Most of the existing screw drive in-pipe robots cannot actively adjust the maximum traction capacity, which limits the adaptability to the wide range of variable environment resistance, especially in curved pipes. In ...Most of the existing screw drive in-pipe robots cannot actively adjust the maximum traction capacity, which limits the adaptability to the wide range of variable environment resistance, especially in curved pipes. In order to solve this problem, a screw drive in-pipe robot based on adaptive linkage mechanism is proposed. The differential property of the adaptive linkage mechanism allows the robot to move without motion interference in the straight and varied curved pipes by adjusting inclining angles of rollers self-adaptively. The maximum traction capacity of the robot can be changed by actively adjusting the inclining angles of rollers. In order to improve the adaptability to the variable resistance, a torque control method based on the fuzzy controller is proposed. For the variable environment resistance, the proposed control method can not only ensure enough traction force, but also limit the output torque in a feasible region. In the simulations, the robot with the proposed control method is compared to the robot with fixed inclining angles of rollers. The results show that the combination of the torque control method and the proposed robot achieves the better adaptability to the variable resistance in the straight and curved pipes.展开更多
The five degree freedom magnetic bearing is researched and its structure and working principles are introduced also. Based on the fuzzy control technology, combining fuzzy algorithm and PID control method, identifying...The five degree freedom magnetic bearing is researched and its structure and working principles are introduced also. Based on the fuzzy control technology, combining fuzzy algorithm and PID control method, identifying the transition process mode of the online system to get the PID parameters' self-adjusting, the magnetic beating system's Fuzzy-PID nonlinear controller is designed by analyzing the system control demands. The Fuzzy-PID nonlinear controller can deal with the magnetic bearing system' s open loop instability and strong nonlinearity, and the approach could improve the system's rapidity, adaptability, stability and dynamic characteristics. Comparative analysis and experiments are conducted between linear PID and nonlinear fuzzy- PID control methods, the results show that the fuzzy-PID controller is better, and the five-freedom magnetic bearing' s rotary precision experiments are conducted by the fuzzy-PID controller, it satisfies the control rotary precision demands and realizes the hearing's steady floating and rotating.展开更多
The flexibility demand of marine nuclear power plant is very high,the multiple parameters of the marine nuclear power plant with the once-through steam generator are strongly coupled,and the normal PID control of the ...The flexibility demand of marine nuclear power plant is very high,the multiple parameters of the marine nuclear power plant with the once-through steam generator are strongly coupled,and the normal PID control of the turbine speed can't meet the control demand.This paper introduces a turbine speed Fuzzy-PID controller to coordinately control the steam pressure and thus realize the demand for quick tracking and steady state control over the turbine speed by using the Fuzzy control's quick dynamic response and PID control's steady state performance.The simulation shows the improvement of the response time and steady state performance of the control system.展开更多
Hot-box is a device used widely in the world for studying thermodynamic properties of architecture material and types of walls. It can run both static and dynamic experiments, and its demand for controlling is high. B...Hot-box is a device used widely in the world for studying thermodynamic properties of architecture material and types of walls. It can run both static and dynamic experiments, and its demand for controlling is high. Because it adopts traditional PI control presently, and is mainly used for static experiments, its dynamic response is bad. Therefore, this paper applies adaptive fuzzy control, which follows dynamic movement quite well to the hotbox device. At the same time, considering the characteristic that the stable state quality is high within little error of traditional PI control, it combines the adaptive fuzzy control with quantity factor and proportion factor serf-adjusting online and PI control to be a new double mode control using different control models at different conditions. The results of hotbox controlling experiments indicate that this control system is better than PI control or single fuzzy control both at response and precision.展开更多
The liquid cooling system(LCS)of fuel cells is challenged by significant time delays,model uncertainties,pump and fan coupling,and frequent disturbances,leading to overshoot and control oscillations that degrade tempe...The liquid cooling system(LCS)of fuel cells is challenged by significant time delays,model uncertainties,pump and fan coupling,and frequent disturbances,leading to overshoot and control oscillations that degrade temperature regulation performance.To address these challenges,we propose a composite control scheme combining fuzzy logic and a variable-gain generalized supertwisting algorithm(VG-GSTA).Firstly,a one-dimensional(1D)fuzzy logic controler(FLC)for the pump ensures stable coolant flow,while a two-dimensional(2D)FLC for the fan regulates the stack temperature near the reference value.The VG-GSTA is then introduced to eliminate steady-state errors,offering resistance to disturbances and minimizing control oscillations.The equilibrium optimizer is used to fine-tune VG-GSTA parameters.Co-simulation verifies the effectiveness of our method,demonstrating its advantages in terms of disturbance immunity,overshoot suppression,tracking accuracy and response speed.展开更多
This paper provided a fuzzy-PI control. It makes use of the advantages of fuzzy controller for dynamic characteristics, and the advantages of PI control for steady characteristics of pneumatic position servo. Experime...This paper provided a fuzzy-PI control. It makes use of the advantages of fuzzy controller for dynamic characteristics, and the advantages of PI control for steady characteristics of pneumatic position servo. Experimental results show that positioning accuracy meets the conventional industrial needs, and prove that the fuzzy-PI controller to be correct and more effective than the usual PID controller. The control method improve the dynamic and steady characteristics of the system.展开更多
The control system, which includes structure, the composition of software and hardware, the form of PID control system and its systematic closed-loop, was used in No.4236 full-mechanized coal face of Xinlongzhuang min...The control system, which includes structure, the composition of software and hardware, the form of PID control system and its systematic closed-loop, was used in No.4236 full-mechanized coal face of Xinlongzhuang mine. The typical fuzzy PID control system structure was investigated, and a simplified fuzzy PID control system was taken the place of the complex three-dimension fuzzy controller. Based on the parameter relation between fuzzy controller and normal PID controller, a common method of parameter adjustment of PID controller was summed up and the computer simulation was realized. This system can overcome the problems of large delay, nonlinear, poor running en- vironment and great load change in the full-mechanized coal face. The simulating investigation indicates that the de- signing method of fuzzy controller is simple and feasible.展开更多
Conventional coordinated control strategies for DC bus voltage signal(DBS)in islanded DC microgrids(IDCMGs)struggle with coordinating multiple distributed generators(DGs)and cannot effectively incorporate state of cha...Conventional coordinated control strategies for DC bus voltage signal(DBS)in islanded DC microgrids(IDCMGs)struggle with coordinating multiple distributed generators(DGs)and cannot effectively incorporate state of charge(SOC)information of the energy storage system,thereby reducing the system flexibility.In this study,we propose an adaptive coordinated control strategy that employs a two-layer fuzzy neural network controller(FNNC)to adapt to varying operating conditions in an IDCMG with multiple PV and battery energy storage system(BESS)units.The first-layer FNNC generates optimal operating mode commands for each DG,thereby avoiding the requirement for complex operating modes based on SOC segmentation.An optimal switching sequence logic prioritizes the most appropriate units during mode transitions.The second-layer FNNC dynamically adjusts the droop power to overcome power distribution challenges among DG groups.This helps in preventing the PV power from exceeding the limits and mitigating the risk of BESS overcharging or over-discharging.The simulation results indicate that the proposed strategy enhances the coordinated operation of multi-DG IDCMGs,thereby ensuring the efficient and safe utilization of PV and BESS.展开更多
Dividing wall batch distillation with middle vessel(DWBDM)is a new type of batch distillation column,with outstanding advantages of low capital cost,energy saving and flexible operation.However,temperature control of ...Dividing wall batch distillation with middle vessel(DWBDM)is a new type of batch distillation column,with outstanding advantages of low capital cost,energy saving and flexible operation.However,temperature control of DWBDM process is challenging,since inherently dynamic and highly nonlinear,which make it difficult to give the controller reasonable set value or optimal temperature profile for temperature control scheme.To overcome this obstacle,this study proposes a new strategy to develop temperature control scheme for DWBDM combining neural network soft-sensor with fuzzy control.Dynamic model of DWBDM was firstly developed and numerically solved by Python,with three control schemes:composition control by PID and fuzzy control respectively,and temperature control by fuzzy control with neural network soft-sensor.For dynamic process,the neural networks with memory functions,such as RNN,LSTM and GRU,are used to handle with time-series data.The results from a case example show that the new control scheme can perform a good temperature control of DWBDM with the same or even better product purities as traditional PID or fuzzy control,and fuzzy control could reduce the effect of prediction error from neural network,indicating that it is a highly feasible and effective control approach for DWBDM,and could even be extended to other dynamic processes.展开更多
In response to the need for a supportive on-orbit platform for future Mars exploration missions,this paper proposes the design and implementation of an autonomous spacecraft formation flying system near the Martian sy...In response to the need for a supportive on-orbit platform for future Mars exploration missions,this paper proposes the design and implementation of an autonomous spacecraft formation flying system near the Martian synchronous orbit using fuzzy learning-based intelligent control.A detailed analysis of spacecraft relative motion in the Mars environment is conducted,deducing the necessary conditions to reach the Martian synchronous orbit constraints.The modified Clohessy-Wiltshire(C-W)equation with Martian J_(2)(Oblateness index)perturbation is used as a reference to design a fuzzy learning-based intelligent and robust nonlinear control approach,which helps to autonomously track the desired formation configuration and stabilizes it.An introduction to spacecraft propulsion mechanisms is provided to analyze the feasibility of using electrical thrusters for spacecraft formation configuration tracking and stabilization in Martian synchronous orbits.The simulations show the effectiveness of the proposed control system for long-term on-orbit operations and reveal its reliability for designing intelligent deep-space formation flying configurations,such as an autonomous Mars observatory,a Martian telescope,or an interferometer.展开更多
An Interval Type-2(IT-2)fuzzy controller design approach is proposed in this research to simultaneously achievemultiple control objectives inNonlinearMulti-Agent Systems(NMASs),including formation,containment,and coll...An Interval Type-2(IT-2)fuzzy controller design approach is proposed in this research to simultaneously achievemultiple control objectives inNonlinearMulti-Agent Systems(NMASs),including formation,containment,and collision avoidance.However,inherent nonlinearities and uncertainties present in practical control systems contribute to the challenge of achieving precise control performance.Based on the IT-2 Takagi-Sugeno Fuzzy Model(T-SFM),the fuzzy control approach can offer a more effective solution for NMASs facing uncertainties.Unlike existing control methods for NMASs,the Formation and Containment(F-and-C)control problem with collision avoidance capability under uncertainties based on the IT-2 T-SFM is discussed for the first time.Moreover,an IT-2 fuzzy tracking control approach is proposed to solve the formation task for leaders in NMASs without requiring communication.This control scheme makes the design process of the IT-2 fuzzy Formation Controller(FC)more straightforward and effective.According to the communication interaction protocol,the IT-2 Containment Controller(CC)design approach is proposed for followers to ensure convergence into the region defined by the leaders.Leveraging the IT-2 T-SFM representation,the analysis methods developed for linear Multi-Agent Systems(MASs)are successfully extended to perform containment analysis without requiring the additional assumptions imposed in existing research.Notably,the IT-2 fuzzy tracking controller can also be applied in collision avoidance situations to track the desired trajectories calculated by the avoidance algorithm under the Artificial Potential Field(APF).Benefiting from the combination of vortex and source APFs,the leaders can properly adjust the system dynamics to prevent potential collision risk.Integrating the fuzzy theory and APFs avoidance algorithm,an IT-2 fuzzy controller design approach is proposed to achieve the F-and-C purposewhile ensuring collision avoidance capability.Finally,amulti-ship simulation is conducted to validate the feasibility and effectiveness of the designed IT-2 fuzzy controller.展开更多
Inverse reinforcement learning optimal control is under the framework of learner-expert.The learner system can imitate the expert system's demonstrated behaviors and does not require the predefined cost function,s...Inverse reinforcement learning optimal control is under the framework of learner-expert.The learner system can imitate the expert system's demonstrated behaviors and does not require the predefined cost function,so it can handle optimal control problems effectively.This paper proposes an inverse reinforcement learning optimal control method for Takagi-Sugeno(T-S)fuzzy systems.Based on learner systems,an expert system is constructed,where the learner system only knows the expert system's optimal control policy.To reconstruct the unknown cost function,we firstly develop a model-based inverse reinforcement learning algorithm for the case that systems dynamics are known.The developed model-based learning algorithm is consists of two learning stages:an inner reinforcement learning loop and an outer inverse optimal control loop.The inner loop desires to obtain optimal control policy via learner's cost function and the outer loop aims to update learner's state-penalty matrices via only using expert's optimal control policy.Then,to eliminate the requirement that the system dynamics must be known,a data-driven integral learning algorithm is presented.It is proved that the presented two algorithms are convergent and the developed inverse reinforcement learning optimal control scheme can ensure the controlled fuzzy learner systems to be asymptotically stable.Finally,we apply the proposed fuzzy optimal control to the truck-trailer system,and the computer simulation results verify the effectiveness of the presented approach.展开更多
An unmanued smart car control system and the fuzzy-PID control algorithm are produced.A design scheme of fuzzy-PID controller is put forward.The simulation analysis from matlab indicated that the dynamic performance o...An unmanued smart car control system and the fuzzy-PID control algorithm are produced.A design scheme of fuzzy-PID controller is put forward.The simulation analysis from matlab indicated that the dynamic performance of fuzzy-PID control algorithm is better than that of usual PID.Experimental result of smart car show that it can follow the black guid line well and fast-stable complete running the whole trip.展开更多
The principle of electric braking system is analyzed and an anti-skid braking system based on the slip rate control is proposed.The fuzzy-PID controller with parameter self-adjustment feature is designed for the anti-...The principle of electric braking system is analyzed and an anti-skid braking system based on the slip rate control is proposed.The fuzzy-PID controller with parameter self-adjustment feature is designed for the anti-skid braking system.The dynamic model of aircraft ground braking is established in the simulation environment of MATLAB/SIMULINK,and simulation results of dry runway and wet runway are presented.The results show that the fuzzy-PID controller with parameter self-adjustment feature for the electric anti-skid braking system keeps working in the state of stability and the brake efficiencies are increased to 93%on dry runway and 82%on wet runway respectively.展开更多
This research paper tackles the complexities of achieving global fuzzy consensus in leader-follower systems in robotic systems,focusing on robust control systems against an advanced signal attack that integrates senso...This research paper tackles the complexities of achieving global fuzzy consensus in leader-follower systems in robotic systems,focusing on robust control systems against an advanced signal attack that integrates sensor and actuator disturbances within the dynamics of follower robots.Each follower robot has unknown dynamics and control inputs,which expose it to the risks of both sensor and actuator attacks.The leader robot,described by a secondorder,time-varying nonlinear model,transmits its position,velocity,and acceleration information to follower robots through a wireless connection.To handle the complex setup and communication among robots in the network,we design a robust hybrid distributed adaptive control strategy combining the effect of sensor and actuator attack,which ensures asymptotic consensus,extending beyond conventional bounded consensus results.The proposed framework employs fuzzy logic systems(FLSs)as proactive controllers to estimate unknown nonlinear behaviors,while also effectively managing sensor and actuator attacks,ensuring stable consensus among all agents.To counter the impact of the combined signal attack on follower dynamics,a specialized robust control mechanism is designed,sustaining system stability and performance under adversarial conditions.The efficiency of this control strategy is demonstrated through simulations conducted across two different directed communication topologies,underscoring the protocol’s adaptability,resilience,and effectiveness in maintaining global consensus under complex attack scenarios.展开更多
With penetration growing of renewable energy sources which integrated into power system have caused problems on grid stability. Electric Vehicles (EV) are one of the renewable energy sources that can bring significant...With penetration growing of renewable energy sources which integrated into power system have caused problems on grid stability. Electric Vehicles (EV) are one of the renewable energy sources that can bring significant impacts to power system during their charging and discharging operations. This article established a model of single machine infinite bus (SMIB) power system considering EV as a case study of load disturbance for power system oscillation. The objective of this research is to enhance stability and overcome the drawbacks of traditional control algorithms such as power system stabilizer (PSS), PID controller and fuzzy logic controller (FLC). The implementation’s effect of FLC parallel with PID controller (Fuzzy-PID) has been shown in this paper. The speed deviation (?ω) and electrical power (Pe) are the important factors to be taken into consideration without EV (only change in mechanical torque), EV with change in the mechanical torque and sudden plug-in EV. The obtained result by nonlinear simulation using Matlab/Simulink of a SMIB power system with EV has shown the effectiveness of using (Fuzzy-PID) against all disturbances.展开更多
Conventional PID controllers are widely used in fin stabilizer control systems, but they have time-variations, nonlinearity, and uncertainty influencing their control effects. A lift feedback fuzzy-PID control method ...Conventional PID controllers are widely used in fin stabilizer control systems, but they have time-variations, nonlinearity, and uncertainty influencing their control effects. A lift feedback fuzzy-PID control method was developed to better deal with these problems, and this lift feedback fin stabilizer system was simulated under different sea condition. Test results showed the system has better anti-rolling performance than traditional fin-angle PID control systems.展开更多
基金Supported by National Natural Science Foundation of China(Grant No.61273345)
文摘Most of the existing screw drive in-pipe robots cannot actively adjust the maximum traction capacity, which limits the adaptability to the wide range of variable environment resistance, especially in curved pipes. In order to solve this problem, a screw drive in-pipe robot based on adaptive linkage mechanism is proposed. The differential property of the adaptive linkage mechanism allows the robot to move without motion interference in the straight and varied curved pipes by adjusting inclining angles of rollers self-adaptively. The maximum traction capacity of the robot can be changed by actively adjusting the inclining angles of rollers. In order to improve the adaptability to the variable resistance, a torque control method based on the fuzzy controller is proposed. For the variable environment resistance, the proposed control method can not only ensure enough traction force, but also limit the output torque in a feasible region. In the simulations, the robot with the proposed control method is compared to the robot with fixed inclining angles of rollers. The results show that the combination of the torque control method and the proposed robot achieves the better adaptability to the variable resistance in the straight and curved pipes.
文摘The five degree freedom magnetic bearing is researched and its structure and working principles are introduced also. Based on the fuzzy control technology, combining fuzzy algorithm and PID control method, identifying the transition process mode of the online system to get the PID parameters' self-adjusting, the magnetic beating system's Fuzzy-PID nonlinear controller is designed by analyzing the system control demands. The Fuzzy-PID nonlinear controller can deal with the magnetic bearing system' s open loop instability and strong nonlinearity, and the approach could improve the system's rapidity, adaptability, stability and dynamic characteristics. Comparative analysis and experiments are conducted between linear PID and nonlinear fuzzy- PID control methods, the results show that the fuzzy-PID controller is better, and the five-freedom magnetic bearing' s rotary precision experiments are conducted by the fuzzy-PID controller, it satisfies the control rotary precision demands and realizes the hearing's steady floating and rotating.
文摘The flexibility demand of marine nuclear power plant is very high,the multiple parameters of the marine nuclear power plant with the once-through steam generator are strongly coupled,and the normal PID control of the turbine speed can't meet the control demand.This paper introduces a turbine speed Fuzzy-PID controller to coordinately control the steam pressure and thus realize the demand for quick tracking and steady state control over the turbine speed by using the Fuzzy control's quick dynamic response and PID control's steady state performance.The simulation shows the improvement of the response time and steady state performance of the control system.
文摘Hot-box is a device used widely in the world for studying thermodynamic properties of architecture material and types of walls. It can run both static and dynamic experiments, and its demand for controlling is high. Because it adopts traditional PI control presently, and is mainly used for static experiments, its dynamic response is bad. Therefore, this paper applies adaptive fuzzy control, which follows dynamic movement quite well to the hotbox device. At the same time, considering the characteristic that the stable state quality is high within little error of traditional PI control, it combines the adaptive fuzzy control with quantity factor and proportion factor serf-adjusting online and PI control to be a new double mode control using different control models at different conditions. The results of hotbox controlling experiments indicate that this control system is better than PI control or single fuzzy control both at response and precision.
基金Supported by the Major Science and Technology Project of Jilin Province(20220301010GX)the International Scientific and Technological Cooperation(20240402071GH).
文摘The liquid cooling system(LCS)of fuel cells is challenged by significant time delays,model uncertainties,pump and fan coupling,and frequent disturbances,leading to overshoot and control oscillations that degrade temperature regulation performance.To address these challenges,we propose a composite control scheme combining fuzzy logic and a variable-gain generalized supertwisting algorithm(VG-GSTA).Firstly,a one-dimensional(1D)fuzzy logic controler(FLC)for the pump ensures stable coolant flow,while a two-dimensional(2D)FLC for the fan regulates the stack temperature near the reference value.The VG-GSTA is then introduced to eliminate steady-state errors,offering resistance to disturbances and minimizing control oscillations.The equilibrium optimizer is used to fine-tune VG-GSTA parameters.Co-simulation verifies the effectiveness of our method,demonstrating its advantages in terms of disturbance immunity,overshoot suppression,tracking accuracy and response speed.
文摘This paper provided a fuzzy-PI control. It makes use of the advantages of fuzzy controller for dynamic characteristics, and the advantages of PI control for steady characteristics of pneumatic position servo. Experimental results show that positioning accuracy meets the conventional industrial needs, and prove that the fuzzy-PI controller to be correct and more effective than the usual PID controller. The control method improve the dynamic and steady characteristics of the system.
文摘The control system, which includes structure, the composition of software and hardware, the form of PID control system and its systematic closed-loop, was used in No.4236 full-mechanized coal face of Xinlongzhuang mine. The typical fuzzy PID control system structure was investigated, and a simplified fuzzy PID control system was taken the place of the complex three-dimension fuzzy controller. Based on the parameter relation between fuzzy controller and normal PID controller, a common method of parameter adjustment of PID controller was summed up and the computer simulation was realized. This system can overcome the problems of large delay, nonlinear, poor running en- vironment and great load change in the full-mechanized coal face. The simulating investigation indicates that the de- signing method of fuzzy controller is simple and feasible.
基金supported by National Key R&D Program of ChinaunderGrant,(2021YFB2601403).
文摘Conventional coordinated control strategies for DC bus voltage signal(DBS)in islanded DC microgrids(IDCMGs)struggle with coordinating multiple distributed generators(DGs)and cannot effectively incorporate state of charge(SOC)information of the energy storage system,thereby reducing the system flexibility.In this study,we propose an adaptive coordinated control strategy that employs a two-layer fuzzy neural network controller(FNNC)to adapt to varying operating conditions in an IDCMG with multiple PV and battery energy storage system(BESS)units.The first-layer FNNC generates optimal operating mode commands for each DG,thereby avoiding the requirement for complex operating modes based on SOC segmentation.An optimal switching sequence logic prioritizes the most appropriate units during mode transitions.The second-layer FNNC dynamically adjusts the droop power to overcome power distribution challenges among DG groups.This helps in preventing the PV power from exceeding the limits and mitigating the risk of BESS overcharging or over-discharging.The simulation results indicate that the proposed strategy enhances the coordinated operation of multi-DG IDCMGs,thereby ensuring the efficient and safe utilization of PV and BESS.
基金supported by Beijing Natural Science Foundation(2222037)the Special Educating Project of the Talent for Carbon Peak and Carbon Neutrality of University of Chinese Academy of Sciences(Innovation of talent cultivation model for“dual carbon”in chemical engineering industry,E3E56501A2).
文摘Dividing wall batch distillation with middle vessel(DWBDM)is a new type of batch distillation column,with outstanding advantages of low capital cost,energy saving and flexible operation.However,temperature control of DWBDM process is challenging,since inherently dynamic and highly nonlinear,which make it difficult to give the controller reasonable set value or optimal temperature profile for temperature control scheme.To overcome this obstacle,this study proposes a new strategy to develop temperature control scheme for DWBDM combining neural network soft-sensor with fuzzy control.Dynamic model of DWBDM was firstly developed and numerically solved by Python,with three control schemes:composition control by PID and fuzzy control respectively,and temperature control by fuzzy control with neural network soft-sensor.For dynamic process,the neural networks with memory functions,such as RNN,LSTM and GRU,are used to handle with time-series data.The results from a case example show that the new control scheme can perform a good temperature control of DWBDM with the same or even better product purities as traditional PID or fuzzy control,and fuzzy control could reduce the effect of prediction error from neural network,indicating that it is a highly feasible and effective control approach for DWBDM,and could even be extended to other dynamic processes.
基金supported by the National Laboratory of Space Intelligent Control(No.HTKJ2023KL502007)the Chinese Government Scholarship(CSC)。
文摘In response to the need for a supportive on-orbit platform for future Mars exploration missions,this paper proposes the design and implementation of an autonomous spacecraft formation flying system near the Martian synchronous orbit using fuzzy learning-based intelligent control.A detailed analysis of spacecraft relative motion in the Mars environment is conducted,deducing the necessary conditions to reach the Martian synchronous orbit constraints.The modified Clohessy-Wiltshire(C-W)equation with Martian J_(2)(Oblateness index)perturbation is used as a reference to design a fuzzy learning-based intelligent and robust nonlinear control approach,which helps to autonomously track the desired formation configuration and stabilizes it.An introduction to spacecraft propulsion mechanisms is provided to analyze the feasibility of using electrical thrusters for spacecraft formation configuration tracking and stabilization in Martian synchronous orbits.The simulations show the effectiveness of the proposed control system for long-term on-orbit operations and reveal its reliability for designing intelligent deep-space formation flying configurations,such as an autonomous Mars observatory,a Martian telescope,or an interferometer.
基金founded by the National Science and Technology Council of the Republic of China under contract NSTC113-2221-E-019-032.
文摘An Interval Type-2(IT-2)fuzzy controller design approach is proposed in this research to simultaneously achievemultiple control objectives inNonlinearMulti-Agent Systems(NMASs),including formation,containment,and collision avoidance.However,inherent nonlinearities and uncertainties present in practical control systems contribute to the challenge of achieving precise control performance.Based on the IT-2 Takagi-Sugeno Fuzzy Model(T-SFM),the fuzzy control approach can offer a more effective solution for NMASs facing uncertainties.Unlike existing control methods for NMASs,the Formation and Containment(F-and-C)control problem with collision avoidance capability under uncertainties based on the IT-2 T-SFM is discussed for the first time.Moreover,an IT-2 fuzzy tracking control approach is proposed to solve the formation task for leaders in NMASs without requiring communication.This control scheme makes the design process of the IT-2 fuzzy Formation Controller(FC)more straightforward and effective.According to the communication interaction protocol,the IT-2 Containment Controller(CC)design approach is proposed for followers to ensure convergence into the region defined by the leaders.Leveraging the IT-2 T-SFM representation,the analysis methods developed for linear Multi-Agent Systems(MASs)are successfully extended to perform containment analysis without requiring the additional assumptions imposed in existing research.Notably,the IT-2 fuzzy tracking controller can also be applied in collision avoidance situations to track the desired trajectories calculated by the avoidance algorithm under the Artificial Potential Field(APF).Benefiting from the combination of vortex and source APFs,the leaders can properly adjust the system dynamics to prevent potential collision risk.Integrating the fuzzy theory and APFs avoidance algorithm,an IT-2 fuzzy controller design approach is proposed to achieve the F-and-C purposewhile ensuring collision avoidance capability.Finally,amulti-ship simulation is conducted to validate the feasibility and effectiveness of the designed IT-2 fuzzy controller.
基金The National Natural Science Foundation of China(62173172).
文摘Inverse reinforcement learning optimal control is under the framework of learner-expert.The learner system can imitate the expert system's demonstrated behaviors and does not require the predefined cost function,so it can handle optimal control problems effectively.This paper proposes an inverse reinforcement learning optimal control method for Takagi-Sugeno(T-S)fuzzy systems.Based on learner systems,an expert system is constructed,where the learner system only knows the expert system's optimal control policy.To reconstruct the unknown cost function,we firstly develop a model-based inverse reinforcement learning algorithm for the case that systems dynamics are known.The developed model-based learning algorithm is consists of two learning stages:an inner reinforcement learning loop and an outer inverse optimal control loop.The inner loop desires to obtain optimal control policy via learner's cost function and the outer loop aims to update learner's state-penalty matrices via only using expert's optimal control policy.Then,to eliminate the requirement that the system dynamics must be known,a data-driven integral learning algorithm is presented.It is proved that the presented two algorithms are convergent and the developed inverse reinforcement learning optimal control scheme can ensure the controlled fuzzy learner systems to be asymptotically stable.Finally,we apply the proposed fuzzy optimal control to the truck-trailer system,and the computer simulation results verify the effectiveness of the presented approach.
文摘An unmanued smart car control system and the fuzzy-PID control algorithm are produced.A design scheme of fuzzy-PID controller is put forward.The simulation analysis from matlab indicated that the dynamic performance of fuzzy-PID control algorithm is better than that of usual PID.Experimental result of smart car show that it can follow the black guid line well and fast-stable complete running the whole trip.
基金Supported by the National Natural Science Foundation of China(51105197,51305198,11372129)the Project Funded by the Priority Academic Program Department of Jiangsu Higher Education Instructions
文摘The principle of electric braking system is analyzed and an anti-skid braking system based on the slip rate control is proposed.The fuzzy-PID controller with parameter self-adjustment feature is designed for the anti-skid braking system.The dynamic model of aircraft ground braking is established in the simulation environment of MATLAB/SIMULINK,and simulation results of dry runway and wet runway are presented.The results show that the fuzzy-PID controller with parameter self-adjustment feature for the electric anti-skid braking system keeps working in the state of stability and the brake efficiencies are increased to 93%on dry runway and 82%on wet runway respectively.
文摘This research paper tackles the complexities of achieving global fuzzy consensus in leader-follower systems in robotic systems,focusing on robust control systems against an advanced signal attack that integrates sensor and actuator disturbances within the dynamics of follower robots.Each follower robot has unknown dynamics and control inputs,which expose it to the risks of both sensor and actuator attacks.The leader robot,described by a secondorder,time-varying nonlinear model,transmits its position,velocity,and acceleration information to follower robots through a wireless connection.To handle the complex setup and communication among robots in the network,we design a robust hybrid distributed adaptive control strategy combining the effect of sensor and actuator attack,which ensures asymptotic consensus,extending beyond conventional bounded consensus results.The proposed framework employs fuzzy logic systems(FLSs)as proactive controllers to estimate unknown nonlinear behaviors,while also effectively managing sensor and actuator attacks,ensuring stable consensus among all agents.To counter the impact of the combined signal attack on follower dynamics,a specialized robust control mechanism is designed,sustaining system stability and performance under adversarial conditions.The efficiency of this control strategy is demonstrated through simulations conducted across two different directed communication topologies,underscoring the protocol’s adaptability,resilience,and effectiveness in maintaining global consensus under complex attack scenarios.
文摘With penetration growing of renewable energy sources which integrated into power system have caused problems on grid stability. Electric Vehicles (EV) are one of the renewable energy sources that can bring significant impacts to power system during their charging and discharging operations. This article established a model of single machine infinite bus (SMIB) power system considering EV as a case study of load disturbance for power system oscillation. The objective of this research is to enhance stability and overcome the drawbacks of traditional control algorithms such as power system stabilizer (PSS), PID controller and fuzzy logic controller (FLC). The implementation’s effect of FLC parallel with PID controller (Fuzzy-PID) has been shown in this paper. The speed deviation (?ω) and electrical power (Pe) are the important factors to be taken into consideration without EV (only change in mechanical torque), EV with change in the mechanical torque and sudden plug-in EV. The obtained result by nonlinear simulation using Matlab/Simulink of a SMIB power system with EV has shown the effectiveness of using (Fuzzy-PID) against all disturbances.
基金the "Ship Control Engineering" emphasis project of 211 Engineering in the tenth five-year plan.
文摘Conventional PID controllers are widely used in fin stabilizer control systems, but they have time-variations, nonlinearity, and uncertainty influencing their control effects. A lift feedback fuzzy-PID control method was developed to better deal with these problems, and this lift feedback fin stabilizer system was simulated under different sea condition. Test results showed the system has better anti-rolling performance than traditional fin-angle PID control systems.