期刊文献+
共找到223,750篇文章
< 1 2 250 >
每页显示 20 50 100
Auto-Weighted Neutrosophic Fuzzy Clustering for Multi-View Data
1
作者 Zhe Liu Jiahao Shi +2 位作者 Dania Santina Yulong Huang Nabil Mlaiki 《Computer Modeling in Engineering & Sciences》 2025年第9期3531-3555,共25页
The increasing prevalence of multi-view data has made multi-view clustering a crucial technique for discovering latent structures from heterogeneous representations.However,traditional fuzzy clustering algorithms show... The increasing prevalence of multi-view data has made multi-view clustering a crucial technique for discovering latent structures from heterogeneous representations.However,traditional fuzzy clustering algorithms show limitations with the inherent uncertainty and imprecision of such data,as they rely on a single-dimensional membership value.To overcome these limitations,we propose an auto-weighted multi-view neutrosophic fuzzy clustering(AW-MVNFC)algorithm.Our method leverages the neutrosophic framework,an extension of fuzzy sets,to explicitly model imprecision and ambiguity through three membership degrees.The core novelty of AWMVNFC lies in a hierarchical weighting strategy that adaptively learns the contributions of both individual data views and the importance of each feature within a view.Through a unified objective function,AW-MVNFC jointly optimizes the neutrosophic membership assignments,cluster centers,and the distributions of view and feature weights.Comprehensive experiments conducted on synthetic and real-world datasets demonstrate that our algorithm achieves more accurate and stable clustering than existing methods,demonstrating its effectiveness in handling the complexities of multi-view data. 展开更多
关键词 Multi-view data neutrosophic fuzzy clustering view weight feature weight UNCERTAINTY
在线阅读 下载PDF
Multi-View Picture Fuzzy Clustering:A Novel Method for Partitioning Multi-View Relational Data
2
作者 Pham Huy Thong Hoang Thi Canh +2 位作者 Luong Thi Hong Lan Nguyen Tuan Huy Nguyen Long Giang 《Computers, Materials & Continua》 2025年第6期5461-5485,共25页
Multi-view clustering is a critical research area in computer science aimed at effectively extracting meaningful patterns from complex,high-dimensional data that single-view methods cannot capture.Traditional fuzzy cl... Multi-view clustering is a critical research area in computer science aimed at effectively extracting meaningful patterns from complex,high-dimensional data that single-view methods cannot capture.Traditional fuzzy clustering techniques,such as Fuzzy C-Means(FCM),face significant challenges in handling uncertainty and the dependencies between different views.To overcome these limitations,we introduce a new multi-view fuzzy clustering approach that integrates picture fuzzy sets with a dual-anchor graph method for multi-view data,aiming to enhance clustering accuracy and robustness,termed Multi-view Picture Fuzzy Clustering(MPFC).In particular,the picture fuzzy set theory extends the capability to represent uncertainty by modeling three membership levels:membership degrees,neutral degrees,and refusal degrees.This allows for a more flexible representation of uncertain and conflicting data than traditional fuzzy models.Meanwhile,dual-anchor graphs exploit the similarity relationships between data points and integrate information across views.This combination improves stability,scalability,and robustness when handling noisy and heterogeneous data.Experimental results on several benchmark datasets demonstrate significant improvements in clustering accuracy and efficiency,outperforming traditional methods.Specifically,the MPFC algorithm demonstrates outstanding clustering performance on a variety of datasets,attaining a Purity(PUR)score of 0.6440 and an Accuracy(ACC)score of 0.6213 for the 3 Sources dataset,underscoring its robustness and efficiency.The proposed approach significantly contributes to fields such as pattern recognition,multi-view relational data analysis,and large-scale clustering problems.Future work will focus on extending the method for semi-supervised multi-view clustering,aiming to enhance adaptability,scalability,and performance in real-world applications. 展开更多
关键词 Multi-view clustering picture fuzzy sets dual anchor graph fuzzy clustering multi-view relational data
在线阅读 下载PDF
Enhanced BDS four-frequency cycle slip detection and repair using fuzzy clustering analysis
3
作者 Jinfeng Yuan Xiaoning Su Yuzhao Li 《Geodesy and Geodynamics》 2025年第4期439-453,共15页
Cycle slip detection and repair is one of the key technologies for GNSS high-precision positioning.We introduce an enhanced methodology for detecting and repairing BDS four-frequency cycle slips,utilizing fuzzy cluste... Cycle slip detection and repair is one of the key technologies for GNSS high-precision positioning.We introduce an enhanced methodology for detecting and repairing BDS four-frequency cycle slips,utilizing fuzzy clustering analysis.Firstly,based on fuzzy clustering analysis,the optimal combinations for the BDS four-frequency,including extra-wide lane(EWL),wide lane(WL),and narrow lane(NL),were selected.Secondly,the feasibility of this method was verified using actual static and dynamic observation data,and different types of cycle slips were simulated for further validation.Meanwhile,the proposed method was compared with the classical Turbo-Edit method through experiments.Finally,cycle slips were repaired using the least squares method.According to the experimental results,the optimal geometry-free phase combinations(-2,2,1,-1),(1,-1,1,-1),(3,2,-2,-3),and the pseudo-range phase combination(-1,1,1,-1),selected based on fuzzy clustering analysis,were used for cycle slip detection.The proposed method accurately detected small,large,and specific cycle slips simulated in the actual data.Compared with the Turbo-Edit method,the proposed methodwas able to detect specific cycle slips that Turbo-Edit could not.It is worth noting that during the repair process,the coefficients of the combined observation values are integers,preserving the integer cycle characteristic of the observation values,which allows cycle slips to be fixed directly,eliminating the need for complex searching procedures.Consequently,by enhancing the precision and reliability of the detection of BDS four-frequency cycle slips,our proposed method provides the support for the high-precision localization of BDS multi-frequency observations. 展开更多
关键词 BDS four-frequency Cycle slip detection and repair fuzzy clustering analysis Geometry-free phase combinations Pseudo-range phase combination
原文传递
Relative-Density-Viewpoint-Based Weighted Kernel Fuzzy Clustering
4
作者 Yuhan Xia Xu Li +2 位作者 Ye Liu Wenbo Zhou Yiming Tang 《Computers, Materials & Continua》 2025年第7期625-651,共27页
Applying domain knowledge in fuzzy clustering algorithms continuously promotes the development of clustering technology.The combination of domain knowledge and fuzzy clustering algorithms has some problems,such as ini... Applying domain knowledge in fuzzy clustering algorithms continuously promotes the development of clustering technology.The combination of domain knowledge and fuzzy clustering algorithms has some problems,such as initialization sensitivity and information granule weight optimization.Therefore,we propose a weighted kernel fuzzy clustering algorithm based on a relative density view(RDVWKFC).Compared with the traditional density-based methods,RDVWKFC can capture the intrinsic structure of the data more accurately,thus improving the initial quality of the clustering.By introducing a Relative Density based Knowledge Extraction Method(RDKM)and adaptive weight optimization mechanism,we effectively solve the limitations of view initialization and information granule weight optimization.RDKM can accurately identify high-density regions and optimize the initialization process.The adaptive weight mechanism can reduce noise and outliers’interference in the initial cluster centre selection by dynamically allocating weights.Experimental results on 14 benchmark datasets show that the proposed algorithm is superior to the existing algorithms in terms of clustering accuracy,stability,and convergence speed.It shows adaptability and robustness,especially when dealing with different data distributions and noise interference.Moreover,RDVWKFC can also show significant advantages when dealing with data with complex structures and high-dimensional features.These advancements provide versatile tools for real-world applications such as bioinformatics,image segmentation,and anomaly detection. 展开更多
关键词 fuzzy clustering fuzzy c-means feature weighting information granule
在线阅读 下载PDF
Grouped machine learning methods for predicting rock mass parameters in a tunnel boring machine-driven tunnel based on fuzzy C-means clustering
5
作者 Ruirui Wang Yaodong Ni +1 位作者 Lingli Zhang Boyang Gao 《Deep Underground Science and Engineering》 2025年第1期55-71,共17页
To guarantee safe and efficient tunneling of a tunnel boring machine(TBM),rapid and accurate judgment of the rock mass condition is essential.Based on fuzzy C-means clustering,this paper proposes a grouped machine lea... To guarantee safe and efficient tunneling of a tunnel boring machine(TBM),rapid and accurate judgment of the rock mass condition is essential.Based on fuzzy C-means clustering,this paper proposes a grouped machine learning method for predicting rock mass parameters.An elaborate data set on field rock mass is collected,which also matches field TBM tunneling.Meanwhile,target stratum samples are divided into several clusters by fuzzy C-means clustering,and multiple submodels are trained by samples in different clusters with the input of pretreated TBM tunneling data and the output of rock mass parameter data.Each testing sample or newly encountered tunneling condition can be predicted by multiple submodels with the weight of the membership degree of the sample to each cluster.The proposed method has been realized by 100 training samples and verified by 30 testing samples collected from the C1 part of the Pearl Delta water resources allocation project.The average percentage error of uniaxial compressive strength and joint frequency(Jf)of the 30 testing samples predicted by the pure back propagation(BP)neural network is 13.62%and 12.38%,while that predicted by the BP neural network combined with fuzzy C-means is 7.66%and6.40%,respectively.In addition,by combining fuzzy C-means clustering,the prediction accuracies of support vector regression and random forest are also improved to different degrees,which demonstrates that fuzzy C-means clustering is helpful for improving the prediction accuracy of machine learning and thus has good applicability.Accordingly,the proposed method is valuable for predicting rock mass parameters during TBM tunneling. 展开更多
关键词 fuzzy C-means clustering machine learning rock mass parameter tunnel boring machine
原文传递
Fuzzy Decision-Based Clustering for Efficient Data Aggregation in Mobile UWSNs
6
作者 Aadil Mushtaq Pandith Manni Kumar +5 位作者 Naveen Kumar Nitin Goyal Sachin Ahuja Yonis Gulzar Rashi Rastogi Rupesh Gupta 《Computers, Materials & Continua》 2025年第4期259-279,共21页
Underwater wireless sensor networks(UWSNs)rely on data aggregation to streamline routing operations by merging information at intermediate nodes before transmitting it to the sink.However,many existing data aggregatio... Underwater wireless sensor networks(UWSNs)rely on data aggregation to streamline routing operations by merging information at intermediate nodes before transmitting it to the sink.However,many existing data aggregation techniques are designed exclusively for static networks and fail to reflect the dynamic nature of underwater environments.Additionally,conventional multi-hop data gathering techniques often lead to energy depletion problems near the sink,commonly known as the energy hole issue.Moreover,cluster-based aggregation methods face significant challenges such as cluster head(CH)failures and collisions within clusters that degrade overall network performance.To address these limitations,this paper introduces an innovative framework,the Cluster-based Data Aggregation using Fuzzy Decision Model(CDAFDM),tailored for mobile UWSNs.The proposed method has four main phases:clustering,CH selection,data aggregation,and re-clustering.During CH selection,a fuzzy decision model is utilized to ensure efficient cluster head selection based on parameters such as residual energy,distance to the sink,and data delivery likelihood,enhancing network stability and energy efficiency.In the aggregation phase,CHs transmit a single,consolidated set of non-redundant data to the base station(BS),thereby reducing data duplication and saving energy.To adapt to the changing network topology,the re-clustering phase periodically updates cluster formations and reselects CHs.Simulation results show that CDAFDM outperforms current protocols such as CAPTAIN(Collection Algorithm for underwater oPTical-AcoustIc sensor Networks),EDDG(Event-Driven Data Gathering),and DCBMEC(Data Collection Based on Mobile Edge Computing)with a packet delivery ratio increase of up to 4%,an energy consumption reduction of 18%,and a data collection latency reduction of 52%.These findings highlight the framework’s potential for reliable and energy-efficient data aggregation mobile UWSNs. 展开更多
关键词 clustering data aggregation data collection fuzzy model MONITORING UWSN
在线阅读 下载PDF
FFD-Clustering:An unsupervised anomaly detection method for aero-engines based on fuzzy fusion of variables and discriminative mapping of features
7
作者 Zhe WANG Xuyun FU +2 位作者 Minghang ZHAO Xiangzhao XIA Shisheng ZHONG 《Chinese Journal of Aeronautics》 2025年第5期202-231,共30页
The original monitoring data from aero-engines possess characteristics such as high dimen-sionality,strong noise,and imbalance,which present substantial challenges to traditional anomalydetection methods.In response,t... The original monitoring data from aero-engines possess characteristics such as high dimen-sionality,strong noise,and imbalance,which present substantial challenges to traditional anomalydetection methods.In response,this paper proposes a method based on Fuzzy Fusion of variablesand Discriminant mapping of features for Clustering(FFD-Clustering)to detect anomalies in originalmonitoring data from Aircraft Communication Addressing and Reporting System(ACARS).Firstly,associated variables are fuzzily grouped to extract the underlying distribution characteristics and trendsfrom the data.Secondly,a multi-layer contrastive denoising-based feature Fusion Encoding Network(FEN)is designed for each variable group,which can construct representative features for each variablegroup through eliminating strong noise and complex interrelations between variables.Thirdly,a featureDiscriminative Mapping Network(DMN)based on reconstruction difference re-clustering is designed,which can distinguish dissimilar feature vectors when mapping representative features to a unified fea-ture space.Finally,the K-means clustering is used to detect the abnormal feature vectors in the unifiedfeature space.Additionally,the algorithm is capable of reconstructing identified abnormal vectors,thereby locating the abnormal variable groups.The performance of this algorithm was tested ontwo public datasets and real original monitoring data from four aero-engines'ACARS,demonstratingits superiority and application potential in aero-engine anomaly detection. 展开更多
关键词 AERO-ENGINE Anomaly detection UNSUPERVISED fuzzy fusion Discriminativ emapping
原文传递
Fuzzy clustering for electric field characterization and its application to thunderstorm interpretability
8
作者 Xu Yang Hongyan Xing +2 位作者 Xinyuan Ji Wei Xu Witold Pedrycz 《Digital Communications and Networks》 2025年第2期299-307,共9页
Changes in the Atmospheric Electric Field Signal(AEFS)are highly correlated with weather changes,especially with thunderstorm activities.However,little attention has been paid to the ambiguous weather information impl... Changes in the Atmospheric Electric Field Signal(AEFS)are highly correlated with weather changes,especially with thunderstorm activities.However,little attention has been paid to the ambiguous weather information implicit in AEFS changes.In this paper,a Fuzzy C-Means(FCM)clustering method is used for the first time to develop an innovative approach to characterize the weather attributes carried by AEFS.First,a time series dataset is created in the time domain using AEFS attributes.The AEFS-based weather is evaluated according to the time-series Membership Degree(MD)changes obtained by inputting this dataset into the FCM.Second,thunderstorm intensities are reflected by the change in distance from a thunderstorm cloud point charge to an AEF apparatus.Thus,a matching relationship is established between the normalized distance and the thunderstorm dominant MD in the space domain.Finally,the rationality and reliability of the proposed method are verified by combining radar charts and expert experience.The results confirm that this method accurately characterizes the weather attributes and changes in the AEFS,and a negative distance-MD correlation is obtained for the first time.The detection of thunderstorm activity by AEF from the perspective of fuzzy set technology provides a meaningful guidance for interpretable thunderstorms. 展开更多
关键词 Atmospheric electric field(AEF) THUNDERSTORM fuzzy C-means(FCM) ATTRIBUTE
在线阅读 下载PDF
基于BAS—Smith—Fuzzy PID的物联网水肥控制系统研究 被引量:2
9
作者 丁筱玲 王克林 +3 位作者 李军台 郭冰 李志勇 赵立新 《中国农机化学报》 北大核心 2025年第4期240-247,共8页
针对水肥控制难度大,传统灌溉施肥方法智能化程度较低的问题,设计一种基于BAS—Smith—Fuzzy PID的物联网水肥一体化控制系统。以控制混合肥液的EC(电导率)值为目标,在传统模糊PID控制算法的基础上引入BAS(天牛须搜索)算法和Smith预估... 针对水肥控制难度大,传统灌溉施肥方法智能化程度较低的问题,设计一种基于BAS—Smith—Fuzzy PID的物联网水肥一体化控制系统。以控制混合肥液的EC(电导率)值为目标,在传统模糊PID控制算法的基础上引入BAS(天牛须搜索)算法和Smith预估器。通过MATLAB/Simulink软件仿真,验证其寻优和优化能力,对比常规PID、BAS—PID模型,结果表明,BAS—Smith—Fuzzy PID控制器拥有优异控制性能。基于STM32主控平台搭建单通道混肥装置,配置MCGS触摸屏上位机并基于Android平台开发客户端进行人机交互,试验结果表明,BAS—Smith—Fuzzy PID的调节时间对比常规PID、BAS—PID缩短17.1%、63%、超调量降低82.1%、87.2%。 展开更多
关键词 水肥一体化 BAS算法 模糊PID控制 物联网 SIMULINK仿真
在线阅读 下载PDF
Optical Fibre Communication Feature Analysis and Small Sample Fault Diagnosis Based on VMD-FE and Fuzzy Clustering 被引量:1
10
作者 Xiangqun Li Jiawen Liang +4 位作者 Jinyu Zhu Shengping Shi Fangyu Ding Jianpeng Sun Bo Liu 《Energy Engineering》 EI 2024年第1期203-219,共17页
To solve the problems of a few optical fibre line fault samples and the inefficiency of manual communication optical fibre fault diagnosis,this paper proposes a communication optical fibre fault diagnosis model based ... To solve the problems of a few optical fibre line fault samples and the inefficiency of manual communication optical fibre fault diagnosis,this paper proposes a communication optical fibre fault diagnosis model based on variational modal decomposition(VMD),fuzzy entropy(FE)and fuzzy clustering(FC).Firstly,based on the OTDR curve data collected in the field,VMD is used to extract the different modal components(IMF)of the original signal and calculate the fuzzy entropy(FE)values of different components to characterize the subtle differences between them.The fuzzy entropy of each curve is used as the feature vector,which in turn constructs the communication optical fibre feature vector matrix,and the fuzzy clustering algorithm is used to achieve fault diagnosis of faulty optical fibre.The VMD-FE combination can extract subtle differences in features,and the fuzzy clustering algorithm does not require sample training.The experimental results show that the model in this paper has high accuracy and is relevant to the maintenance of communication optical fibre when compared with existing feature extraction models and traditional machine learning models. 展开更多
关键词 Optical fibre fault diagnosis OTDR curve variational mode decomposition fuzzy entropy fuzzy clustering
在线阅读 下载PDF
基于AW-CPSO-Fuzzy-PID的茶鲜叶分级输送速度控制器研究 被引量:1
11
作者 胡永光 靳筱天 +2 位作者 张志 鹿永宗 潘庆民 《农业机械学报》 北大核心 2025年第4期275-283,共9页
为解决基于机器视觉的茶鲜叶分级输送速度控制精度低的问题,本文设计一种引入自适应权重与Circle混沌映射的PSO优化模糊PID控制器(AW-CPSO-Fuzzy-PID),并开展基于改进模糊PID的茶鲜叶分级输送速度控制。在茶鲜叶输送传动系统作业过程中... 为解决基于机器视觉的茶鲜叶分级输送速度控制精度低的问题,本文设计一种引入自适应权重与Circle混沌映射的PSO优化模糊PID控制器(AW-CPSO-Fuzzy-PID),并开展基于改进模糊PID的茶鲜叶分级输送速度控制。在茶鲜叶输送传动系统作业过程中,当设定输送速度为78.5 mm/s时,每1 ms记录一次,输送速度波动可控制在0.7 mm/s内;改进模糊PID茶鲜叶输送传动系统响应时间比传统PID与模糊PID分别减少81.41%、61.74%;超调量分别降低81.24%、41.82%;采集目标图像平均峰值信噪比分别提高5.8、10.4 dB。结果表明,本文提出的方法具有更好的寻优性能和收敛速度。研究结果为基于机器视觉的茶鲜叶自动分级系统精确而稳定的控制奠定了理论基础,为解决由输送速度波动导致的图像模糊问题提供了技术方案。 展开更多
关键词 茶鲜叶分级 输送速度 模糊PID控制 粒子群算法
在线阅读 下载PDF
基于Fuzzy-DEMATEL-ISM的新能源汽车供应链韧性影响因素研究 被引量:2
12
作者 孙静 陈雨朵 《物流技术》 2025年第1期37-48,共12页
全球化和产业革命推动下,新能源汽车供应链面临潜在风险与挑战,提升供应链韧性对保障产业稳定和可持续发展至关重要。现有研究多侧重于提升路径、韧性测量和宏观政策,缺乏对影响因素系统性和层次性的研究。全面分析新能源汽车供应链韧... 全球化和产业革命推动下,新能源汽车供应链面临潜在风险与挑战,提升供应链韧性对保障产业稳定和可持续发展至关重要。现有研究多侧重于提升路径、韧性测量和宏观政策,缺乏对影响因素系统性和层次性的研究。全面分析新能源汽车供应链韧性的影响因素,识别关键因素,并剖析这些因素间的逻辑关系和层次结构,可为提升供应链韧性提供理论依据和实践指导。首先,通过文献分析法构建初步影响因素体系,并邀请专家对影响因素进行调查和筛选,从预测能力、响应能力、恢复能力、学习能力和可持续发展能力5个维度构建了包含20个影响因素的指标体系。然后,运用FuzzyDEMATEL模型识别关键影响因素,并通过ISM模型分析影响因素间的逻辑关系和层次结构。研究发现供应链数字化水平、智慧物流水平和供应链合作等8个因素为新能源汽车供应链韧性的关键影响因素,供应链可见性和财务实力是供应链韧性的根本因素,可持续发展能力对供应链韧性起最直接作用。基于研究结果,提出加强供应链数智化转型、深化供应链合作、构建ESG生态体系等建议,以提升新能源汽车供应链韧性。 展开更多
关键词 新能源汽车 供应链韧性 影响因素 fuzzy-DEMATEL-ISM
在线阅读 下载PDF
基于改进型蜣螂算法Fuzzy-Smith-LADRC混凝投药 被引量:1
13
作者 王文成 余智科 郑诗翰 《电子测量技术》 北大核心 2025年第3期10-17,共8页
二十届三中全会强调全面落实深化改革水利任务,其中居民饮用水是重点民生任务,混凝工艺是饮用水处理的关键环节。由于混凝过程具有大时滞特性,故对于原水水质频繁变化的控制系统,常规的PID控制不能达到满意的效果。为此,将一种不依赖系... 二十届三中全会强调全面落实深化改革水利任务,其中居民饮用水是重点民生任务,混凝工艺是饮用水处理的关键环节。由于混凝过程具有大时滞特性,故对于原水水质频繁变化的控制系统,常规的PID控制不能达到满意的效果。为此,将一种不依赖系统精确模型的线性自抗扰控制器(LADRC)应用于系统中,利用扩张观测器对混凝控制系统中出现的扰动进行估计并补偿,同时设计史密斯预估器(Smith)与模糊控制器(Fuzzy)相结合的自适应史密斯控制器来消除大时滞对控制效果的影响,提出Fuzzy-Smith-LADRC控制器。针对控制器参数调节困难而引入改进型蜣螂算法(MSIDBO)进行参数整定。改进型算法对DBO算法中初始种群分布不均匀、易陷入局部最优解等问题进行优化,使得MSIDBO能快速收敛并更好平衡全局探索与局部开发能力。系统模型精确时,该控制方法比PID控制的调节时间减少279 s和超调量降低8%,比DMC控制的调节时间减少40 s,系统模型变化时,相比LADRC具有更好的抗干扰性与鲁棒性。 展开更多
关键词 混凝工艺 模糊史密斯预估-线性自抗扰 改进蜣螂算法 参数优化
原文传递
IDBO-Fuzzy-PID控制器在立磨机液压控制中的应用
14
作者 李玲 刘佳芸 +2 位作者 李瑶 程福安 解妙霞 《中南大学学报(自然科学版)》 北大核心 2025年第9期3724-3736,共13页
为解决立磨机液压控制系统存在的非线性、时变性问题,本文提出了一种基于改进蜣螂算法(improved dung beetle optimizer,IDBO)的模糊PID控制器(IDBO-Fuzzy-PID)。首先,基于立磨机液压位置控制系统模型,设计模糊PID控制器以实时调整控制... 为解决立磨机液压控制系统存在的非线性、时变性问题,本文提出了一种基于改进蜣螂算法(improved dung beetle optimizer,IDBO)的模糊PID控制器(IDBO-Fuzzy-PID)。首先,基于立磨机液压位置控制系统模型,设计模糊PID控制器以实时调整控制参数;其次,针对DBO算法存在的种群多样性匮乏、全局搜索能力弱、易陷局部最优等不足,引入佳点集与反向学习、自适应繁殖偷窃及自适应混合变异3种策略进行改进,并通过多类型测试函数验证IDBO收敛速度及求解精度;最后,构建联合仿真平台,验证控制器在随机干扰与系统参数波动条件下的控制性能。研究结果表明:本文提出的IDBO-Fuzzy-PID控制器具有良好的跟踪性能与时变适应性,系统平衡点附近上升、调节时间最短,基本无超调至目标位移;在外界扰动条件下,液压杆振幅降至0.252 mm,较PID控制器降幅达71.3%,其抗干扰性能最优;在系统参数波动条件下,其稳定性未受显著影响,正弦波跟踪性能最优。该控制器通过动态调整参数以快速补偿液压杆位移的偏差,有效抑制了磨辊的波动,提升了磨粉工艺的稳定性。 展开更多
关键词 立磨机 液压控制 模糊PID控制 蜣螂优化算法 联合仿真
在线阅读 下载PDF
蜣螂算法优化Fuzzy-PID的超声波电源频率控制研究
15
作者 蔡华锋 夏彪 田亮 《重庆理工大学学报(自然科学)》 北大核心 2025年第9期209-216,共8页
超声波焊接过程中换能器受到温度、阻抗波动等影响会产生谐振频率漂移现象,针对超声波电源频率跟踪精度低、动态响应慢的问题,提出一种蜣螂算法(dung beetle optimizer,DBO)优化模糊PID(fuzzy-PID)的频率复合控制策略。通过建立超声波... 超声波焊接过程中换能器受到温度、阻抗波动等影响会产生谐振频率漂移现象,针对超声波电源频率跟踪精度低、动态响应慢的问题,提出一种蜣螂算法(dung beetle optimizer,DBO)优化模糊PID(fuzzy-PID)的频率复合控制策略。通过建立超声波焊接电源的Simulink仿真模型,系统对比了传统PID、模糊PID、粒子群(PSO)优化的模糊PID以及蜣螂算法优化的模糊PID 4种控制方法下系统的动态特性。研究结果表明:蜣螂优化算法通过定向滚球机制和动态权重调整策略,有效实现了模糊论域参数的自适应整定,提高了频率控制精度,并能在负载阻抗突变情况下快速跟踪到换能器谐振频率。 展开更多
关键词 超声波电源 超声焊接 蜣螂优化算法 模糊PID 频率跟踪
在线阅读 下载PDF
基于Fuzzy DEMATEL-VIKOR模型的历史街区文化活力设计优化研究
16
作者 万一凡 李宇轩 +2 位作者 粟丹倪 方兴 张镨方 《包装工程》 北大核心 2025年第20期279-295,共17页
目的在城市高质量发展背景下,系统分析历史街区文化活力的现状与不足,提出优化设计方法,以提升文化活力并彰显城市地域文化特色。方法通过对武汉市的实证研究,利用POI空间聚集度分析,选取文化活力较高的4个历史街区作为实地问卷调查对... 目的在城市高质量发展背景下,系统分析历史街区文化活力的现状与不足,提出优化设计方法,以提升文化活力并彰显城市地域文化特色。方法通过对武汉市的实证研究,利用POI空间聚集度分析,选取文化活力较高的4个历史街区作为实地问卷调查对象。通过分析历史文化展现、娱乐趣味性等10个影响因素,构建了设计方法。进一步运用Fuzzy DEMATEL-VIKOR组合模型处理用户调研数据中的不确定性与模糊性,并对影响因素进行重要性排序。结果指导完成历史街区文化活力活化的方案设计,最后通过用户评分验证设计方案。结论设计方案得到了用户的认可,达到了用户的期望。说明构建的Fuzzy DEMATEL-VIKOR模型能较好地实现用户需求的合理分析与转化,以及用户满意度意见的有效融合,提升了用户需求分析与转化过程的客观性和全面性,同时也为相关设计人员在进行用户需求分析时提供了一种新的设计思路。 展开更多
关键词 历史街区 文化活力 影响因素 fuzzy DEMATEL VIKOR
在线阅读 下载PDF
Effective data transmission through energy-efficient clustering and Fuzzy-Based IDS routing approach in WSNs
17
作者 Saziya TABBASSUM Rajesh Kumar PATHAK 《虚拟现实与智能硬件(中英文)》 EI 2024年第1期1-16,共16页
Wireless sensor networks(WSN)gather information and sense information samples in a certain region and communicate these readings to a base station(BS).Energy efficiency is considered a major design issue in the WSNs,a... Wireless sensor networks(WSN)gather information and sense information samples in a certain region and communicate these readings to a base station(BS).Energy efficiency is considered a major design issue in the WSNs,and can be addressed using clustering and routing techniques.Information is sent from the source to the BS via routing procedures.However,these routing protocols must ensure that packets are delivered securely,guaranteeing that neither adversaries nor unauthentic individuals have access to the sent information.Secure data transfer is intended to protect the data from illegal access,damage,or disruption.Thus,in the proposed model,secure data transmission is developed in an energy-effective manner.A low-energy adaptive clustering hierarchy(LEACH)is developed to efficiently transfer the data.For the intrusion detection systems(IDS),Fuzzy logic and artificial neural networks(ANNs)are proposed.Initially,the nodes were randomly placed in the network and initialized to gather information.To ensure fair energy dissipation between the nodes,LEACH randomly chooses cluster heads(CHs)and allocates this role to the various nodes based on a round-robin management mechanism.The intrusion-detection procedure was then utilized to determine whether intruders were present in the network.Within the WSN,a Fuzzy interference rule was utilized to distinguish the malicious nodes from legal nodes.Subsequently,an ANN was employed to distinguish the harmful nodes from suspicious nodes.The effectiveness of the proposed approach was validated using metrics that attained 97%accuracy,97%specificity,and 97%sensitivity of 95%.Thus,it was proved that the LEACH and Fuzzy-based IDS approaches are the best choices for securing data transmission in an energy-efficient manner. 展开更多
关键词 Low energy adaptive clustering hierarchy(LEACH) Intrusion detection system(IDS) Wireless sensor network(WSN) fuzzy logic and artificial neural network(ANN)
在线阅读 下载PDF
城市道路建造过程碳排放影响因素与碳减排策略研究——基于Fuzzy ISM-SD分析 被引量:1
18
作者 蔡彬清 闫丹阳 陈石玮 《建筑经济》 2025年第5期76-83,共8页
城市道路在建造过程产生大量碳排放,如何促进城市道路建造过程碳减排至关重要。本文收集城市道路建造过程碳排放影响因素,利用模糊解释结构模型(Fuzzy ISM)构建影响因素递阶层次结构图;采用系统动力学模型对关键因素进行模拟仿真,探讨... 城市道路在建造过程产生大量碳排放,如何促进城市道路建造过程碳减排至关重要。本文收集城市道路建造过程碳排放影响因素,利用模糊解释结构模型(Fuzzy ISM)构建影响因素递阶层次结构图;采用系统动力学模型对关键因素进行模拟仿真,探讨其对城市道路建造过程碳排放影响程度。研究结果表明:政府财政补贴、政策引导力度、施工技术水平是城市道路建造过程碳排放首先考虑的因素;政府财政补贴和施工技术水平提升可有效减少城市道路建造过程碳排放。研究结果可为城市道路建造过程碳减排提供参考和借鉴。 展开更多
关键词 城市道路 碳排放 fuzzy ISM 系统动力学
在线阅读 下载PDF
Fault-tolerant distributed fusion of PDFs using KLDs-induced functional FCM clustering
19
作者 Zheng WEI Zhansheng DUAN 《Chinese Journal of Aeronautics》 2025年第7期493-506,共14页
In distributed fusion,when one or more sensors are disturbed by faults,a common problem is that their local estimations are inconsistent with those of other fault-free sensors.Most of the existing fault-tolerant distr... In distributed fusion,when one or more sensors are disturbed by faults,a common problem is that their local estimations are inconsistent with those of other fault-free sensors.Most of the existing fault-tolerant distributed fusion algorithms,such as the Covariance Union(CU)and Faulttolerant Generalized Convex Combination(FGCC),are only used for the point estimation case where local estimates and their associated error covariances are provided.A treatment with focus on the fault-tolerant distributed fusions of arbitrary local Probability Density Functions(PDFs)is lacking.For this problem,we first propose Kullback–Leibler Divergence(KLD)and reversed KLD induced functional Fuzzy c-Means(FCM)clustering algorithms to soft cluster all local PDFs,respectively.On this basis,two fault-tolerant distributed fusion algorithms of arbitrary local PDFs are then developed.They select the representing PDF of the cluster with the largest sum of memberships as the fused PDF.Numerical examples verify the better fault tolerance of the developed two distributed fusion algorithms. 展开更多
关键词 Distributed fusion Fault tolerance Probability Density Function(PDF) Functional fuzzy c-means clustering Kullback-Leibler Divergence(KLD)
原文传递
FedCPS:A Dual Optimization Model for Federated Learning Based on Clustering and Personalization Strategy 被引量:1
20
作者 Zhen Yang Yifan Liu +2 位作者 Fan Feng Yi Liu Zhenpeng Liu 《Computers, Materials & Continua》 2025年第4期357-380,共24页
Federated learning is a machine learning framework designed to protect privacy by keeping training data on clients’devices without sharing private data.It trains a global model through collaboration between clients a... Federated learning is a machine learning framework designed to protect privacy by keeping training data on clients’devices without sharing private data.It trains a global model through collaboration between clients and the server.However,the presence of data heterogeneity can lead to inefficient model training and even reduce the final model’s accuracy and generalization capability.Meanwhile,data scarcity can result in suboptimal cluster distributions for few-shot clients in centralized clustering tasks,and standalone personalization tasks may cause severe overfitting issues.To address these limitations,we introduce a federated learning dual optimization model based on clustering and personalization strategy(FedCPS).FedCPS adopts a decentralized approach,where clients identify their cluster membership locally without relying on a centralized clustering algorithm.Building on this,FedCPS introduces personalized training tasks locally,adding a regularization term to control deviations between local and cluster models.This improves the generalization ability of the final model while mitigating overfitting.The use of weight-sharing techniques also reduces the computational cost of central machines.Experimental results on MNIST,FMNIST,CIFAR10,and CIFAR100 datasets demonstrate that our method achieves better personalization effects compared to other personalized federated learning methods,with an average test accuracy improvement of 0.81%–2.96%.Meanwhile,we adjusted the proportion of few-shot clients to evaluate the impact on accuracy across different methods.The experiments show that FedCPS reduces accuracy by only 0.2%–3.7%,compared to 2.1%–10%for existing methods.Our method demonstrates its advantages across diverse data environments. 展开更多
关键词 Federated learning CLUSTER PERSONALIZATION OVERFITTING
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部