Host-derived small RNAs are emerging as critical regulators in the dynamic interactions between host tissues and the microbiome,with implications for microbial pathogenesis and host defense.Among these,transfer RNA-de...Host-derived small RNAs are emerging as critical regulators in the dynamic interactions between host tissues and the microbiome,with implications for microbial pathogenesis and host defense.Among these,transfer RNA-derived small RNAs(tsRNAs)have garnered attention for their roles in modulating microbial behavior.However,the bacterial factors mediating tsRNA interaction and functionality remain poorly understood.In this study,using RNA affinity pull-down assay in combination with mass spectrometry,we identified a putative membrane-bound protein,annotated as P-type ATPase transporter(PtaT)in Fusobacterium nucleatum(Fn),which binds Fn-targeting tsRNAs in a sequence-specific manner.Through targeted mutagenesis and phenotypic characterization,we showed that in both the Fn type strain and a clinical tumor isolate,deletion of ptaT led to reduced tsRNA intake and enhanced resistance to tsRNA-induced growth inhibition.Global RNA sequencing and label-free Raman spectroscopy revealed the phenotypic differences between Fn wild type and PtaT-deficient mutant,highlighting the functional significance of PtaT in purine and pyrimidine metabolism.Furthermore,AlphaFold 3 prediction provides evidence supporting the specific binding between PtaT and Fn-targeting tsRNA.By uncovering the first RNA-binding protein in Fn implicated in growth modulation through interactions with host-derived small RNAs(sRNAs),our study offers new insights into sRNA-mediated host-pathogen interplay within the context of microbiome-host interactions.展开更多
基金supported by NSF 2333230 (J.L.),NIH National Institute of Dental and Craniofacial Research (NIDCR) awards,DE030943 (X.H.),DE023810 (X.H.) and DE031329 (J.L.),T90 DE026110,and K99 DE033794 (to P.-T.D.)
文摘Host-derived small RNAs are emerging as critical regulators in the dynamic interactions between host tissues and the microbiome,with implications for microbial pathogenesis and host defense.Among these,transfer RNA-derived small RNAs(tsRNAs)have garnered attention for their roles in modulating microbial behavior.However,the bacterial factors mediating tsRNA interaction and functionality remain poorly understood.In this study,using RNA affinity pull-down assay in combination with mass spectrometry,we identified a putative membrane-bound protein,annotated as P-type ATPase transporter(PtaT)in Fusobacterium nucleatum(Fn),which binds Fn-targeting tsRNAs in a sequence-specific manner.Through targeted mutagenesis and phenotypic characterization,we showed that in both the Fn type strain and a clinical tumor isolate,deletion of ptaT led to reduced tsRNA intake and enhanced resistance to tsRNA-induced growth inhibition.Global RNA sequencing and label-free Raman spectroscopy revealed the phenotypic differences between Fn wild type and PtaT-deficient mutant,highlighting the functional significance of PtaT in purine and pyrimidine metabolism.Furthermore,AlphaFold 3 prediction provides evidence supporting the specific binding between PtaT and Fn-targeting tsRNA.By uncovering the first RNA-binding protein in Fn implicated in growth modulation through interactions with host-derived small RNAs(sRNAs),our study offers new insights into sRNA-mediated host-pathogen interplay within the context of microbiome-host interactions.