期刊文献+
共找到123,357篇文章
< 1 2 250 >
每页显示 20 50 100
基于BAS—Smith—Fuzzy PID的物联网水肥控制系统研究 被引量:2
1
作者 丁筱玲 王克林 +3 位作者 李军台 郭冰 李志勇 赵立新 《中国农机化学报》 北大核心 2025年第4期240-247,共8页
针对水肥控制难度大,传统灌溉施肥方法智能化程度较低的问题,设计一种基于BAS—Smith—Fuzzy PID的物联网水肥一体化控制系统。以控制混合肥液的EC(电导率)值为目标,在传统模糊PID控制算法的基础上引入BAS(天牛须搜索)算法和Smith预估... 针对水肥控制难度大,传统灌溉施肥方法智能化程度较低的问题,设计一种基于BAS—Smith—Fuzzy PID的物联网水肥一体化控制系统。以控制混合肥液的EC(电导率)值为目标,在传统模糊PID控制算法的基础上引入BAS(天牛须搜索)算法和Smith预估器。通过MATLAB/Simulink软件仿真,验证其寻优和优化能力,对比常规PID、BAS—PID模型,结果表明,BAS—Smith—Fuzzy PID控制器拥有优异控制性能。基于STM32主控平台搭建单通道混肥装置,配置MCGS触摸屏上位机并基于Android平台开发客户端进行人机交互,试验结果表明,BAS—Smith—Fuzzy PID的调节时间对比常规PID、BAS—PID缩短17.1%、63%、超调量降低82.1%、87.2%。 展开更多
关键词 水肥一体化 BAS算法 模糊PID控制 物联网 SIMULINK仿真
在线阅读 下载PDF
基于AW-CPSO-Fuzzy-PID的茶鲜叶分级输送速度控制器研究 被引量:1
2
作者 胡永光 靳筱天 +2 位作者 张志 鹿永宗 潘庆民 《农业机械学报》 北大核心 2025年第4期275-283,共9页
为解决基于机器视觉的茶鲜叶分级输送速度控制精度低的问题,本文设计一种引入自适应权重与Circle混沌映射的PSO优化模糊PID控制器(AW-CPSO-Fuzzy-PID),并开展基于改进模糊PID的茶鲜叶分级输送速度控制。在茶鲜叶输送传动系统作业过程中... 为解决基于机器视觉的茶鲜叶分级输送速度控制精度低的问题,本文设计一种引入自适应权重与Circle混沌映射的PSO优化模糊PID控制器(AW-CPSO-Fuzzy-PID),并开展基于改进模糊PID的茶鲜叶分级输送速度控制。在茶鲜叶输送传动系统作业过程中,当设定输送速度为78.5 mm/s时,每1 ms记录一次,输送速度波动可控制在0.7 mm/s内;改进模糊PID茶鲜叶输送传动系统响应时间比传统PID与模糊PID分别减少81.41%、61.74%;超调量分别降低81.24%、41.82%;采集目标图像平均峰值信噪比分别提高5.8、10.4 dB。结果表明,本文提出的方法具有更好的寻优性能和收敛速度。研究结果为基于机器视觉的茶鲜叶自动分级系统精确而稳定的控制奠定了理论基础,为解决由输送速度波动导致的图像模糊问题提供了技术方案。 展开更多
关键词 茶鲜叶分级 输送速度 模糊PID控制 粒子群算法
在线阅读 下载PDF
基于Fuzzy-DEMATEL-ISM的新能源汽车供应链韧性影响因素研究 被引量:2
3
作者 孙静 陈雨朵 《物流技术》 2025年第1期37-48,共12页
全球化和产业革命推动下,新能源汽车供应链面临潜在风险与挑战,提升供应链韧性对保障产业稳定和可持续发展至关重要。现有研究多侧重于提升路径、韧性测量和宏观政策,缺乏对影响因素系统性和层次性的研究。全面分析新能源汽车供应链韧... 全球化和产业革命推动下,新能源汽车供应链面临潜在风险与挑战,提升供应链韧性对保障产业稳定和可持续发展至关重要。现有研究多侧重于提升路径、韧性测量和宏观政策,缺乏对影响因素系统性和层次性的研究。全面分析新能源汽车供应链韧性的影响因素,识别关键因素,并剖析这些因素间的逻辑关系和层次结构,可为提升供应链韧性提供理论依据和实践指导。首先,通过文献分析法构建初步影响因素体系,并邀请专家对影响因素进行调查和筛选,从预测能力、响应能力、恢复能力、学习能力和可持续发展能力5个维度构建了包含20个影响因素的指标体系。然后,运用FuzzyDEMATEL模型识别关键影响因素,并通过ISM模型分析影响因素间的逻辑关系和层次结构。研究发现供应链数字化水平、智慧物流水平和供应链合作等8个因素为新能源汽车供应链韧性的关键影响因素,供应链可见性和财务实力是供应链韧性的根本因素,可持续发展能力对供应链韧性起最直接作用。基于研究结果,提出加强供应链数智化转型、深化供应链合作、构建ESG生态体系等建议,以提升新能源汽车供应链韧性。 展开更多
关键词 新能源汽车 供应链韧性 影响因素 fuzzy-DEMATEL-ISM
在线阅读 下载PDF
基于改进型蜣螂算法Fuzzy-Smith-LADRC混凝投药 被引量:1
4
作者 王文成 余智科 郑诗翰 《电子测量技术》 北大核心 2025年第3期10-17,共8页
二十届三中全会强调全面落实深化改革水利任务,其中居民饮用水是重点民生任务,混凝工艺是饮用水处理的关键环节。由于混凝过程具有大时滞特性,故对于原水水质频繁变化的控制系统,常规的PID控制不能达到满意的效果。为此,将一种不依赖系... 二十届三中全会强调全面落实深化改革水利任务,其中居民饮用水是重点民生任务,混凝工艺是饮用水处理的关键环节。由于混凝过程具有大时滞特性,故对于原水水质频繁变化的控制系统,常规的PID控制不能达到满意的效果。为此,将一种不依赖系统精确模型的线性自抗扰控制器(LADRC)应用于系统中,利用扩张观测器对混凝控制系统中出现的扰动进行估计并补偿,同时设计史密斯预估器(Smith)与模糊控制器(Fuzzy)相结合的自适应史密斯控制器来消除大时滞对控制效果的影响,提出Fuzzy-Smith-LADRC控制器。针对控制器参数调节困难而引入改进型蜣螂算法(MSIDBO)进行参数整定。改进型算法对DBO算法中初始种群分布不均匀、易陷入局部最优解等问题进行优化,使得MSIDBO能快速收敛并更好平衡全局探索与局部开发能力。系统模型精确时,该控制方法比PID控制的调节时间减少279 s和超调量降低8%,比DMC控制的调节时间减少40 s,系统模型变化时,相比LADRC具有更好的抗干扰性与鲁棒性。 展开更多
关键词 混凝工艺 模糊史密斯预估-线性自抗扰 改进蜣螂算法 参数优化
原文传递
IDBO-Fuzzy-PID控制器在立磨机液压控制中的应用
5
作者 李玲 刘佳芸 +2 位作者 李瑶 程福安 解妙霞 《中南大学学报(自然科学版)》 北大核心 2025年第9期3724-3736,共13页
为解决立磨机液压控制系统存在的非线性、时变性问题,本文提出了一种基于改进蜣螂算法(improved dung beetle optimizer,IDBO)的模糊PID控制器(IDBO-Fuzzy-PID)。首先,基于立磨机液压位置控制系统模型,设计模糊PID控制器以实时调整控制... 为解决立磨机液压控制系统存在的非线性、时变性问题,本文提出了一种基于改进蜣螂算法(improved dung beetle optimizer,IDBO)的模糊PID控制器(IDBO-Fuzzy-PID)。首先,基于立磨机液压位置控制系统模型,设计模糊PID控制器以实时调整控制参数;其次,针对DBO算法存在的种群多样性匮乏、全局搜索能力弱、易陷局部最优等不足,引入佳点集与反向学习、自适应繁殖偷窃及自适应混合变异3种策略进行改进,并通过多类型测试函数验证IDBO收敛速度及求解精度;最后,构建联合仿真平台,验证控制器在随机干扰与系统参数波动条件下的控制性能。研究结果表明:本文提出的IDBO-Fuzzy-PID控制器具有良好的跟踪性能与时变适应性,系统平衡点附近上升、调节时间最短,基本无超调至目标位移;在外界扰动条件下,液压杆振幅降至0.252 mm,较PID控制器降幅达71.3%,其抗干扰性能最优;在系统参数波动条件下,其稳定性未受显著影响,正弦波跟踪性能最优。该控制器通过动态调整参数以快速补偿液压杆位移的偏差,有效抑制了磨辊的波动,提升了磨粉工艺的稳定性。 展开更多
关键词 立磨机 液压控制 模糊PID控制 蜣螂优化算法 联合仿真
在线阅读 下载PDF
蜣螂算法优化Fuzzy-PID的超声波电源频率控制研究
6
作者 蔡华锋 夏彪 田亮 《重庆理工大学学报(自然科学)》 北大核心 2025年第9期209-216,共8页
超声波焊接过程中换能器受到温度、阻抗波动等影响会产生谐振频率漂移现象,针对超声波电源频率跟踪精度低、动态响应慢的问题,提出一种蜣螂算法(dung beetle optimizer,DBO)优化模糊PID(fuzzy-PID)的频率复合控制策略。通过建立超声波... 超声波焊接过程中换能器受到温度、阻抗波动等影响会产生谐振频率漂移现象,针对超声波电源频率跟踪精度低、动态响应慢的问题,提出一种蜣螂算法(dung beetle optimizer,DBO)优化模糊PID(fuzzy-PID)的频率复合控制策略。通过建立超声波焊接电源的Simulink仿真模型,系统对比了传统PID、模糊PID、粒子群(PSO)优化的模糊PID以及蜣螂算法优化的模糊PID 4种控制方法下系统的动态特性。研究结果表明:蜣螂优化算法通过定向滚球机制和动态权重调整策略,有效实现了模糊论域参数的自适应整定,提高了频率控制精度,并能在负载阻抗突变情况下快速跟踪到换能器谐振频率。 展开更多
关键词 超声波电源 超声焊接 蜣螂优化算法 模糊PID 频率跟踪
在线阅读 下载PDF
基于Fuzzy DEMATEL-VIKOR模型的历史街区文化活力设计优化研究
7
作者 万一凡 李宇轩 +2 位作者 粟丹倪 方兴 张镨方 《包装工程》 北大核心 2025年第20期279-295,共17页
目的在城市高质量发展背景下,系统分析历史街区文化活力的现状与不足,提出优化设计方法,以提升文化活力并彰显城市地域文化特色。方法通过对武汉市的实证研究,利用POI空间聚集度分析,选取文化活力较高的4个历史街区作为实地问卷调查对... 目的在城市高质量发展背景下,系统分析历史街区文化活力的现状与不足,提出优化设计方法,以提升文化活力并彰显城市地域文化特色。方法通过对武汉市的实证研究,利用POI空间聚集度分析,选取文化活力较高的4个历史街区作为实地问卷调查对象。通过分析历史文化展现、娱乐趣味性等10个影响因素,构建了设计方法。进一步运用Fuzzy DEMATEL-VIKOR组合模型处理用户调研数据中的不确定性与模糊性,并对影响因素进行重要性排序。结果指导完成历史街区文化活力活化的方案设计,最后通过用户评分验证设计方案。结论设计方案得到了用户的认可,达到了用户的期望。说明构建的Fuzzy DEMATEL-VIKOR模型能较好地实现用户需求的合理分析与转化,以及用户满意度意见的有效融合,提升了用户需求分析与转化过程的客观性和全面性,同时也为相关设计人员在进行用户需求分析时提供了一种新的设计思路。 展开更多
关键词 历史街区 文化活力 影响因素 fuzzy DEMATEL VIKOR
在线阅读 下载PDF
城市道路建造过程碳排放影响因素与碳减排策略研究——基于Fuzzy ISM-SD分析 被引量:1
8
作者 蔡彬清 闫丹阳 陈石玮 《建筑经济》 2025年第5期76-83,共8页
城市道路在建造过程产生大量碳排放,如何促进城市道路建造过程碳减排至关重要。本文收集城市道路建造过程碳排放影响因素,利用模糊解释结构模型(Fuzzy ISM)构建影响因素递阶层次结构图;采用系统动力学模型对关键因素进行模拟仿真,探讨... 城市道路在建造过程产生大量碳排放,如何促进城市道路建造过程碳减排至关重要。本文收集城市道路建造过程碳排放影响因素,利用模糊解释结构模型(Fuzzy ISM)构建影响因素递阶层次结构图;采用系统动力学模型对关键因素进行模拟仿真,探讨其对城市道路建造过程碳排放影响程度。研究结果表明:政府财政补贴、政策引导力度、施工技术水平是城市道路建造过程碳排放首先考虑的因素;政府财政补贴和施工技术水平提升可有效减少城市道路建造过程碳排放。研究结果可为城市道路建造过程碳减排提供参考和借鉴。 展开更多
关键词 城市道路 碳排放 fuzzy ISM 系统动力学
在线阅读 下载PDF
Wind⁃resistant fuzzy comfortability assessment for a super⁃high tower crane based on the PDEM 被引量:2
9
作者 LIU Yun WANG Hao +2 位作者 LI Bing XU Zidong MAO Jianxiao 《Journal of Southeast University(English Edition)》 2025年第1期51-57,共7页
The fuzzy comfortability of a wind-sensitive super-high tower crane is critical to guarantee occupant health and improve construction efficiency.Therefore,the wind-resistant fuzzy comfortability of a super-high tower ... The fuzzy comfortability of a wind-sensitive super-high tower crane is critical to guarantee occupant health and improve construction efficiency.Therefore,the wind-resistant fuzzy comfortability of a super-high tower crane in the Ma’anshan Yangtze River(MYR)Bridge site is analyzed in this paper.First,the membership function model that represents fuzzy comfortability is introduced in the probability density evolution method(PDEM).Second,based on Fechner’s law,the membership function curves are constructed according to three acceleration thresholds in ISO 2631.Then,the fuzzy comfortability for the super-high tower crane under stochastic wind loads is assessed on the basis of different cut-set levelsλ.Results show that the comfortability is over 0.9 under the required maximum operating wind velocity.The low sensitivity toλcan be observed in the reliability curves of ISOⅡandⅢmembership functions.The reliability of the ISOⅠmembership function is not sensitive toλwhenλ<0.7,whereas it becomes sensitive toλwhenλ>0.7. 展开更多
关键词 comfort reliability probability density evolution method fuzzy theory membership function tower crane long-span bridge
在线阅读 下载PDF
基于GA-Fuzzy-PID算法的棉田施肥灌溉系统研究 被引量:1
10
作者 王昊 张立新 +2 位作者 胡雪 李文春 王晓瑛 《农机化研究》 北大核心 2025年第4期50-56,64,共8页
在水肥一体控制器中,PID控制算法易引起超调,产生振荡;Fuzzy-PID控制算法由于参数基于人为经验设定,控制欠细腻。针对上述问题,研究并设计了一种基于GA-Fuzzy-PID算法的控制器,以期实现施肥灌溉系统的精准控制。在不同目标EC设定值下,对... 在水肥一体控制器中,PID控制算法易引起超调,产生振荡;Fuzzy-PID控制算法由于参数基于人为经验设定,控制欠细腻。针对上述问题,研究并设计了一种基于GA-Fuzzy-PID算法的控制器,以期实现施肥灌溉系统的精准控制。在不同目标EC设定值下,对PID算法、Fuzzy-PID算法和GA-Fuzzy-PID算法进行仿真对比。结果表明:基于GA-Fuzzy-PID的控制器具有优异的控制效果,更能满足施肥灌溉系统精准控制的要求。 展开更多
关键词 棉田 灌溉施肥 精准控制 遗传优化 GA-fuzzy-PID
在线阅读 下载PDF
Application of Fuzzy Inference System in Gas Turbine Engine Fault Diagnosis Against Measurement Uncertainties 被引量:1
11
作者 Shuai Ma Yafeng Wu +1 位作者 Zheng Hua Linfeng Gou 《Chinese Journal of Mechanical Engineering》 2025年第1期62-83,共22页
Robustness against measurement uncertainties is crucial for gas turbine engine diagnosis.While current research focuses mainly on measurement noise,measurement bias remains challenging.This study proposes a novel perf... Robustness against measurement uncertainties is crucial for gas turbine engine diagnosis.While current research focuses mainly on measurement noise,measurement bias remains challenging.This study proposes a novel performance-based fault detection and identification(FDI)strategy for twin-shaft turbofan gas turbine engines and addresses these uncertainties through a first-order Takagi-Sugeno-Kang fuzzy inference system.To handle ambient condition changes,we use parameter correction to preprocess the raw measurement data,which reduces the FDI’s system complexity.Additionally,the power-level angle is set as a scheduling parameter to reduce the number of rules in the TSK-based FDI system.The data for designing,training,and testing the proposed FDI strategy are generated using a component-level turbofan engine model.The antecedent and consequent parameters of the TSK-based FDI system are optimized using the particle swarm optimization algorithm and ridge regression.A robust structure combining a specialized fuzzy inference system with the TSK-based FDI system is proposed to handle measurement biases.The performance of the first-order TSK-based FDI system and robust FDI structure are evaluated through comprehensive simulation studies.Comparative studies confirm the superior accuracy of the first-order TSK-based FDI system in fault detection,isolation,and identification.The robust structure demonstrates a 2%-8%improvement in the success rate index under relatively large measurement bias conditions,thereby indicating excellent robustness.Accuracy against significant bias values and computation time are also evaluated,suggesting that the proposed robust structure has desirable online performance.This study proposes a novel FDI strategy that effectively addresses measurement uncertainties. 展开更多
关键词 Performance-based fault diagnosis Gas turbine engine fuzzy inference system Measurement uncertainty Regression and classification
在线阅读 下载PDF
Improving the Position Accuracy and Computational Efficiency of UAV Terrain Aided Navigation Using a Two-Stage Hybrid Fuzzy Particle Filtering Method
12
作者 Sofia Yousuf Muhammad Bilal Kadri 《Computers, Materials & Continua》 SCIE EI 2025年第1期1193-1210,共18页
Terrain Aided Navigation(TAN)technology has become increasingly important due to its effectiveness in environments where Global Positioning System(GPS)is unavailable.In recent years,TAN systems have been extensively r... Terrain Aided Navigation(TAN)technology has become increasingly important due to its effectiveness in environments where Global Positioning System(GPS)is unavailable.In recent years,TAN systems have been extensively researched for both aerial and underwater navigation applications.However,many TAN systems that rely on recursive Unmanned Aerial Vehicle(UAV)position estimation methods,such as Extended Kalman Filters(EKF),often face challenges with divergence and instability,particularly in highly non-linear systems.To address these issues,this paper proposes and investigates a hybrid two-stage TAN positioning system for UAVs that utilizes Particle Filter.To enhance the system’s robustness against uncertainties caused by noise and to estimate additional system states,a Fuzzy Particle Filter(FPF)is employed in the first stage.This approach introduces a novel terrain composite feature that enables a fuzzy expert system to analyze terrain non-linearities and dynamically adjust the number of particles in real-time.This design allows the UAV to be efficiently localized in GPS-denied environments while also reducing the computational complexity of the particle filter in real-time applications.In the second stage,an Error State Kalman Filter(ESKF)is implemented to estimate the UAV’s altitude.The ESKF is chosen over the conventional EKF method because it is more suitable for non-linear systems.Simulation results demonstrate that the proposed fuzzy-based terrain composite method achieves high positional accuracy while reducing computational time and memory usage. 展开更多
关键词 Sensor fusion fuzzy logic particle filter composite feature terrain aided navigation
在线阅读 下载PDF
A Synergistic Multi-Attribute Decision-Making Method for Educational Institutions Evaluation Using Similarity Measures of Possibility Pythagorean Fuzzy Hypersoft Sets
13
作者 Khuram Ali Khan Saba Mubeen Ishfaq +1 位作者 Atiqe Ur Rahman Salwa El-Morsy 《Computer Modeling in Engineering & Sciences》 SCIE EI 2025年第1期501-530,共30页
Due to the numerous variables to take into account as well as the inherent ambiguity and uncertainty,evaluating educational institutions can be difficult.The concept of a possibility Pythagorean fuzzy hypersoft set(pP... Due to the numerous variables to take into account as well as the inherent ambiguity and uncertainty,evaluating educational institutions can be difficult.The concept of a possibility Pythagorean fuzzy hypersoft set(pPyFHSS)is more flexible in this regard than other theoretical fuzzy set-like models,even though some attempts have been made in the literature to address such uncertainties.This study investigates the elementary notions of pPyFHSS including its set-theoretic operations union,intersection,complement,OR-and AND-operations.Some results related to these operations are also modified for pPyFHSS.Additionally,the similarity measures between pPyFHSSs are formulated with the assistance of numerical examples and results.Lastly,an intelligent decision-assisted mechanism is developed with the proposal of a robust algorithm based on similarity measures for solving multi-attribute decision-making(MADM)problems.A case study that helps the decision-makers assess the best educational institution is discussed to validate the suggested system.The algorithmic results are compared with the most pertinent model to evaluate the adaptability of pPyFHSS,as it generalizes the classical possibility fuzzy set-like theoretical models.Similarly,while considering significant evaluating factors,the flexibility of pPyFHSS is observed through structural comparison. 展开更多
关键词 Hypersoft set Pythagorean fuzzy hypersoft set computational complexity multi-attribute decision-making optimization similarity measures uncertainty
在线阅读 下载PDF
A New Fuzzy Number Similarity Measure Based on Quadratic-Mean Operator for Handling Fuzzy Recommendation Problems
14
作者 Shijay Chen 《Journal of Computer and Communications》 2025年第1期108-124,共17页
This study presents a new approach that advances the algorithm of similarity measures between generalized fuzzy numbers. Following a brief introduction to some properties of the proposed method, a comparative analysis... This study presents a new approach that advances the algorithm of similarity measures between generalized fuzzy numbers. Following a brief introduction to some properties of the proposed method, a comparative analysis based on 36 sets of generalized fuzzy numbers was performed, in which the degree of similarity of the fuzzy numbers was calculated with the proposed method and seven methods established by previous studies in the literature. The results of the analytical comparison show that the proposed similarity outperforms the existing methods by overcoming their drawbacks and yielding accurate outcomes in all calculations of similarity measures under consideration. Finally, in a numerical example that involves recommending cars to customers based on a nine-member linguistic term set, the proposed similarity measure proves to be competent in addressing fuzzy number recommendation problems. 展开更多
关键词 Quadratic-Mean Operator Generalized fuzzy Numbers Similarity Measures fuzzy Number Recommendation
在线阅读 下载PDF
Solid Waste Management:A MADM Approach Using Fuzzy Parameterized Possibility Single-Valued Neutrosophic Hypersoft Expert Settings
15
作者 Tmader Alballa Muhammad Ihsan +2 位作者 Atiqe Ur Rahman Noorah Ayed Alsorayea Hamiden Abd El-Wahed Khalifa 《Computer Modeling in Engineering & Sciences》 SCIE EI 2025年第1期531-553,共23页
The dramatic rise in the number of people living in cities has made many environmental and social problems worse.The search for a productive method for disposing of solid waste is the most notable of these problems.Ma... The dramatic rise in the number of people living in cities has made many environmental and social problems worse.The search for a productive method for disposing of solid waste is the most notable of these problems.Many scholars have referred to it as a fuzzy multi-attribute or multi-criteria decision-making problem using various fuzzy set-like approaches because of the inclusion of criteria and anticipated ambiguity.The goal of the current study is to use an innovative methodology to address the expected uncertainties in the problem of solid waste site selection.The characteristics(or sub-attributes)that decision-makers select and the degree of approximation they accept for various options can both be indicators of these uncertainties.To tackle these problems,a novel mathematical structure known as the fuzzy parameterized possibility single valued neutrosophic hypersoft expert set(ρˆ-set),which is initially described,is integrated with a modified version of Sanchez’s method.Following this,an intelligent algorithm is suggested.The steps of the suggested algorithm are explained with an example that explains itself.The compatibility of solid waste management sites and systems is discussed,and rankings are established along with detailed justifications for their viability.This study’s strengths lie in its application of fuzzy parameterization and possibility grading to effectively handle the uncertainties embodied in the parameters’nature and alternative approximations,respectively.It uses specific mathematical formulations to compute the fuzzy parameterized degrees and possibility grades that are missing from the prior literature.It is simpler for the decisionmakers to look at each option separately because the decision is uncertain.Comparing the computed results,it is discovered that they are consistent and dependable because of their preferred properties. 展开更多
关键词 Hypersoft expert set Sanchez’s method decision making optimization solid waste management possibility grade fuzzy parameterization
在线阅读 下载PDF
Temperature control for liquid-cooled fuel cells based on fuzzy logic and variable-gain generalized supertwisting algorithm
16
作者 CHEN Lin JIA Zhi-huan +1 位作者 DING Tian-wei GAO Jin-wu 《控制理论与应用》 北大核心 2025年第8期1596-1605,共10页
The liquid cooling system(LCS)of fuel cells is challenged by significant time delays,model uncertainties,pump and fan coupling,and frequent disturbances,leading to overshoot and control oscillations that degrade tempe... The liquid cooling system(LCS)of fuel cells is challenged by significant time delays,model uncertainties,pump and fan coupling,and frequent disturbances,leading to overshoot and control oscillations that degrade temperature regulation performance.To address these challenges,we propose a composite control scheme combining fuzzy logic and a variable-gain generalized supertwisting algorithm(VG-GSTA).Firstly,a one-dimensional(1D)fuzzy logic controler(FLC)for the pump ensures stable coolant flow,while a two-dimensional(2D)FLC for the fan regulates the stack temperature near the reference value.The VG-GSTA is then introduced to eliminate steady-state errors,offering resistance to disturbances and minimizing control oscillations.The equilibrium optimizer is used to fine-tune VG-GSTA parameters.Co-simulation verifies the effectiveness of our method,demonstrating its advantages in terms of disturbance immunity,overshoot suppression,tracking accuracy and response speed. 展开更多
关键词 liquid-cooled fuel cell temperature control generalized supertwisting algorithm fuzzy control equilibrium optimizer
在线阅读 下载PDF
基于AHP-Fuzzy的煤矿综合防尘措施评价体系研究
17
作者 王明 杨铭 燕雨薇 《华北科技学院学报》 2025年第1期1-10,共10页
为降低煤矿粉尘对安全生产、矿工健康的危害,本文不仅采用层次分析法(AHP)识别判定影响煤矿防尘效果的关键因素,研究其权重分配,还结合模糊综合评价法(Fuzzy),处理防尘措施评价过程中的模糊性和不确定性因素。同时,利用C#编程语言,在Vis... 为降低煤矿粉尘对安全生产、矿工健康的危害,本文不仅采用层次分析法(AHP)识别判定影响煤矿防尘效果的关键因素,研究其权重分配,还结合模糊综合评价法(Fuzzy),处理防尘措施评价过程中的模糊性和不确定性因素。同时,利用C#编程语言,在Visual Studio集成开发环境中,依托SQL Server数据库,开发出煤矿综合防尘措施评价软件。应用结果表明:该评价方法实现了对煤矿综合防尘措施快速、便捷的评价打分功能,能够输出评价等级,给出具体建议措施,客观地评估采取煤矿综合防尘措施的效果,有助于防尘工作的进一步提升。 展开更多
关键词 AHP fuzzy 煤矿综合防尘措施 评价体系
在线阅读 下载PDF
Relative-Density-Viewpoint-Based Weighted Kernel Fuzzy Clustering
18
作者 Yuhan Xia Xu Li +2 位作者 Ye Liu Wenbo Zhou Yiming Tang 《Computers, Materials & Continua》 2025年第7期625-651,共27页
Applying domain knowledge in fuzzy clustering algorithms continuously promotes the development of clustering technology.The combination of domain knowledge and fuzzy clustering algorithms has some problems,such as ini... Applying domain knowledge in fuzzy clustering algorithms continuously promotes the development of clustering technology.The combination of domain knowledge and fuzzy clustering algorithms has some problems,such as initialization sensitivity and information granule weight optimization.Therefore,we propose a weighted kernel fuzzy clustering algorithm based on a relative density view(RDVWKFC).Compared with the traditional density-based methods,RDVWKFC can capture the intrinsic structure of the data more accurately,thus improving the initial quality of the clustering.By introducing a Relative Density based Knowledge Extraction Method(RDKM)and adaptive weight optimization mechanism,we effectively solve the limitations of view initialization and information granule weight optimization.RDKM can accurately identify high-density regions and optimize the initialization process.The adaptive weight mechanism can reduce noise and outliers’interference in the initial cluster centre selection by dynamically allocating weights.Experimental results on 14 benchmark datasets show that the proposed algorithm is superior to the existing algorithms in terms of clustering accuracy,stability,and convergence speed.It shows adaptability and robustness,especially when dealing with different data distributions and noise interference.Moreover,RDVWKFC can also show significant advantages when dealing with data with complex structures and high-dimensional features.These advancements provide versatile tools for real-world applications such as bioinformatics,image segmentation,and anomaly detection. 展开更多
关键词 fuzzy clustering fuzzy c-means feature weighting information granule
在线阅读 下载PDF
A Method for Fast Feature Selection Utilizing Cross-Similarity within the Context of Fuzzy Relations
19
作者 Wenchang Yu Xiaoqin Ma +1 位作者 Zheqing Zhang Qinli Zhang 《Computers, Materials & Continua》 2025年第4期1195-1218,共24页
Feature selection methods rooted in rough sets confront two notable limitations:their high computa-tional complexity and sensitivity to noise,rendering them impractical for managing large-scale and noisy datasets.The ... Feature selection methods rooted in rough sets confront two notable limitations:their high computa-tional complexity and sensitivity to noise,rendering them impractical for managing large-scale and noisy datasets.The primary issue stems from these methods’undue reliance on all samples.To overcome these challenges,we introduce the concept of cross-similarity grounded in a robust fuzzy relation and design a rapid and robust feature selection algorithm.Firstly,we construct a robust fuzzy relation by introducing a truncation parameter.Then,based on this fuzzy relation,we propose the concept of cross-similarity,which emphasizes the sample-to-sample similarity relations that uniquely determine feature importance,rather than considering all such relations equally.After studying the manifestations and properties of cross-similarity across different fuzzy granularities,we propose a forward greedy feature selection algorithm that leverages cross-similarity as the foundation for information measurement.This algorithm significantly reduces the time complexity from O(m2n2)to O(mn2).Experimental findings reveal that the average runtime of five state-of-the-art comparison algorithms is roughly 3.7 times longer than our algorithm,while our algorithm achieves an average accuracy that surpasses those of the five comparison algorithms by approximately 3.52%.This underscores the effectiveness of our approach.This paper paves the way for applying feature selection algorithms grounded in fuzzy rough sets to large-scale gene datasets. 展开更多
关键词 fuzzy rough sets feature selection cross-similarity fuzzy relations
在线阅读 下载PDF
Enhancing Emotional Expressiveness in Biomechanics Robotic Head:A Novel Fuzzy Approach for Robotic Facial Skin’s Actuators
20
作者 Nguyen Minh Trieu Nguyen Truong Thinh 《Computer Modeling in Engineering & Sciences》 2025年第4期477-498,共22页
In robotics and human-robot interaction,a robot’s capacity to express and react correctly to human emotions is essential.A significant aspect of the capability involves controlling the robotic facial skin actuators i... In robotics and human-robot interaction,a robot’s capacity to express and react correctly to human emotions is essential.A significant aspect of the capability involves controlling the robotic facial skin actuators in a way that resonates with human emotions.This research focuses on human anthropometric theories to design and control robotic facial actuators,addressing the limitations of existing approaches in expressing emotions naturally and accurately.The facial landmarks are extracted to determine the anthropometric indicators for designing the robot head and is employed to the displacement of these points to calculate emotional values using Fuzzy C-Mean(FCM).The rotating angles of skin actuators are required to account for the smaller emotions,which enhance the robot’s ability to perform emotions in reality.In addition,this study contributes a novel approach based on facial anthropometric indicators to tailor emotional expressions to diverse human characteristics,ensuring more personalized and intuitive interactions.The results demonstrated howfuzzy logic can be employed to improve a robot’s ability to express emotions,which are digitized into fuzzy values.This is also the contribution of the research,which laid the groundwork for robots that can interact with humans more intuitively and empathetically.The performed experiments demonstrated that the suitability of proposed models to conduct tasks related to human emotions with the accuracy of emotional value determination and motor angles is 0.96 and 0.97,respectively. 展开更多
关键词 Emotional robot Vietnam humanoid robot novel fuzzy logic digitizing emotions fuzzy C-mean fuzzy logic(FCM-FL)
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部