Robustness against measurement uncertainties is crucial for gas turbine engine diagnosis.While current research focuses mainly on measurement noise,measurement bias remains challenging.This study proposes a novel perf...Robustness against measurement uncertainties is crucial for gas turbine engine diagnosis.While current research focuses mainly on measurement noise,measurement bias remains challenging.This study proposes a novel performance-based fault detection and identification(FDI)strategy for twin-shaft turbofan gas turbine engines and addresses these uncertainties through a first-order Takagi-Sugeno-Kang fuzzy inference system.To handle ambient condition changes,we use parameter correction to preprocess the raw measurement data,which reduces the FDI’s system complexity.Additionally,the power-level angle is set as a scheduling parameter to reduce the number of rules in the TSK-based FDI system.The data for designing,training,and testing the proposed FDI strategy are generated using a component-level turbofan engine model.The antecedent and consequent parameters of the TSK-based FDI system are optimized using the particle swarm optimization algorithm and ridge regression.A robust structure combining a specialized fuzzy inference system with the TSK-based FDI system is proposed to handle measurement biases.The performance of the first-order TSK-based FDI system and robust FDI structure are evaluated through comprehensive simulation studies.Comparative studies confirm the superior accuracy of the first-order TSK-based FDI system in fault detection,isolation,and identification.The robust structure demonstrates a 2%-8%improvement in the success rate index under relatively large measurement bias conditions,thereby indicating excellent robustness.Accuracy against significant bias values and computation time are also evaluated,suggesting that the proposed robust structure has desirable online performance.This study proposes a novel FDI strategy that effectively addresses measurement uncertainties.展开更多
Published proof test coverage(PTC)estimates for emergency shutdown valves(ESDVs)show only moderate agreement and are predominantly opinion-based.A Failure Modes,Effects,and Diagnostics Analysis(FMEDA)was undertaken us...Published proof test coverage(PTC)estimates for emergency shutdown valves(ESDVs)show only moderate agreement and are predominantly opinion-based.A Failure Modes,Effects,and Diagnostics Analysis(FMEDA)was undertaken using component failure rate data to predict PTC for a full stroke test and a partial stroke test.Given the subjective and uncertain aspects of the FMEDA approach,specifically the selection of component failure rates and the determination of the probability of detecting failure modes,a Fuzzy Inference System(FIS)was proposed to manage the data,addressing the inherent uncertainties.Fuzzy inference systems have been used previously for various FMEA type assessments,but this is the first time an FIS has been employed for use with FMEDA.ESDV PTC values were generated from both the standard FMEDA and the fuzzy-FMEDA approaches using data provided by FMEDA experts.This work demonstrates that fuzzy inference systems can address the subjectivity inherent in FMEDA data,enabling reliable estimates of ESDV proof test coverage for both full and partial stroke tests.This facilitates optimized maintenance planning while ensuring safety is not compromised.展开更多
An adaptive neuro fuzzy inference system was used for classifying water quality status of river. It applied several physical and inorganic chemical indicators including dissolved oxygen, chemical oxygen demand, and am...An adaptive neuro fuzzy inference system was used for classifying water quality status of river. It applied several physical and inorganic chemical indicators including dissolved oxygen, chemical oxygen demand, and ammonia-nitrogen. A data set (nine weeks, total 845 observations) was collected from 100 monitoring stations in all major river basins in China and used for training and validating the model. Up to 89.59% of the data could be correctly classified using this model. Such performance was more competitive when compared with artificial neural networks. It is applicable in evaluation and classification of water quality status.展开更多
An efficient and accurate prediction of a precise tidal level in estuaries and coastal areas is indispensable for the management and decision-making of human activity in the field wok of marine engineering. The variat...An efficient and accurate prediction of a precise tidal level in estuaries and coastal areas is indispensable for the management and decision-making of human activity in the field wok of marine engineering. The variation of the tidal level is a time-varying process. The time-varying factors including interference from the external environment that cause the change of tides are fairly complicated. Furthermore, tidal variations are affected not only by periodic movement of celestial bodies but also by time-varying interference from the external environment. Consequently, for the efficient and precise tidal level prediction, a neuro-fuzzy hybrid technology based on the combination of harmonic analysis and adaptive network-based fuzzy inference system(ANFIS)model is utilized to construct a precise tidal level prediction system, which takes both advantages of the harmonic analysis method and the ANFIS network. The proposed prediction model is composed of two modules: the astronomical tide module caused by celestial bodies’ movement and the non-astronomical tide module caused by various meteorological and other environmental factors. To generate a fuzzy inference system(FIS) structure,three approaches which include grid partition(GP), fuzzy c-means(FCM) and sub-clustering(SC) are used in the ANFIS network constructing process. Furthermore, to obtain the optimal ANFIS based prediction model, large numbers of simulation experiments are implemented for each FIS generating approach. In this tidal prediction study, the optimal ANFIS model is used to predict the non-astronomical tide module, while the conventional harmonic analysis model is used to predict the astronomical tide module. The final prediction result is performed by combining the estimation outputs of the harmonious analysis model and the optimal ANFIS model. To demonstrate the applicability and capability of the proposed novel prediction model, measured tidal level samples of Fort Pulaski tidal station are selected as the testing database. Simulation and experimental results confirm that the proposed prediction approach can achieve precise predictions for the tidal level with high accuracy, satisfactory convergence and stability.展开更多
Semiconductor manufacturing (SM) system is one of the most complicated hybrid processes involved continuously variable dynamical systems and discrete event dynamical systems. The optimization and scheduling of semicon...Semiconductor manufacturing (SM) system is one of the most complicated hybrid processes involved continuously variable dynamical systems and discrete event dynamical systems. The optimization and scheduling of semiconductor fabrication has long been a hot research direction in automation. Bottleneck is the key factor to a SM system, which seriously influences the throughput rate, cycle time, time-delivery rate, etc. Efficient prediction for the bottleneck of a SM system provides the best support for the consequent scheduling. Because categorical data (product types, releasing strategies) and numerical data (work in process, processing time, utilization rate, buffer length, etc.) have significant effect on bottleneck, an improved adaptive network-based fuzzy inference system (ANFIS) was adopted in this study to predict bottleneck since conventional neural network-based methods accommodate only numerical inputs. In this improved ANFIS, the contribution of categorical inputs to firing strength is reflected through a transformation matrix. In order to tackle high-dimensional inputs, reduce the number of fuzzy rules and obtain high prediction accuracy, a fuzzy c-means method combining binary tree linear division method was applied to identify the initial structure of fuzzy inference system. According to the experimental results, the main-bottleneck and sub-bottleneck of SM system can be predicted accurately with the proposed method.展开更多
The spontaneous combustion is a smoldering process and characterized by a slow burning speed and a long duration. Therefore, it is a hazard to coal mines. Early detection of coal mine spontaneous combustion is quite d...The spontaneous combustion is a smoldering process and characterized by a slow burning speed and a long duration. Therefore, it is a hazard to coal mines. Early detection of coal mine spontaneous combustion is quite difficult because of the complexity of different coal mines. And the traditional threshold discriminance is not suitable for spontaneous combustion detection due to the uncertainty of coalmine combustion. Restrictions of the single detection method will also affect the detection precision in the early time of spontaneous combustion. Although multiple detection methods can be adopted as a complementarity to improve the accuracy of detection, the synthesized method will in- crease the complicacy of criterion, making it difficult to estimate the combustion. To solve this problem, a fuzzy inference system based on CRI (Compositional Rule of Inference) and fuzzy reasoning method FITA (First Infer Then Aggregate) are presented. And the neural network is also developed to realize the fuzzy inference system. Finally, the effectiveness of the inference system is demonstrated bv means of an experiment.展开更多
This paper mainly describes that loose of jig bed affects jig's separation effect, and the corresponding fuzzy rules were built. Using the evaluating index of jig's separation effect--imperfection (I) and tota...This paper mainly describes that loose of jig bed affects jig's separation effect, and the corresponding fuzzy rules were built. Using the evaluating index of jig's separation effect--imperfection (I) and total misplaced material (Cz), it evaluates status of loose of jig bed by fuzzy inference system. Experimental simulation and applications in practice prove the method's feasibility.展开更多
One of the important geotechnical parameters required for designing of the civil engineering structure is the compressibility of the soil.In this study,the main purpose is to develop a novel hybrid Machine Learning(ML...One of the important geotechnical parameters required for designing of the civil engineering structure is the compressibility of the soil.In this study,the main purpose is to develop a novel hybrid Machine Learning(ML)model(ANFIS-DE),which used Differential Evolution(DE)algorithm to optimize the predictive capability of Adaptive-Network-based Fuzzy Inference System(ANFIS),for estimating soil Compression coefficient(Cc)from other geotechnical parameters namelyWater Content,Void Ratio,SpecificGravity,Liquid Limit,Plastic Limit,Clay content and Depth of Soil Samples.Validation of the predictive capability of the novel model was carried out using statistical indices:Root Mean Square Error(RMSE),Mean Absolute Error(MAE),and Correlation Coefficient(R).In addition,two popular ML models namely Reduced Error Pruning Trees(REPTree)and Decision Stump(Dstump)were used for comparison.Results showed that the performance of the novel model ANFIS-DE is the best(R=0.825,MAE=0.064 and RMSE=0.094)in comparison to other models such as REPTree(R=0.7802,MAE=0.068 and RMSE=0.0988)andDstump(R=0.7325,MAE=0.0785 and RMSE=0.1036).Therefore,the ANFIS-DE model can be used as a promising tool for the correct and quick estimation of the soil Cc,which can be employed in the design and construction of civil engineering structures.展开更多
It has been shown in recent economic and statistical studies that combining forecasts may produce more accurate forecasts than individual ones. However, the literature on combining forecasts has almost exclusively foc...It has been shown in recent economic and statistical studies that combining forecasts may produce more accurate forecasts than individual ones. However, the literature on combining forecasts has almost exclusively focused on linear combining forecasts. In this paper, a new nonlinear combination forecasting method based on fuzzy inference system is present to overcome the difficulties and drawbacks in linear combination modeling of non-stationary time series. Furthermore, the optimization algorithm based on a hierarchical structure of learning automata is used to identify the parameters of the fuzzy system. Experiment results related to numerical examples demonstrate that the new technique has excellent identification performances and forecasting accuracy superior to other existing linear combining forecasts.展开更多
Spectral unmixing helps to identify different components present in the spectral mixtures which occur in the uppermost layer of the area owing to the low spatial resolution of hyperspectral images.Most spectral unmixi...Spectral unmixing helps to identify different components present in the spectral mixtures which occur in the uppermost layer of the area owing to the low spatial resolution of hyperspectral images.Most spectral unmixing methods are globally based and do not consider the spectral variability among its endmembers that occur due to illumination,atmospheric,and environmental conditions.Here,endmember bundle extraction plays a major role in overcoming the above-mentioned limitations leading to more accurate abundance fractions.Accordingly,a two-stage approach is proposed to extract endmembers through endmember bundles in hyperspectral images.The divide and conquer method is applied as the first step in subset images with only the non-redundant bands to extract endmembers using the Vertex Component Analysis(VCA)and N-FINDR algorithms.A fuzzy rule-based inference system utilizing spectral matching parameters is proposed in the second step to categorize endmembers.The endmember with the minimum error is chosen as the final endmember in each specific category.The proposed method is simple and automatically considers endmember variability in hyperspectral images.The efficiency of the proposed method is evaluated using two real hyperspectral datasets.The average spectral angle and abundance angle are used to analyze the performance measures.展开更多
In this paper, it described the architecture of a tool called DiagData. This tool aims to use a large amount of data and information in the field of plant disease diagnostic to generate a disease predictive system. In...In this paper, it described the architecture of a tool called DiagData. This tool aims to use a large amount of data and information in the field of plant disease diagnostic to generate a disease predictive system. In this approach, techniques of data mining are used to extract knowledge from existing data. The data is extracted in the form of rules that are used in the development of a predictive intelligent system. Currently, the specification of these rules is built by an expert or data mining. When data mining on a large database is used, the number of generated rules is very complex too. The main goal of this work is minimize the rule generation time. The proposed tool, called DiagData, extracts knowledge automatically or semi-automatically from a database and uses it to build an intelligent system for disease prediction. In this work, the decision tree learning algorithm was used to generate the rules. A toolbox called Fuzzygen was used to generate a prediction system from rules generated by decision tree algorithm. The language used to implement this software was Java. The DiagData has been used in diseases prediction and diagnosis systems and in the validation of economic and environmental indicators in agricultural production systems. The validation process involved measurements and comparisons of the time spent to enter the rules by an expert with the time used to insert the same rules with the proposed tool. Thus, the tool was successfully validated, providing a reduction of time.展开更多
The purpose of this research is to demonstrate the use of Adaptive Neuro-Fuzzy Inference System(ANFIS)for discrimination between quarry blasts and microearthquakes in the Tehran region using data from the Broadband Ir...The purpose of this research is to demonstrate the use of Adaptive Neuro-Fuzzy Inference System(ANFIS)for discrimination between quarry blasts and microearthquakes in the Tehran region using data from the Broadband Iranian National Network Center(BIN).In the south and southeast of Tehran,a large number of quarry blasts“contaminate”the earthquake catalog.In order to identify the real seismicity(tectonic earthquakes)in the region,we need to discriminate quarry blasts from natural earthquakes in the catalog.展开更多
This paper presents an efficient and easy implemented method for detecting minute based analysis of sleep apnea. The nasal, chest and abdominal based respiratory signals extracted from polysomnography recordings are o...This paper presents an efficient and easy implemented method for detecting minute based analysis of sleep apnea. The nasal, chest and abdominal based respiratory signals extracted from polysomnography recordings are obtained from PhysioNet apnea-ECG database. Wavelet transforms are applied on the 1-minute and 3-minute length recordings. According to the preliminary tests, the variances of 10th and 11th detail components can be used as discriminative features for apneas. The features obtained from total 8 recordings are used for training and testing of an adaptive neuro fuzzy inference system (ANFIS). Training and testing process have been repeated by using the randomly obtained five different sequences of whole data for generalization of the ANFIS. According to results, ANFIS based classification has sufficient accuracy for apnea detection considering of each type of respiratory. However, the best result is obtained by analyzing the 3-minute length nasal based respiratory signal. In this study, classification accuracies have been obtained greater than 95.2% for each of the five sequences of entire data.展开更多
A class of new fuzzy inference systems New-FISs is presented.Compared with the standard fuzzy system, New-FIS is still a universal approximator and has no fuzzy rule base and linearly parameter growth. Thus, it effect...A class of new fuzzy inference systems New-FISs is presented.Compared with the standard fuzzy system, New-FIS is still a universal approximator and has no fuzzy rule base and linearly parameter growth. Thus, it effectively overcomes the second "curse of dimensionality":there is an exponential growth in the number of parameters of a fuzzy system as the number of input variables,resulting in surprisingly reduced computational complexity and being especially suitable for applications,where the complexity is of the first importance with respect to the approximation accuracy.展开更多
The lane changing decision model(LCDM)is a critical component in semi-and fully-automated driving systems.Recent research has found that the fuzzy inference system(FIS)is a promising approach to implementing LCDMs.To ...The lane changing decision model(LCDM)is a critical component in semi-and fully-automated driving systems.Recent research has found that the fuzzy inference system(FIS)is a promising approach to implementing LCDMs.To improve the FIS’s performance,this research reviewed the challenges in the development an FIS model to make the yes;nof g decisions in discretionary lane changes.The FIS model was revised to bring its fuzzy inference rules more consistent with the fuzzy membership functions,and its com-position and defuzzification methods more in line with the classical fuzzy logic theory.An equitable test data set with approximately equal number of yes;nof g data points was assembled from the same next generation simulation(NGSIM)data used in the past research.The test results proved that:(1)an LCDM’s performance was dependent on how the yes;nof g decisions in the test data set were manually labeled;(2)separating the fuzzy inference rules into a yesf g group and a nof g group and compute the results sep-arately yielded potentially better decision accuracy.Furthermore,The gene expression pro-gramming model(GEPM)performed better than the improved FIS-based model.The findings led the authors to suggest two possible research directions:(1)add the subject vehicle’s speed as an input to the LCDM and redesign the decision-making model;(2)con-struct models for congested and uncongested traffic separately.The authors further sug-gested the use of instrumented vehicles to collect a set of high-fidelity lane changing data in the naturalistic driving environment.展开更多
The adaptive neural fuzzy inference system (ANFIS) is used to make a ease study considering features of complex social-technical system with the target of increasing organizational efficiency of public scientific re...The adaptive neural fuzzy inference system (ANFIS) is used to make a ease study considering features of complex social-technical system with the target of increasing organizational efficiency of public scientific research institutions. An integrated ANFIS model is built and the effectiveness of the model is verified by means of investigation data and their processing results. The model merges the learning mechanism of neural network and the language inference ability of fuzzy system, and thereby remedies the defects of neural network and fuzzy logic system. Result of this case study shows that the model is suitable for complicated socio-technical systems and has bright application perspective to solve such problems of prediction, evaluation and policy-making in managerial fields.展开更多
Concrete compressive strength prediction is an essential process for material design and sustainability.This study investigates several novel hybrid adaptive neuro-fuzzy inference system(ANFIS)evolutionary models,i.e....Concrete compressive strength prediction is an essential process for material design and sustainability.This study investigates several novel hybrid adaptive neuro-fuzzy inference system(ANFIS)evolutionary models,i.e.,ANFIS-particle swarm optimization(PSO),ANFIS-ant colony,ANFIS-differential evolution(DE),and ANFIS-genetic algorithm to predict the foamed concrete compressive strength.Several concrete properties,including cement content(C),oven dry density(O),water-to-binder ratio(W),and foamed volume(F)are used as input variables.A relevant data set is obtained from open-access published experimental investigations and used to build predictive models.The performance of the proposed predictive models is evaluated based on the mean performance(MP),which is the mean value of several statistical error indices.To optimize each predictive model and its input variables,univariate(C,O,W,and F),bivariate(C-O,C-W,C-F,O-W,O-F,and W-F),trivariate(C-O-W,C-W-F,O-W-F),and four-variate(C-O-W-F)combinations of input variables are constructed for each model.The results indicate that the best predictions obtained using the univariate,bivariate,trivariate,and four-variate models are ANFIS-DE-(O)(MP=0.96),ANFIS-PSO-(C-O)(MP=0.88),ANFIS-DE-(O-W-F)(MP=0.94),and ANFIS-PSO-(C-O-W-F)(MP=0.89),respectively.ANFIS-PSO-(C-O)yielded the best accurate prediction of compressive strength with an MP value of 0.96.展开更多
The objective assessment method of network video quality is a challenge, because the video quality will be distorted by various factors, including transmission and compression. In order to improve the objective method...The objective assessment method of network video quality is a challenge, because the video quality will be distorted by various factors, including transmission and compression. In order to improve the objective method, an objective assessment method based on fuzzy inference system of Mamdani is proposed. Firstly, six quality parameters are introduced. All the quality parameters are inputted to fuzzy logic controller system. Secondly, the outputs are used as next inputs and inferred by another fuzzy logic controller system to obtain the objective quality of network video. Lastly, the performance of proposed method is validated on four videos with different network environment. Meanwhile this method is compared with other methods. The experimental results show that the proposed method can improve the similarity between subjective and objective assessment.展开更多
Density is an important property of natural gas required for the design of gas processing and reservoir simulation.Due to expensive measurement of density,industry tends to predict gas density through an EOS.However,a...Density is an important property of natural gas required for the design of gas processing and reservoir simulation.Due to expensive measurement of density,industry tends to predict gas density through an EOS.However,all EOS are associated with uncertainties,especially at highpressure conditions.Also,using sophisticated EOS in commercial software renders simulation highly time-consuming.This work aims to evaluate performance of adaptive neuro-fuzzy inference system(ANFIS)as a widely-accepted intelligent model for prediction of P-r-T behavior of natural gas.Using experimental data reported in the literature,our inference system was trained with 95 data of natural gas densities in the temperature range of(250-450)K and pressures up to 150 MPa.Additionally,prediction by ANFIS was compared with those of AGA8 and GERG04 which both are leading industrial EOS for calculation of natural gas density.It was observed that ANFIS predicts natural gas density with AARD%of 1.704;and is able to estimate gas density as accurate as sophisticated EOS.The proposed model is applicable for predicting gas density in the range of(250-450)K,(10-150)MPa and also for sweet gases,i.e.,containing a low concentration of N2 and CO2.展开更多
The primary objective of this study is to measure fluoride levels in groundwater samples using machine learning approaches alongside traditional and fuzzy logic models based health risk assessment in the hard rock Arj...The primary objective of this study is to measure fluoride levels in groundwater samples using machine learning approaches alongside traditional and fuzzy logic models based health risk assessment in the hard rock Arjunanadi River basin,South India.Fluoride levels in the study area vary between 0.1 and 3.10 mg/L,with 32 samples exceeding the World Health Organization(WHO)standard of 1.5 mg/L.Hydrogeochemical analyses(Durov and Gibbs)clearly show that the overall water chemistry is primarily influenced by simple dissolution,mixing,and rock-water interactions,indicating that geogenic sources are the predominant contributors to fluoride in the study area.Around 446.5 km^(2)is considered at risk.In predictive analysis,five Machine Learning(ML)models were used,with the AdaBoost model performing better than the other models,achieving 96%accuracy and 4%error rate.The Traditional Health Risk Assessment(THRA)results indicate that 65%of samples pose highly susceptible for dental fluorosis,while 12%of samples pose highly susceptible for skeletal fluorosis in young age groups.The Fuzzy Inference System(FIS)model effectively manages ambiguity and linguistic factors,which are crucial when addressing health risks linked to groundwater fluoride contamination.In this model,input variables include fluoride concentration,individual age,and ingestion rate,while output variables consist of dental caries risk,dental fluorosis,and skeletal fluorosis.The overall results indicate that increased ingestion rates and prolonged exposure to contaminated water make adults and the elderly people vulnerable to dental and skeletal fluorosis,along with very young and young age groups.This study is an essential resource for local authorities,healthcare officials,and communities,aiding in the mitigation of health risks associated with groundwater contamination and enhancing quality of life through improved water management and health risk assessment,aligning with Sustainable Development Goals(SDGs)3 and 6,thereby contributing to a cleaner and healthier society.展开更多
文摘Robustness against measurement uncertainties is crucial for gas turbine engine diagnosis.While current research focuses mainly on measurement noise,measurement bias remains challenging.This study proposes a novel performance-based fault detection and identification(FDI)strategy for twin-shaft turbofan gas turbine engines and addresses these uncertainties through a first-order Takagi-Sugeno-Kang fuzzy inference system.To handle ambient condition changes,we use parameter correction to preprocess the raw measurement data,which reduces the FDI’s system complexity.Additionally,the power-level angle is set as a scheduling parameter to reduce the number of rules in the TSK-based FDI system.The data for designing,training,and testing the proposed FDI strategy are generated using a component-level turbofan engine model.The antecedent and consequent parameters of the TSK-based FDI system are optimized using the particle swarm optimization algorithm and ridge regression.A robust structure combining a specialized fuzzy inference system with the TSK-based FDI system is proposed to handle measurement biases.The performance of the first-order TSK-based FDI system and robust FDI structure are evaluated through comprehensive simulation studies.Comparative studies confirm the superior accuracy of the first-order TSK-based FDI system in fault detection,isolation,and identification.The robust structure demonstrates a 2%-8%improvement in the success rate index under relatively large measurement bias conditions,thereby indicating excellent robustness.Accuracy against significant bias values and computation time are also evaluated,suggesting that the proposed robust structure has desirable online performance.This study proposes a novel FDI strategy that effectively addresses measurement uncertainties.
文摘Published proof test coverage(PTC)estimates for emergency shutdown valves(ESDVs)show only moderate agreement and are predominantly opinion-based.A Failure Modes,Effects,and Diagnostics Analysis(FMEDA)was undertaken using component failure rate data to predict PTC for a full stroke test and a partial stroke test.Given the subjective and uncertain aspects of the FMEDA approach,specifically the selection of component failure rates and the determination of the probability of detecting failure modes,a Fuzzy Inference System(FIS)was proposed to manage the data,addressing the inherent uncertainties.Fuzzy inference systems have been used previously for various FMEA type assessments,but this is the first time an FIS has been employed for use with FMEDA.ESDV PTC values were generated from both the standard FMEDA and the fuzzy-FMEDA approaches using data provided by FMEDA experts.This work demonstrates that fuzzy inference systems can address the subjectivity inherent in FMEDA data,enabling reliable estimates of ESDV proof test coverage for both full and partial stroke tests.This facilitates optimized maintenance planning while ensuring safety is not compromised.
基金supported by the National Natural Science Foundation of China(No. 50778009)
文摘An adaptive neuro fuzzy inference system was used for classifying water quality status of river. It applied several physical and inorganic chemical indicators including dissolved oxygen, chemical oxygen demand, and ammonia-nitrogen. A data set (nine weeks, total 845 observations) was collected from 100 monitoring stations in all major river basins in China and used for training and validating the model. Up to 89.59% of the data could be correctly classified using this model. Such performance was more competitive when compared with artificial neural networks. It is applicable in evaluation and classification of water quality status.
基金The National Natural Science Foundation of China under contract No.51379002the Fundamental Research Funds for the Central Universities of China under contract Nos 3132016322 and 3132016314the Applied Basic Research Project Fund of the Chinese Ministry of Transport of China under contract No.2014329225010
文摘An efficient and accurate prediction of a precise tidal level in estuaries and coastal areas is indispensable for the management and decision-making of human activity in the field wok of marine engineering. The variation of the tidal level is a time-varying process. The time-varying factors including interference from the external environment that cause the change of tides are fairly complicated. Furthermore, tidal variations are affected not only by periodic movement of celestial bodies but also by time-varying interference from the external environment. Consequently, for the efficient and precise tidal level prediction, a neuro-fuzzy hybrid technology based on the combination of harmonic analysis and adaptive network-based fuzzy inference system(ANFIS)model is utilized to construct a precise tidal level prediction system, which takes both advantages of the harmonic analysis method and the ANFIS network. The proposed prediction model is composed of two modules: the astronomical tide module caused by celestial bodies’ movement and the non-astronomical tide module caused by various meteorological and other environmental factors. To generate a fuzzy inference system(FIS) structure,three approaches which include grid partition(GP), fuzzy c-means(FCM) and sub-clustering(SC) are used in the ANFIS network constructing process. Furthermore, to obtain the optimal ANFIS based prediction model, large numbers of simulation experiments are implemented for each FIS generating approach. In this tidal prediction study, the optimal ANFIS model is used to predict the non-astronomical tide module, while the conventional harmonic analysis model is used to predict the astronomical tide module. The final prediction result is performed by combining the estimation outputs of the harmonious analysis model and the optimal ANFIS model. To demonstrate the applicability and capability of the proposed novel prediction model, measured tidal level samples of Fort Pulaski tidal station are selected as the testing database. Simulation and experimental results confirm that the proposed prediction approach can achieve precise predictions for the tidal level with high accuracy, satisfactory convergence and stability.
基金Supported by the National Key Basic Research and Development Program of China (2009CB320602)the National Natural Science Foundation of China (60834004, 61025018)+2 种基金the Open Project Program of the State Key Lab of Industrial ControlTechnology (ICT1108)the Open Project Program of the State Key Lab of CAD & CG (A1120)the Foundation of Key Laboratory of System Control and Information Processing (SCIP2011005),Ministry of Education,China
文摘Semiconductor manufacturing (SM) system is one of the most complicated hybrid processes involved continuously variable dynamical systems and discrete event dynamical systems. The optimization and scheduling of semiconductor fabrication has long been a hot research direction in automation. Bottleneck is the key factor to a SM system, which seriously influences the throughput rate, cycle time, time-delivery rate, etc. Efficient prediction for the bottleneck of a SM system provides the best support for the consequent scheduling. Because categorical data (product types, releasing strategies) and numerical data (work in process, processing time, utilization rate, buffer length, etc.) have significant effect on bottleneck, an improved adaptive network-based fuzzy inference system (ANFIS) was adopted in this study to predict bottleneck since conventional neural network-based methods accommodate only numerical inputs. In this improved ANFIS, the contribution of categorical inputs to firing strength is reflected through a transformation matrix. In order to tackle high-dimensional inputs, reduce the number of fuzzy rules and obtain high prediction accuracy, a fuzzy c-means method combining binary tree linear division method was applied to identify the initial structure of fuzzy inference system. According to the experimental results, the main-bottleneck and sub-bottleneck of SM system can be predicted accurately with the proposed method.
基金Project 20050290010 supported by the Doctoral Foundation of Chinese Education Ministry and 2005AA133070 by National 863 Program for High Technique Research Development
文摘The spontaneous combustion is a smoldering process and characterized by a slow burning speed and a long duration. Therefore, it is a hazard to coal mines. Early detection of coal mine spontaneous combustion is quite difficult because of the complexity of different coal mines. And the traditional threshold discriminance is not suitable for spontaneous combustion detection due to the uncertainty of coalmine combustion. Restrictions of the single detection method will also affect the detection precision in the early time of spontaneous combustion. Although multiple detection methods can be adopted as a complementarity to improve the accuracy of detection, the synthesized method will in- crease the complicacy of criterion, making it difficult to estimate the combustion. To solve this problem, a fuzzy inference system based on CRI (Compositional Rule of Inference) and fuzzy reasoning method FITA (First Infer Then Aggregate) are presented. And the neural network is also developed to realize the fuzzy inference system. Finally, the effectiveness of the inference system is demonstrated bv means of an experiment.
文摘This paper mainly describes that loose of jig bed affects jig's separation effect, and the corresponding fuzzy rules were built. Using the evaluating index of jig's separation effect--imperfection (I) and total misplaced material (Cz), it evaluates status of loose of jig bed by fuzzy inference system. Experimental simulation and applications in practice prove the method's feasibility.
基金Ministry of Education and Training of Vietnam,Grant No.B2020-GHA-03the University of Transport and Communications,Hanoi,Vietnam.
文摘One of the important geotechnical parameters required for designing of the civil engineering structure is the compressibility of the soil.In this study,the main purpose is to develop a novel hybrid Machine Learning(ML)model(ANFIS-DE),which used Differential Evolution(DE)algorithm to optimize the predictive capability of Adaptive-Network-based Fuzzy Inference System(ANFIS),for estimating soil Compression coefficient(Cc)from other geotechnical parameters namelyWater Content,Void Ratio,SpecificGravity,Liquid Limit,Plastic Limit,Clay content and Depth of Soil Samples.Validation of the predictive capability of the novel model was carried out using statistical indices:Root Mean Square Error(RMSE),Mean Absolute Error(MAE),and Correlation Coefficient(R).In addition,two popular ML models namely Reduced Error Pruning Trees(REPTree)and Decision Stump(Dstump)were used for comparison.Results showed that the performance of the novel model ANFIS-DE is the best(R=0.825,MAE=0.064 and RMSE=0.094)in comparison to other models such as REPTree(R=0.7802,MAE=0.068 and RMSE=0.0988)andDstump(R=0.7325,MAE=0.0785 and RMSE=0.1036).Therefore,the ANFIS-DE model can be used as a promising tool for the correct and quick estimation of the soil Cc,which can be employed in the design and construction of civil engineering structures.
基金Funded by the Excellent Young Teachers of MOE (350) and Chongqing Education Committee Foundation
文摘It has been shown in recent economic and statistical studies that combining forecasts may produce more accurate forecasts than individual ones. However, the literature on combining forecasts has almost exclusively focused on linear combining forecasts. In this paper, a new nonlinear combination forecasting method based on fuzzy inference system is present to overcome the difficulties and drawbacks in linear combination modeling of non-stationary time series. Furthermore, the optimization algorithm based on a hierarchical structure of learning automata is used to identify the parameters of the fuzzy system. Experiment results related to numerical examples demonstrate that the new technique has excellent identification performances and forecasting accuracy superior to other existing linear combining forecasts.
文摘Spectral unmixing helps to identify different components present in the spectral mixtures which occur in the uppermost layer of the area owing to the low spatial resolution of hyperspectral images.Most spectral unmixing methods are globally based and do not consider the spectral variability among its endmembers that occur due to illumination,atmospheric,and environmental conditions.Here,endmember bundle extraction plays a major role in overcoming the above-mentioned limitations leading to more accurate abundance fractions.Accordingly,a two-stage approach is proposed to extract endmembers through endmember bundles in hyperspectral images.The divide and conquer method is applied as the first step in subset images with only the non-redundant bands to extract endmembers using the Vertex Component Analysis(VCA)and N-FINDR algorithms.A fuzzy rule-based inference system utilizing spectral matching parameters is proposed in the second step to categorize endmembers.The endmember with the minimum error is chosen as the final endmember in each specific category.The proposed method is simple and automatically considers endmember variability in hyperspectral images.The efficiency of the proposed method is evaluated using two real hyperspectral datasets.The average spectral angle and abundance angle are used to analyze the performance measures.
文摘In this paper, it described the architecture of a tool called DiagData. This tool aims to use a large amount of data and information in the field of plant disease diagnostic to generate a disease predictive system. In this approach, techniques of data mining are used to extract knowledge from existing data. The data is extracted in the form of rules that are used in the development of a predictive intelligent system. Currently, the specification of these rules is built by an expert or data mining. When data mining on a large database is used, the number of generated rules is very complex too. The main goal of this work is minimize the rule generation time. The proposed tool, called DiagData, extracts knowledge automatically or semi-automatically from a database and uses it to build an intelligent system for disease prediction. In this work, the decision tree learning algorithm was used to generate the rules. A toolbox called Fuzzygen was used to generate a prediction system from rules generated by decision tree algorithm. The language used to implement this software was Java. The DiagData has been used in diseases prediction and diagnosis systems and in the validation of economic and environmental indicators in agricultural production systems. The validation process involved measurements and comparisons of the time spent to enter the rules by an expert with the time used to insert the same rules with the proposed tool. Thus, the tool was successfully validated, providing a reduction of time.
文摘The purpose of this research is to demonstrate the use of Adaptive Neuro-Fuzzy Inference System(ANFIS)for discrimination between quarry blasts and microearthquakes in the Tehran region using data from the Broadband Iranian National Network Center(BIN).In the south and southeast of Tehran,a large number of quarry blasts“contaminate”the earthquake catalog.In order to identify the real seismicity(tectonic earthquakes)in the region,we need to discriminate quarry blasts from natural earthquakes in the catalog.
文摘This paper presents an efficient and easy implemented method for detecting minute based analysis of sleep apnea. The nasal, chest and abdominal based respiratory signals extracted from polysomnography recordings are obtained from PhysioNet apnea-ECG database. Wavelet transforms are applied on the 1-minute and 3-minute length recordings. According to the preliminary tests, the variances of 10th and 11th detail components can be used as discriminative features for apneas. The features obtained from total 8 recordings are used for training and testing of an adaptive neuro fuzzy inference system (ANFIS). Training and testing process have been repeated by using the randomly obtained five different sequences of whole data for generalization of the ANFIS. According to results, ANFIS based classification has sufficient accuracy for apnea detection considering of each type of respiratory. However, the best result is obtained by analyzing the 3-minute length nasal based respiratory signal. In this study, classification accuracies have been obtained greater than 95.2% for each of the five sequences of entire data.
基金This work was supported by the RGC Competitive Earmarked Research Grant (No. PolyU 5065/98E)Natural Science Foundation of China (No. 60225015)+1 种基金Natural Science Foundation of Jiangsu Province (No. BK2003017)National Key Labruary of Novel Software Tech
文摘A class of new fuzzy inference systems New-FISs is presented.Compared with the standard fuzzy system, New-FIS is still a universal approximator and has no fuzzy rule base and linearly parameter growth. Thus, it effectively overcomes the second "curse of dimensionality":there is an exponential growth in the number of parameters of a fuzzy system as the number of input variables,resulting in surprisingly reduced computational complexity and being especially suitable for applications,where the complexity is of the first importance with respect to the approximation accuracy.
文摘The lane changing decision model(LCDM)is a critical component in semi-and fully-automated driving systems.Recent research has found that the fuzzy inference system(FIS)is a promising approach to implementing LCDMs.To improve the FIS’s performance,this research reviewed the challenges in the development an FIS model to make the yes;nof g decisions in discretionary lane changes.The FIS model was revised to bring its fuzzy inference rules more consistent with the fuzzy membership functions,and its com-position and defuzzification methods more in line with the classical fuzzy logic theory.An equitable test data set with approximately equal number of yes;nof g data points was assembled from the same next generation simulation(NGSIM)data used in the past research.The test results proved that:(1)an LCDM’s performance was dependent on how the yes;nof g decisions in the test data set were manually labeled;(2)separating the fuzzy inference rules into a yesf g group and a nof g group and compute the results sep-arately yielded potentially better decision accuracy.Furthermore,The gene expression pro-gramming model(GEPM)performed better than the improved FIS-based model.The findings led the authors to suggest two possible research directions:(1)add the subject vehicle’s speed as an input to the LCDM and redesign the decision-making model;(2)con-struct models for congested and uncongested traffic separately.The authors further sug-gested the use of instrumented vehicles to collect a set of high-fidelity lane changing data in the naturalistic driving environment.
基金Supported by the Soft Science Program of Jiangsu Province(BR2010079)~~
文摘The adaptive neural fuzzy inference system (ANFIS) is used to make a ease study considering features of complex social-technical system with the target of increasing organizational efficiency of public scientific research institutions. An integrated ANFIS model is built and the effectiveness of the model is verified by means of investigation data and their processing results. The model merges the learning mechanism of neural network and the language inference ability of fuzzy system, and thereby remedies the defects of neural network and fuzzy logic system. Result of this case study shows that the model is suitable for complicated socio-technical systems and has bright application perspective to solve such problems of prediction, evaluation and policy-making in managerial fields.
文摘Concrete compressive strength prediction is an essential process for material design and sustainability.This study investigates several novel hybrid adaptive neuro-fuzzy inference system(ANFIS)evolutionary models,i.e.,ANFIS-particle swarm optimization(PSO),ANFIS-ant colony,ANFIS-differential evolution(DE),and ANFIS-genetic algorithm to predict the foamed concrete compressive strength.Several concrete properties,including cement content(C),oven dry density(O),water-to-binder ratio(W),and foamed volume(F)are used as input variables.A relevant data set is obtained from open-access published experimental investigations and used to build predictive models.The performance of the proposed predictive models is evaluated based on the mean performance(MP),which is the mean value of several statistical error indices.To optimize each predictive model and its input variables,univariate(C,O,W,and F),bivariate(C-O,C-W,C-F,O-W,O-F,and W-F),trivariate(C-O-W,C-W-F,O-W-F),and four-variate(C-O-W-F)combinations of input variables are constructed for each model.The results indicate that the best predictions obtained using the univariate,bivariate,trivariate,and four-variate models are ANFIS-DE-(O)(MP=0.96),ANFIS-PSO-(C-O)(MP=0.88),ANFIS-DE-(O-W-F)(MP=0.94),and ANFIS-PSO-(C-O-W-F)(MP=0.89),respectively.ANFIS-PSO-(C-O)yielded the best accurate prediction of compressive strength with an MP value of 0.96.
基金supported by the High Level Talent Research Project in Huaqiao University ( 14BS214)
文摘The objective assessment method of network video quality is a challenge, because the video quality will be distorted by various factors, including transmission and compression. In order to improve the objective method, an objective assessment method based on fuzzy inference system of Mamdani is proposed. Firstly, six quality parameters are introduced. All the quality parameters are inputted to fuzzy logic controller system. Secondly, the outputs are used as next inputs and inferred by another fuzzy logic controller system to obtain the objective quality of network video. Lastly, the performance of proposed method is validated on four videos with different network environment. Meanwhile this method is compared with other methods. The experimental results show that the proposed method can improve the similarity between subjective and objective assessment.
文摘Density is an important property of natural gas required for the design of gas processing and reservoir simulation.Due to expensive measurement of density,industry tends to predict gas density through an EOS.However,all EOS are associated with uncertainties,especially at highpressure conditions.Also,using sophisticated EOS in commercial software renders simulation highly time-consuming.This work aims to evaluate performance of adaptive neuro-fuzzy inference system(ANFIS)as a widely-accepted intelligent model for prediction of P-r-T behavior of natural gas.Using experimental data reported in the literature,our inference system was trained with 95 data of natural gas densities in the temperature range of(250-450)K and pressures up to 150 MPa.Additionally,prediction by ANFIS was compared with those of AGA8 and GERG04 which both are leading industrial EOS for calculation of natural gas density.It was observed that ANFIS predicts natural gas density with AARD%of 1.704;and is able to estimate gas density as accurate as sophisticated EOS.The proposed model is applicable for predicting gas density in the range of(250-450)K,(10-150)MPa and also for sweet gases,i.e.,containing a low concentration of N2 and CO2.
基金the Anusandhan National Research Foundation(ANRF),New Delhi[Erstwhile,Science and Engineering Research Board(SERB)]Department of Science and Technology(DST)(Government of India)(File No.:CRG/2022/002618 Dated:22.08.2023)for providing the grant and support to carry out this work effectively.
文摘The primary objective of this study is to measure fluoride levels in groundwater samples using machine learning approaches alongside traditional and fuzzy logic models based health risk assessment in the hard rock Arjunanadi River basin,South India.Fluoride levels in the study area vary between 0.1 and 3.10 mg/L,with 32 samples exceeding the World Health Organization(WHO)standard of 1.5 mg/L.Hydrogeochemical analyses(Durov and Gibbs)clearly show that the overall water chemistry is primarily influenced by simple dissolution,mixing,and rock-water interactions,indicating that geogenic sources are the predominant contributors to fluoride in the study area.Around 446.5 km^(2)is considered at risk.In predictive analysis,five Machine Learning(ML)models were used,with the AdaBoost model performing better than the other models,achieving 96%accuracy and 4%error rate.The Traditional Health Risk Assessment(THRA)results indicate that 65%of samples pose highly susceptible for dental fluorosis,while 12%of samples pose highly susceptible for skeletal fluorosis in young age groups.The Fuzzy Inference System(FIS)model effectively manages ambiguity and linguistic factors,which are crucial when addressing health risks linked to groundwater fluoride contamination.In this model,input variables include fluoride concentration,individual age,and ingestion rate,while output variables consist of dental caries risk,dental fluorosis,and skeletal fluorosis.The overall results indicate that increased ingestion rates and prolonged exposure to contaminated water make adults and the elderly people vulnerable to dental and skeletal fluorosis,along with very young and young age groups.This study is an essential resource for local authorities,healthcare officials,and communities,aiding in the mitigation of health risks associated with groundwater contamination and enhancing quality of life through improved water management and health risk assessment,aligning with Sustainable Development Goals(SDGs)3 and 6,thereby contributing to a cleaner and healthier society.