayesian inference distance) monitoring index. The efficiency and effectiveness of the proposed method are validated though the Tennessee Eastman benchmark process. 展开更多
关键词 multimode process monitoring fuzzy c-means locality preserving projection integrated monitoring index Tennessee Eastman process
在线阅读 下载PDF
A Fast Underwater Optical Image Segmentation Algorithm Based on a Histogram Weighted Fuzzy C-means Improved by PSO 被引量:4
10
作者 王士龙 徐玉如 庞永杰 《Journal of Marine Science and Application》 2011年第1期70-75,共6页
The S/N of an underwater image is low and has a fuzzy edge.If using traditional methods to process it directly,the result is not satisfying.Though the traditional fuzzy C-means algorithm can sometimes divide the image... The S/N of an underwater image is low and has a fuzzy edge.If using traditional methods to process it directly,the result is not satisfying.Though the traditional fuzzy C-means algorithm can sometimes divide the image into object and background,its time-consuming computation is often an obstacle.The mission of the vision system of an autonomous underwater vehicle (AUV) is to rapidly and exactly deal with the information about the object in a complex environment for the AUV to use the obtained result to execute the next task.So,by using the statistical characteristics of the gray image histogram,a fast and effective fuzzy C-means underwater image segmentation algorithm was presented.With the weighted histogram modifying the fuzzy membership,the above algorithm can not only cut down on a large amount of data processing and storage during the computation process compared with the traditional algorithm,so as to speed up the efficiency of the segmentation,but also improve the quality of underwater image segmentation.Finally,particle swarm optimization (PSO) described by the sine function was introduced to the algorithm mentioned above.It made up for the shortcomings that the FCM algorithm can not get the global optimal solution.Thus,on the one hand,it considers the global impact and achieves the local optimal solution,and on the other hand,further greatly increases the computing speed.Experimental results indicate that the novel algorithm can reach a better segmentation quality and the processing time of each image is reduced.They enhance efficiency and satisfy the requirements of a highly effective,real-time AUV. 展开更多
关键词 underwater image image segmentation autonomous underwater vehicle (AUV) gray-scale histogram fuzzy c-means real-time effectiveness sine function particle swarm optimization (PSO)
在线阅读 下载PDF
Improved evidential fuzzy c-means method 被引量:4
11
作者 JIANG Wen YANG Tian +2 位作者 SHOU Yehang TANG Yongchuan HU Weiwei 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2018年第1期187-195,共9页
Dempster-Shafer evidence theory(DS theory) is widely used in brain magnetic resonance imaging(MRI) segmentation,due to its efficient combination of the evidence from different sources. In this paper, an improved MRI s... Dempster-Shafer evidence theory(DS theory) is widely used in brain magnetic resonance imaging(MRI) segmentation,due to its efficient combination of the evidence from different sources. In this paper, an improved MRI segmentation method,which is based on fuzzy c-means(FCM) and DS theory, is proposed. Firstly, the average fusion method is used to reduce the uncertainty and the conflict information in the pictures. Then, the neighborhood information and the different influences of spatial location of neighborhood pixels are taken into consideration to handle the spatial information. Finally, the segmentation and the sensor data fusion are achieved by using the DS theory. The simulated images and the MRI images illustrate that our proposed method is more effective in image segmentation. 展开更多
关键词 average fusion spatial information Dempster-Shafer evidence theory(DS theory) fuzzy c-means(FCM) magnetic resonance imaging(MRI) image segmentation
在线阅读 下载PDF
New two-dimensional fuzzy C-means clustering algorithm for image segmentation 被引量:4
12
作者 周鲜成 申群太 刘利枚 《Journal of Central South University of Technology》 EI 2008年第6期882-887,共6页
To solve the problem of poor anti-noise performance of the traditional fuzzy C-means (FCM) algorithm in image segmentation, a novel two-dimensional FCM clustering algorithm for image segmentation was proposed. In this... To solve the problem of poor anti-noise performance of the traditional fuzzy C-means (FCM) algorithm in image segmentation, a novel two-dimensional FCM clustering algorithm for image segmentation was proposed. In this method, the image segmentation was converted into an optimization problem. The fitness function containing neighbor information was set up based on the gray information and the neighbor relations between the pixels described by the improved two-dimensional histogram. By making use of the global searching ability of the predator-prey particle swarm optimization, the optimal cluster center could be obtained by iterative optimization, and the image segmentation could be accomplished. The simulation results show that the segmentation accuracy ratio of the proposed method is above 99%. The proposed algorithm has strong anti-noise capability, high clustering accuracy and good segment effect, indicating that it is an effective algorithm for image segmentation. 展开更多
关键词 image segmentation fuzzy c-means clustering particle swarm optimization two-dimensional histogram
在线阅读 下载PDF
Kernel fuzzy c-means clustering on energy detection based cooperative spectrum sensing 被引量:4
13
作者 Anal Paul Santi P. Maity 《Digital Communications and Networks》 SCIE 2016年第4期196-205,共10页
Cooperation in spectral sensing (SS) offers a fast and reliable detection of primary user (PU) transmission over a frequency spectrum at the expense of increased energy consumption. Since the fusion center (FC) ... Cooperation in spectral sensing (SS) offers a fast and reliable detection of primary user (PU) transmission over a frequency spectrum at the expense of increased energy consumption. Since the fusion center (FC) has to handle a large set of data, a duster based approach, specifically fuzzy c-means clustering (FCM), has been extensively used in energy detection based cooperative spectrum sensing (CSS). However, the performance of FCM degrades at low signal-to-noise ratios (SNR) and in the presence of multiple PUs as energy data patterns at the FC are often found to be non-spherical i.e. overlapping. To address the problem, this work explores the scope of kernel fuzzy c-means (KFCM) on energy detection based CSS through the projection of non-linear input data to a high dimensional feature space. Extensive simulation results are shown to highlight the improved detection of multiple PUs at low SNR with low energy consumption. An improvement in the detection probability by ~6.78% and ~6.96% at -15 dBW and -20 dBW, respectively, is achieved over the existing FCM method. 展开更多
关键词 Cooperative spectrum sensing Kernel fuzzy c-means Energy detection Multiple PU detection
在线阅读 下载PDF
Fuzzy C-means Rule Generation for Fuzzy Entry Temperature Prediction in a Hot Strip Mill 被引量:2
14
作者 Jose Angel BARRIOS Cesar VILLANUEVA +1 位作者 Alberto CAVAZOS Rafael COLAS 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2016年第2期116-123,共8页
Variable estimation for finishing mill set-up in hot rolling is greatly affected by measurement uncertainties, variations in the incoming bar conditions and product changes. The fuzzy C-means algorithm was evaluated f... Variable estimation for finishing mill set-up in hot rolling is greatly affected by measurement uncertainties, variations in the incoming bar conditions and product changes. The fuzzy C-means algorithm was evaluated for rule base generation for fuzzy and fuzzy grey-box temperature estimation. Experimental data were collected from a real- life mill and three different sets were randomly drawn. The first set was used for rule-generation, the second set was used for training those systems with learning capabilities, while the third one was used for validation. The perform- ance of the developed systems was evaluated by five performance measures applied over the prediction error with the validation set and was compared with that of the empirical rule-base fuzzy systems and the physical model used in plant. The results show that the fuzzy C-means generated rule-bases improve temperature estimation; however, the best results are obtained when fuzzy C-means algorithm, grey-box modeling and learning functions are combined. Application of fuzzy C-means rule generation brings improvement on performance of up to 72%. 展开更多
关键词 gray-box modeling ANFIS hot rolling temperature estimation fuzzy c-means rule base generation
原文传递
Research of Improved Fuzzy c-means Algorithm Based on a New Metric Norm 被引量:2
15
作者 毛力 宋益春 +2 位作者 李引 杨弘 肖炜 《Journal of Shanghai Jiaotong university(Science)》 EI 2015年第1期51-55,共5页
For the question that fuzzy c-means(FCM)clustering algorithm has the disadvantages of being too sensitive to the initial cluster centers and easily trapped in local optima,this paper introduces a new metric norm in FC... For the question that fuzzy c-means(FCM)clustering algorithm has the disadvantages of being too sensitive to the initial cluster centers and easily trapped in local optima,this paper introduces a new metric norm in FCM and particle swarm optimization(PSO)clustering algorithm,and proposes a parallel optimization algorithm using an improved fuzzy c-means method combined with particle swarm optimization(AF-APSO).The experiment shows that the AF-APSO can avoid local optima,and get the best fitness and clustering performance significantly. 展开更多
关键词 fuzzy c-means(FCM) particle swarm optimization(PSO) clustering algorithm new metric norm
原文传递
Watershed classification by remote sensing indices: A fuzzy c-means clustering approach 被引量:10
16
作者 Bahram CHOUBIN Karim SOLAIMANI +1 位作者 Mahmoud HABIBNEJAD ROSHAN Arash MALEKIAN 《Journal of Mountain Science》 SCIE CSCD 2017年第10期2053-2063,共11页
Determining the relatively similar hydrological properties of the watersheds is very crucial in order to readily classify them for management practices such as flood and soil erosion control. This study aimed to ident... Determining the relatively similar hydrological properties of the watersheds is very crucial in order to readily classify them for management practices such as flood and soil erosion control. This study aimed to identify homogeneous hydrological watersheds using remote sensing data in western Iran. To achieve this goal, remote sensing indices including SAVI, LAI, NDMI, NDVI and snow cover, were extracted from MODIS data over the period 2000 to 2015. Then, a fuzzy method was used to clustering the watersheds based on the extracted indices. A fuzzy c-mean(FCM) algorithm enabled to classify 38 watersheds in three homogeneous groups.The optimal number of clusters was determined through evaluation of partition coefficient, partition entropy function and trial and error. The results indicated three homogeneous regions identified by the fuzzy c-mean clustering and remote sensing product which are consistent with the variations of topography and climate of the study area. Inherently,the grouped watersheds have similar hydrological properties and are likely to need similar management considerations and measures. 展开更多
关键词 Karkheh watershed fuzzy c-means clustering Watershed classification Homogeneous sub-watersheds
原文传递
Partition region-based suppressed fuzzy C-means algorithm 被引量:1
17
作者 Kun Zhang Weiren Kong +4 位作者 Peipei Liu Jiao Shi Yu Lei Jie Zou Min Liu 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2017年第5期996-1008,共13页
Aimed at the problem that the traditional suppressed fuzzy C-means clustering algorithms ignore the real needs of different objects, applying the same suppressed parameter for modifying membership degrees of all the o... Aimed at the problem that the traditional suppressed fuzzy C-means clustering algorithms ignore the real needs of different objects, applying the same suppressed parameter for modifying membership degrees of all the objects, a novel partition region-based suppressed fuzzy C-means clustering algorithm with better capacity of adaptability and robustness is proposed in this paper. The model based on the real needs of different objects is built, making it clear to decide whether to proceed with further determination; in addition, the external user-defined suppressed parameter is automatically selected according to the intrinsic structural characteristic of each dataset, making the proposed method become robust to the fluctuations in the incoming dataset and initial conditions. Experimental results show that the proposed method is more robust than its counterparts and overcomes the weakness of the original suppressed clustering algorithm in most cases. 展开更多
关键词 shadowed set suppressed fuzzy c-means clustering automatically parameter selection soft computing techniques
在线阅读 下载PDF
Fuzzy C-Means Clustering Based Phonetic Tied-Mixture HMM in Speech Recognition 被引量:1
18
作者 徐向华 朱杰 郭强 《Journal of Shanghai Jiaotong university(Science)》 EI 2005年第1期16-20,共5页
A fuzzy clustering analysis based phonetic tied-mixture HMM(FPTM) was presented to decrease parameter size and improve robustness of parameter training. FPTM was synthesized from state-tied HMMs by a modified fuzzy C-... A fuzzy clustering analysis based phonetic tied-mixture HMM(FPTM) was presented to decrease parameter size and improve robustness of parameter training. FPTM was synthesized from state-tied HMMs by a modified fuzzy C-means clustering algorithm. Each Gaussian codebook of FPTM was built from Gaussian components within the same root node in phonetic decision tree. The experimental results on large vocabulary Mandarin speech recognition show that compared with conventional phonetic tied-mixture HMM and state-tied HMM with approximately the same number of Gaussian mixtures, FPTM achieves word error rate reductions by 4.84% and 13.02% respectively. Combining the two schemes of mixing weights pruning and Gaussian centers fuzzy merging, a significantly parameter size reduction was achieved with little impact on recognition accuracy. 展开更多
关键词 speech recognition hidden Markov model (HMM) fuzzy c-means (FCM) phonetic decision tree
在线阅读 下载PDF
Advanced Fuzzy C-Means Algorithm Based on Local Density and Distance 被引量:1
19
作者 Shaochun PANG Yijie +1 位作者 SHAO Sen JIANG Keyuan 《Journal of Shanghai Jiaotong university(Science)》 EI 2018年第5期636-642,共7页
This paper presents an advanced fuzzy C-means(FCM) clustering algorithm to overcome the weakness of the traditional FCM algorithm, including the instability of random selecting of initial center and the limitation of ... This paper presents an advanced fuzzy C-means(FCM) clustering algorithm to overcome the weakness of the traditional FCM algorithm, including the instability of random selecting of initial center and the limitation of the data separation or the size of clusters. The advanced FCM algorithm combines the distance with density and improves the objective function so that the performance of the algorithm can be improved. The experimental results show that the proposed FCM algorithm requires fewer iterations yet provides higher accuracy than the traditional FCM algorithm. The advanced algorithm is applied to the influence of stars' box-office data, and the classification accuracy of the first class stars achieves 92.625%. 展开更多
关键词 objective function clustering center fuzzy c-means (FCM) clustering algorithm degree of member-ship
原文传递
基于空间加权距离的自适应Fuzzy C-Means算法研究 被引量:2
20
作者 王海起 朱锦 王劲峰 《测绘与空间地理信息》 2014年第2期18-21,24,共5页
空间聚类不仅应考虑GIS对象属性特征的相似性,还应考虑对象的空间邻近性。不同属性、位置特征在聚类中起到的作用不同。采用信息熵方法计算空间距离中各属性距离、位置距离的权重,权值大小用于度量相应特征在fuzzy c-means隶属度计算时... 空间聚类不仅应考虑GIS对象属性特征的相似性,还应考虑对象的空间邻近性。不同属性、位置特征在聚类中起到的作用不同。采用信息熵方法计算空间距离中各属性距离、位置距离的权重,权值大小用于度量相应特征在fuzzy c-means隶属度计算时的作用大小,并引入相似性指标,当两个聚类之间的相似度高于某个合并阈值时,则对应的一对聚类进行合并,从而克服需预先设置聚类类数的问题。通过应用实例的聚类有效性分析,与普通空间距离相比,基于空间加权距离的FCM算法具有稳定性和有效性。 展开更多
关键词 fuzzy e—means 空间加权距离 信息熵 自适应聚类合并
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部