期刊文献+
共找到312篇文章
< 1 2 16 >
每页显示 20 50 100
Fusing Geometric and Temporal Deep Features for High-Precision Arabic Sign Language Recognition
1
作者 Yazeed Alkharijah Shehzad Khalid +2 位作者 Syed Muhammad Usman Amina Jameel Danish Hamid 《Computer Modeling in Engineering & Sciences》 2025年第7期1113-1141,共29页
Arabic Sign Language(ArSL)recognition plays a vital role in enhancing the communication for the Deaf and Hard of Hearing(DHH)community.Researchers have proposed multiple methods for automated recognition of ArSL;howev... Arabic Sign Language(ArSL)recognition plays a vital role in enhancing the communication for the Deaf and Hard of Hearing(DHH)community.Researchers have proposed multiple methods for automated recognition of ArSL;however,these methods face multiple challenges that include high gesture variability,occlusions,limited signer diversity,and the scarcity of large annotated datasets.Existing methods,often relying solely on either skeletal data or video-based features,struggle with generalization and robustness,especially in dynamic and real-world conditions.This paper proposes a novel multimodal ensemble classification framework that integrates geometric features derived from 3D skeletal joint distances and angles with temporal features extracted from RGB videos using the Inflated 3D ConvNet(I3D).By fusing these complementary modalities at the feature level and applying a majority-voting ensemble of XGBoost,Random Forest,and Support Vector Machine classifiers,the framework robustly captures both spatial configurations and motion dynamics of sign gestures.Feature selection using the Pearson Correlation Coefficient further enhances efficiency by reducing redundancy.Extensive experiments on the ArabSign dataset,which includes RGB videos and corresponding skeletal data,demonstrate that the proposed approach significantly outperforms state-of-the-art methods,achieving an average F1-score of 97%using a majority-voting ensemble of XGBoost,Random Forest,and SVM classifiers,and improving recognition accuracy by more than 7%over previous best methods.This work not only advances the technical stateof-the-art in ArSL recognition but also provides a scalable,real-time solution for practical deployment in educational,social,and assistive communication technologies.Even though this study is about Arabic Sign Language,the framework proposed here can be extended to different sign languages,creating possibilities for potentially worldwide applicability in sign language recognition tasks. 展开更多
关键词 Arabic sign language recognition multimodal feature fusion ensemble classification skeletal data inflated 3D ConvNet(I3D)
在线阅读 下载PDF
BAHGRF^(3):Human gait recognition in the indoor environment using deep learning features fusion assisted framework and posterior probability moth flame optimisation
2
作者 Muhammad Abrar Ahmad Khan Muhammad Attique Khan +5 位作者 Ateeq Ur Rehman Ahmed Ibrahim Alzahrani Nasser Alalwan Deepak Gupta Saima Ahmed Rahin Yudong Zhang 《CAAI Transactions on Intelligence Technology》 2025年第2期387-401,共15页
Biometric characteristics are playing a vital role in security for the last few years.Human gait classification in video sequences is an important biometrics attribute and is used for security purposes.A new framework... Biometric characteristics are playing a vital role in security for the last few years.Human gait classification in video sequences is an important biometrics attribute and is used for security purposes.A new framework for human gait classification in video sequences using deep learning(DL)fusion assisted and posterior probability-based moth flames optimization(MFO)is proposed.In the first step,the video frames are resized and finetuned by two pre-trained lightweight DL models,EfficientNetB0 and MobileNetV2.Both models are selected based on the top-5 accuracy and less number of parameters.Later,both models are trained through deep transfer learning and extracted deep features fused using a voting scheme.In the last step,the authors develop a posterior probabilitybased MFO feature selection algorithm to select the best features.The selected features are classified using several supervised learning methods.The CASIA-B publicly available dataset has been employed for the experimental process.On this dataset,the authors selected six angles such as 0°,18°,90°,108°,162°,and 180°and obtained an average accuracy of 96.9%,95.7%,86.8%,90.0%,95.1%,and 99.7%.Results demonstrate comparable improvement in accuracy and significantly minimize the computational time with recent state-of-the-art techniques. 展开更多
关键词 deep learning feature fusion feature optimization gait classification indoor environment machine learning
在线阅读 下载PDF
Bearing Fault Diagnosis Based on Multimodal Fusion GRU and Swin-Transformer
3
作者 Yingyong Zou Yu Zhang +2 位作者 Long Li Tao Liu Xingkui Zhang 《Computers, Materials & Continua》 2026年第1期1587-1610,共24页
Fault diagnosis of rolling bearings is crucial for ensuring the stable operation of mechanical equipment and production safety in industrial environments.However,due to the nonlinearity and non-stationarity of collect... Fault diagnosis of rolling bearings is crucial for ensuring the stable operation of mechanical equipment and production safety in industrial environments.However,due to the nonlinearity and non-stationarity of collected vibration signals,single-modal methods struggle to capture fault features fully.This paper proposes a rolling bearing fault diagnosis method based on multi-modal information fusion.The method first employs the Hippopotamus Optimization Algorithm(HO)to optimize the number of modes in Variational Mode Decomposition(VMD)to achieve optimal modal decomposition performance.It combines Convolutional Neural Networks(CNN)and Gated Recurrent Units(GRU)to extract temporal features from one-dimensional time-series signals.Meanwhile,the Markovian Transition Field(MTF)is used to transform one-dimensional signals into two-dimensional images for spatial feature mining.Through visualization techniques,the effectiveness of generated images from different parameter combinations is compared to determine the optimal parameter configuration.A multi-modal network(GSTCN)is constructed by integrating Swin-Transformer and the Convolutional Block Attention Module(CBAM),where the attention module is utilized to enhance fault features.Finally,the fault features extracted from different modalities are deeply fused and fed into a fully connected layer to complete fault classification.Experimental results show that the GSTCN model achieves an average diagnostic accuracy of 99.5%across three datasets,significantly outperforming existing comparison methods.This demonstrates that the proposed model has high diagnostic precision and good generalization ability,providing an efficient and reliable solution for rolling bearing fault diagnosis. 展开更多
关键词 MULTI-MODAL GRU swin-transformer CBAM CNN feature fusion
在线阅读 下载PDF
Pavement Crack Detection Based on Star-YOLO11
4
作者 Jiang Mi Zhijian Gan +3 位作者 Pengliu Tan Xin Chang Zhi Wang Haisheng Xie 《Computers, Materials & Continua》 2026年第1期962-983,共22页
In response to the challenges in highway pavement distress detection,such as multiple defect categories,difficulties in feature extraction for different damage types,and slow identification speeds,this paper proposes ... In response to the challenges in highway pavement distress detection,such as multiple defect categories,difficulties in feature extraction for different damage types,and slow identification speeds,this paper proposes an enhanced pavement crack detection model named Star-YOLO11.This improved algorithm modifies the YOLO11 architecture by substituting the original C3k2 backbone network with a Star-s50 feature extraction network.The enhanced structure adjusts the number of stacked layers in the StarBlock module to optimize detection accuracy and improve model efficiency.To enhance the accuracy of pavement crack detection and improve model efficiency,three key modifications to the YOLO11 architecture are proposed.Firstly,the original C3k2 backbone is replaced with a StarBlock-based structure,forming the Star-s50 feature extraction backbone network.This lightweight redesign reduces computational complexity while maintaining detection precision.Secondly,to address the inefficiency of the original Partial Self-attention(PSA)mechanism in capturing localized crack features,the convolutional prior-aware Channel Prior Convolutional Attention(CPCA)mechanism is integrated into the channel dimension,creating a hybrid CPC-C2PSA attention structure.Thirdly,the original neck structure is upgraded to a Star Multi-Branch Auxiliary Feature Pyramid Network(SMAFPN)based on the Multi-Branch Auxiliary Feature Pyramid Network architecture,which adaptively fuses high-level semantic and low-level spatial information through Star-s50 connections and C3k2 extraction blocks.Additionally,a composite dataset augmentation strategy combining traditional and advanced augmentation techniques is developed.This strategy is validated on a specialized pavement dataset containing five distinct crack categories for comprehensive training and evaluation.Experimental results indicate that the proposed Star-YOLO11 achieves an accuracy of 89.9%(3.5%higher than the baseline),a mean average precision(mAP)of 90.3%(+2.6%),and an F1-score of 85.8%(+0.5%),while reducing the model size by 18.8%and reaching a frame rate of 225.73 frames per second(FPS)for real-time detection.It shows potential for lightweight deployment in pavement crack detection tasks. 展开更多
关键词 Crack detection YOLO11 feature extraction attention mechanism feature fusion
在线阅读 下载PDF
EHDC-YOLO: Enhancing Object Detection for UAV Imagery via Multi-Scale Edge and Detail Capture
5
作者 Zhiyong Deng Yanchen Ye Jiangling Guo 《Computers, Materials & Continua》 2026年第1期1665-1682,共18页
With the rapid expansion of drone applications,accurate detection of objects in aerial imagery has become crucial for intelligent transportation,urban management,and emergency rescue missions.However,existing methods ... With the rapid expansion of drone applications,accurate detection of objects in aerial imagery has become crucial for intelligent transportation,urban management,and emergency rescue missions.However,existing methods face numerous challenges in practical deployment,including scale variation handling,feature degradation,and complex backgrounds.To address these issues,we propose Edge-enhanced and Detail-Capturing You Only Look Once(EHDC-YOLO),a novel framework for object detection in Unmanned Aerial Vehicle(UAV)imagery.Based on the You Only Look Once version 11 nano(YOLOv11n)baseline,EHDC-YOLO systematically introduces several architectural enhancements:(1)a Multi-Scale Edge Enhancement(MSEE)module that leverages multi-scale pooling and edge information to enhance boundary feature extraction;(2)an Enhanced Feature Pyramid Network(EFPN)that integrates P2-level features with Cross Stage Partial(CSP)structures and OmniKernel convolutions for better fine-grained representation;and(3)Dynamic Head(DyHead)with multi-dimensional attention mechanisms for enhanced cross-scale modeling and perspective adaptability.Comprehensive experiments on the Vision meets Drones for Detection(VisDrone-DET)2019 dataset demonstrate that EHDC-YOLO achieves significant improvements,increasing mean Average Precision(mAP)@0.5 from 33.2%to 46.1%(an absolute improvement of 12.9 percentage points)and mAP@0.5:0.95 from 19.5%to 28.0%(an absolute improvement of 8.5 percentage points)compared with the YOLOv11n baseline,while maintaining a reasonable parameter count(2.81 M vs the baseline’s 2.58 M).Further ablation studies confirm the effectiveness of each proposed component,while visualization results highlight EHDC-YOLO’s superior performance in detecting objects and handling occlusions in complex drone scenarios. 展开更多
关键词 UAV imagery object detection multi-scale feature fusion edge enhancement detail preservation YOLO feature pyramid network attention mechanism
在线阅读 下载PDF
Multi-Layered Deep Learning Features Fusion for Human Action Recognition 被引量:4
6
作者 Sadia Kiran Muhammad Attique Khan +5 位作者 Muhammad Younus Javed Majed Alhaisoni Usman Tariq Yunyoung Nam Robertas Damaševicius Muhammad Sharif 《Computers, Materials & Continua》 SCIE EI 2021年第12期4061-4075,共15页
Human Action Recognition(HAR)is an active research topic in machine learning for the last few decades.Visual surveillance,robotics,and pedestrian detection are the main applications for action recognition.Computer vis... Human Action Recognition(HAR)is an active research topic in machine learning for the last few decades.Visual surveillance,robotics,and pedestrian detection are the main applications for action recognition.Computer vision researchers have introduced many HAR techniques,but they still face challenges such as redundant features and the cost of computing.In this article,we proposed a new method for the use of deep learning for HAR.In the proposed method,video frames are initially pre-processed using a global contrast approach and later used to train a deep learning model using domain transfer learning.The Resnet-50 Pre-Trained Model is used as a deep learning model in this work.Features are extracted from two layers:Global Average Pool(GAP)and Fully Connected(FC).The features of both layers are fused by the Canonical Correlation Analysis(CCA).Then features are selected using the Shanon Entropy-based threshold function.The selected features are finally passed to multiple classifiers for final classification.Experiments are conducted on five publicly available datasets as IXMAS,UCF Sports,YouTube,UT-Interaction,and KTH.The accuracy of these data sets was 89.6%,99.7%,100%,96.7%and 96.6%,respectively.Comparison with existing techniques has shown that the proposed method provides improved accuracy for HAR.Also,the proposed method is computationally fast based on the time of execution. 展开更多
关键词 Action recognition transfer learning features fusion features selection CLASSIFICATION
在线阅读 下载PDF
Image Classification Based on the Fusion of Complementary Features 被引量:3
7
作者 Huilin Gao Wenjie Chen 《Journal of Beijing Institute of Technology》 EI CAS 2017年第2期197-205,共9页
Image classification based on bag-of-words(BOW)has a broad application prospect in pattern recognition field but the shortcomings such as single feature and low classification accuracy are apparent.To deal with this... Image classification based on bag-of-words(BOW)has a broad application prospect in pattern recognition field but the shortcomings such as single feature and low classification accuracy are apparent.To deal with this problem,this paper proposes to combine two ingredients:(i)Three features with functions of mutual complementation are adopted to describe the images,including pyramid histogram of words(PHOW),pyramid histogram of color(PHOC)and pyramid histogram of orientated gradients(PHOG).(ii)An adaptive feature-weight adjusted image categorization algorithm based on the SVM and the decision level fusion of multiple features are employed.Experiments are carried out on the Caltech101 database,which confirms the validity of the proposed approach.The experimental results show that the classification accuracy rate of the proposed method is improved by 7%-14%higher than that of the traditional BOW methods.With full utilization of global,local and spatial information,the algorithm is much more complete and flexible to describe the feature information of the image through the multi-feature fusion and the pyramid structure composed by image spatial multi-resolution decomposition.Significant improvements to the classification accuracy are achieved as the result. 展开更多
关键词 image classification complementary features bag-of-words (BOW) feature fusion
在线阅读 下载PDF
The 3D Face Recognition Algorithm Fusing Multi-geometry Features 被引量:3
8
作者 SUN Yan-Feng TANG Heng-Liang YIN Bao-Cai 《自动化学报》 EI CSCD 北大核心 2008年第12期1483-1489,共7页
The 3D face recognition attracts more and more attention because of its insensitivity to the variance of illumination and pose.There are many crucial problems to be solved in this topic,such as 3D face representation ... The 3D face recognition attracts more and more attention because of its insensitivity to the variance of illumination and pose.There are many crucial problems to be solved in this topic,such as 3D face representation and effective multi-feature fusion.In this paper,a novel 3D face recognition algorithm is proposed and its performance is demonstrated on BJUT-3D face database.This algorithm chooses face surface property and the principle component of relative relation matrix as the face representation features.The similarity metric measure for each feature is defined.A feature fusion strategy is proposed.It is a linear weighted strategy based on Fisher linear discriminant analysis.Finally,the presented algorithm is tested on the BJUT-3D face database.It is concluded that the performance of the algorithm and fusion strategy is satisfying. 展开更多
关键词 3D face recognition feature representation feature fusion
在线阅读 下载PDF
An Ensemble of Optimal Deep Learning Features for Brain Tumor Classification 被引量:2
9
作者 Ahsan Aziz Muhammad Attique +5 位作者 Usman Tariq Yunyoung Nam Muhammad Nazir Chang-Won Jeong Reham R.Mostafa Rasha H.Sakr 《Computers, Materials & Continua》 SCIE EI 2021年第11期2653-2670,共18页
Owing to technological developments,Medical image analysis has received considerable attention in the rapid detection and classification of diseases.The brain is an essential organ in humans.Brain tumors cause loss of... Owing to technological developments,Medical image analysis has received considerable attention in the rapid detection and classification of diseases.The brain is an essential organ in humans.Brain tumors cause loss of memory,vision,and name.In 2020,approximately 18,020 deaths occurred due to brain tumors.These cases can be minimized if a brain tumor is diagnosed at a very early stage.Computer vision researchers have introduced several techniques for brain tumor detection and classification.However,owing to many factors,this is still a challenging task.These challenges relate to the tumor size,the shape of a tumor,location of the tumor,selection of important features,among others.In this study,we proposed a framework for multimodal brain tumor classification using an ensemble of optimal deep learning features.In the proposed framework,initially,a database is normalized in the form of high-grade glioma(HGG)and low-grade glioma(LGG)patients and then two pre-trained deep learning models(ResNet50 and Densenet201)are chosen.The deep learning models were modified and trained using transfer learning.Subsequently,the enhanced ant colony optimization algorithm is proposed for best feature selection from both deep models.The selected features are fused using a serial-based approach and classified using a cubic support vector machine.The experimental process was conducted on the BraTs2019 dataset and achieved accuracies of 87.8%and 84.6%for HGG and LGG,respectively.The comparison is performed using several classification methods,and it shows the significance of our proposed technique. 展开更多
关键词 Brain tumor data normalization transfer learning features optimization features fusion
在线阅读 下载PDF
Gastric Tract Disease Recognition Using Optimized Deep Learning Features 被引量:1
10
作者 Zainab Nayyar Muhammad Attique Khan +5 位作者 Musaed Alhussein Muhammad Nazir Khursheed Aurangzeb Yunyoung Nam Seifedine Kadry Syed Irtaza Haider 《Computers, Materials & Continua》 SCIE EI 2021年第8期2041-2056,共16页
Artificial intelligence aids for healthcare have received a great deal of attention.Approximately one million patients with gastrointestinal diseases have been diagnosed via wireless capsule endoscopy(WCE).Early diagn... Artificial intelligence aids for healthcare have received a great deal of attention.Approximately one million patients with gastrointestinal diseases have been diagnosed via wireless capsule endoscopy(WCE).Early diagnosis facilitates appropriate treatment and saves lives.Deep learning-based techniques have been used to identify gastrointestinal ulcers,bleeding sites,and polyps.However,small lesions may be misclassified.We developed a deep learning-based best-feature method to classify various stomach diseases evident in WCE images.Initially,we use hybrid contrast enhancement to distinguish diseased from normal regions.Then,a pretrained model is fine-tuned,and further training is done via transfer learning.Deep features are extracted from the last two layers and fused using a vector length-based approach.We improve the genetic algorithm using a fitness function and kurtosis to select optimal features that are graded by a classifier.We evaluate a database containing 24,000 WCE images of ulcers,bleeding sites,polyps,and healthy tissue.The cubic support vector machine classifier was optimal;the average accuracy was 99%. 展开更多
关键词 Stomach cancer contrast enhancement deep learning OPTIMIZATION features fusion
在线阅读 下载PDF
A Cascaded Design of Best Features Selection for Fruit Diseases Recognition 被引量:1
11
作者 Faiz Ali Shah Muhammad Attique Khan +4 位作者 Muhammad Sharif Usman Tariq Aimal Khan Seifedine Kadry Orawit Thinnukool 《Computers, Materials & Continua》 SCIE EI 2022年第1期1491-1507,共17页
Fruit diseases seriously affect the production of the agricultural sector,which builds financial pressure on the country’s economy.The manual inspection of fruit diseases is a chaotic process that is both time and co... Fruit diseases seriously affect the production of the agricultural sector,which builds financial pressure on the country’s economy.The manual inspection of fruit diseases is a chaotic process that is both time and cost-consuming since it involves an accurate manual inspection by an expert.Hence,it is essential that an automated computerised approach is developed to recognise fruit diseases based on leaf images.According to the literature,many automated methods have been developed for the recognition of fruit diseases at the early stage.However,these techniques still face some challenges,such as the similar symptoms of different fruit diseases and the selection of irrelevant features.Image processing and deep learning techniques have been extremely successful in the last decade,but there is still room for improvement due to these challenges.Therefore,we propose a novel computerised approach in this work using deep learning and featuring an ant colony optimisation(ACO)based selection.The proposed method consists of four fundamental steps:data augmentation to solve the imbalanced dataset,fine-tuned pretrained deep learning models(NasNetMobile andMobileNet-V2),the fusion of extracted deep features using matrix length,and finally,a selection of the best features using a hybrid ACO and a Neighbourhood Component Analysis(NCA).The best-selected features were eventually passed to many classifiers for final recognition.The experimental process involved an augmented dataset and achieved an average accuracy of 99.7%.Comparison with existing techniques showed that the proposed method was effective. 展开更多
关键词 Fruits diseases data augmentation deep learning features fusion feature selection
在线阅读 下载PDF
A Framework of Deep Optimal Features Selection for Apple Leaf Diseases Recognition 被引量:1
12
作者 Samra Rehman Muhammad Attique Khan +5 位作者 Majed Alhaisoni Ammar Armghan Usman Tariq Fayadh Alenezi Ye Jin Kim Byoungchol Chang 《Computers, Materials & Continua》 SCIE EI 2023年第4期697-714,共18页
Identifying fruit disease manually is time-consuming, expertrequired,and expensive;thus, a computer-based automated system is widelyrequired. Fruit diseases affect not only the quality but also the quantity.As a resul... Identifying fruit disease manually is time-consuming, expertrequired,and expensive;thus, a computer-based automated system is widelyrequired. Fruit diseases affect not only the quality but also the quantity.As a result, it is possible to detect the disease early on and cure the fruitsusing computer-based techniques. However, computer-based methods faceseveral challenges, including low contrast, a lack of dataset for training amodel, and inappropriate feature extraction for final classification. In thispaper, we proposed an automated framework for detecting apple fruit leafdiseases usingCNNand a hybrid optimization algorithm. Data augmentationis performed initially to balance the selected apple dataset. After that, twopre-trained deep models are fine-tuning and trained using transfer learning.Then, a fusion technique is proposed named Parallel Correlation Threshold(PCT). The fused feature vector is optimized in the next step using a hybridoptimization algorithm. The selected features are finally classified usingmachine learning algorithms. Four different experiments have been carriedout on the augmented Plant Village dataset and yielded the best accuracy of99.8%. The accuracy of the proposed framework is also compared to that ofseveral neural nets, and it outperforms them all. 展开更多
关键词 Convolutional neural networks deep learning features fusion features optimization CLASSIFICATION
在线阅读 下载PDF
Bridge Crack Segmentation Method Based on Parallel Attention Mechanism and Multi-Scale Features Fusion 被引量:1
13
作者 Jianwei Yuan Xinli Song +2 位作者 Huaijian Pu Zhixiong Zheng Ziyang Niu 《Computers, Materials & Continua》 SCIE EI 2023年第3期6485-6503,共19页
Regular inspection of bridge cracks is crucial to bridge maintenance and repair.The traditional manual crack detection methods are timeconsuming,dangerous and subjective.At the same time,for the existing mainstream vi... Regular inspection of bridge cracks is crucial to bridge maintenance and repair.The traditional manual crack detection methods are timeconsuming,dangerous and subjective.At the same time,for the existing mainstream vision-based automatic crack detection algorithms,it is challenging to detect fine cracks and balance the detection accuracy and speed.Therefore,this paper proposes a new bridge crack segmentationmethod based on parallel attention mechanism and multi-scale features fusion on top of the DeeplabV3+network framework.First,the improved lightweight MobileNetv2 network and dilated separable convolution are integrated into the original DeeplabV3+network to improve the original backbone network Xception and atrous spatial pyramid pooling(ASPP)module,respectively,dramatically reducing the number of parameters in the network and accelerates the training and prediction speed of the model.Moreover,we introduce the parallel attention mechanism into the encoding and decoding stages.The attention to the crack regions can be enhanced from the aspects of both channel and spatial parts and significantly suppress the interference of various noises.Finally,we further improve the detection performance of the model for fine cracks by introducing a multi-scale features fusion module.Our research results are validated on the self-made dataset.The experiments show that our method is more accurate than other methods.Its intersection of union(IoU)and F1-score(F1)are increased to 77.96%and 87.57%,respectively.In addition,the number of parameters is only 4.10M,which is much smaller than the original network;also,the frames per second(FPS)is increased to 15 frames/s.The results prove that the proposed method fits well the requirements of rapid and accurate detection of bridge cracks and is superior to other methods. 展开更多
关键词 Crack detection DeeplabV3+ parallel attention mechanism feature fusion
在线阅读 下载PDF
Driver Fatigue Detection System Based on Colored and Infrared Eye Features Fusion 被引量:1
14
作者 Yuyang Sun Peizhou Yan +2 位作者 Zhengzheng Li Jiancheng Zou Don Hong 《Computers, Materials & Continua》 SCIE EI 2020年第6期1563-1574,共12页
Real-time detection of driver fatigue status is of great significance for road traffic safety.In this paper,a proposed novel driver fatigue detection method is able to detect the driver’s fatigue status around the cl... Real-time detection of driver fatigue status is of great significance for road traffic safety.In this paper,a proposed novel driver fatigue detection method is able to detect the driver’s fatigue status around the clock.The driver’s face images were captured by a camera with a colored lens and an infrared lens mounted above the dashboard.The landmarks of the driver’s face were labeled and the eye-area was segmented.By calculating the aspect ratios of the eyes,the duration of eye closure,frequency of blinks and PERCLOS of both colored and infrared,fatigue can be detected.Based on the change of light intensity detected by a photosensitive device,the weight matrix of the colored features and the infrared features was adjusted adaptively to reduce the impact of lighting on fatigue detection.Video samples of the driver’s face were recorded in the test vehicle.After training the classification model,the results showed that our method has high accuracy on driver fatigue detection in both daytime and nighttime. 展开更多
关键词 Driver fatigue detection feature fusion colored and infrared eye features
在线阅读 下载PDF
Automatic detection method of bladder tumor cells based on color and shape features
15
作者 Zitong Zhao Yanbo Wang +6 位作者 Jiaqi Chen Mingjia Wang Shulong Feng Jin Yang Nan Song Jinyu Wang Ci Sun 《Journal of Innovative Optical Health Sciences》 SCIE EI CSCD 2024年第6期1-13,共13页
Bladder urothelial carcinoma is the most common malignant tumor disease in urinary system,and its incidence rate ranks ninth in the world.In recent years,the continuous development of hyperspectral imaging technology ... Bladder urothelial carcinoma is the most common malignant tumor disease in urinary system,and its incidence rate ranks ninth in the world.In recent years,the continuous development of hyperspectral imaging technology has provided a new tool for the auxiliary diagnosis of bladder cancer.In this study,based on microscopic hyperspectral data,an automatic detection algorithm of bladder tumor cells combining color features and shape features is proposed.Support vector machine(SVM)is used to build classification models and compare the classification performance of spectral feature,spectral and shape fusion feature,and the fusion feature proposed in this paper on the same classifier.The results show that the sensitivity,specificity,and accuracy of our classification algorithm based on shape and color fusion features are 0.952,0.897,and 0.920,respectively,which are better than the classification algorithm only using spectral features.Therefore,this study can effectively extract the cell features of bladder urothelial carcinoma smear,thus achieving automatic,real-time,and noninvasive detection of bladder tumor cells,and then helping doctors improve the efficiency of pathological diagnosis of bladder urothelial cancer,and providing a reliable basis for doctors to choose treatment plans and judge the prognosis of the disease. 展开更多
关键词 Bladder tumor cells microscopic hyperspectral fusion feature support vector machine automatic detection.
原文传递
The real-time dynamic liquid level calculation method of the sucker rod well based on multi-view features fusion
16
作者 Cheng-Zhe Yin Kai Zhang +4 位作者 Jia-Yuan Liu Xin-Yan Wang Min Li Li-Ming Zhang Wen-Sheng Zhou 《Petroleum Science》 SCIE EI CAS CSCD 2024年第5期3575-3586,共12页
In the production of the sucker rod well, the dynamic liquid level is important for the production efficiency and safety in the lifting process. It is influenced by multi-source data which need to be combined for the ... In the production of the sucker rod well, the dynamic liquid level is important for the production efficiency and safety in the lifting process. It is influenced by multi-source data which need to be combined for the dynamic liquid level real-time calculation. In this paper, the multi-source data are regarded as the different views including the load of the sucker rod and liquid in the wellbore, the image of the dynamometer card and production dynamics parameters. These views can be fused by the multi-branch neural network with special fusion layer. With this method, the features of different views can be extracted by considering the difference of the modality and physical meaning between them. Then, the extraction results which are selected by multinomial sampling can be the input of the fusion layer.During the fusion process, the availability under different views determines whether the views are fused in the fusion layer or not. In this way, not only the correlation between the views can be considered, but also the missing data can be processed automatically. The results have shown that the load and production features fusion(the method proposed in this paper) performs best with the lowest mean absolute error(MAE) 39.63 m, followed by the features concatenation with MAE 42.47 m. They both performed better than only a single view and the lower MAE of the features fusion indicates that its generalization ability is stronger. In contrast, the image feature as a single view contributes little to the accuracy improvement after fused with other views with the highest MAE. When there is data missing in some view, compared with the features concatenation, the multi-view features fusion will not result in the unavailability of a large number of samples. When the missing rate is 10%, 30%, 50% and 80%, the method proposed in this paper can reduce MAE by 5.8, 7, 9.3 and 20.3 m respectively. In general, the multi-view features fusion method proposed in this paper can improve the accuracy obviously and process the missing data effectively, which helps provide technical support for real-time monitoring of the dynamic liquid level in oil fields. 展开更多
关键词 Dynamic liquid level Multi view features fusion Sucker rod well Dynamometer cards
原文传递
Robust Visual Tracking with Hierarchical Deep Features Weighted Fusion
17
作者 Dianwei Wang Chunxiang Xu +3 位作者 Daxiang Li Ying Liu Zhijie Xu Jing Wang 《Journal of Beijing Institute of Technology》 EI CAS 2019年第4期770-776,共7页
To solve the problem of low robustness of trackers under significant appearance changes in complex background,a novel moving target tracking method based on hierarchical deep features weighted fusion and correlation f... To solve the problem of low robustness of trackers under significant appearance changes in complex background,a novel moving target tracking method based on hierarchical deep features weighted fusion and correlation filter is proposed.Firstly,multi-layer features are extracted by a deep model pre-trained on massive object recognition datasets.The linearly separable features of Relu3-1,Relu4-1 and Relu5-4 layers from VGG-Net-19 are especially suitable for target tracking.Then,correlation filters over hierarchical convolutional features are learned to generate their correlation response maps.Finally,a novel approach of weight adjustment is presented to fuse response maps.The maximum value of the final response map is just the location of the target.Extensive experiments on the object tracking benchmark datasets demonstrate the high robustness and recognition precision compared with several state-of-the-art trackers under the different conditions. 展开更多
关键词 visual tracking convolution neural network correlation filter feature fusion
在线阅读 下载PDF
GaitDONet: Gait Recognition Using Deep Features Optimization and Neural Network
18
作者 Muhammad Attique Khan Awais Khan +6 位作者 Majed Alhaisoni Abdullah Alqahtani Ammar Armghan Sara A.Althubiti Fayadh Alenezi Senghour Mey Yunyoung Nam 《Computers, Materials & Continua》 SCIE EI 2023年第6期5087-5103,共17页
Human gait recognition(HGR)is the process of identifying a sub-ject(human)based on their walking pattern.Each subject is a unique walking pattern and cannot be simulated by other subjects.But,gait recognition is not e... Human gait recognition(HGR)is the process of identifying a sub-ject(human)based on their walking pattern.Each subject is a unique walking pattern and cannot be simulated by other subjects.But,gait recognition is not easy and makes the system difficult if any object is carried by a subject,such as a bag or coat.This article proposes an automated architecture based on deep features optimization for HGR.To our knowledge,it is the first architecture in which features are fused using multiset canonical correlation analysis(MCCA).In the proposed method,original video frames are processed for all 11 selected angles of the CASIA B dataset and utilized to train two fine-tuned deep learning models such as Squeezenet and Efficientnet.Deep transfer learning was used to train both fine-tuned models on selected angles,yielding two new targeted models that were later used for feature engineering.Features are extracted from the deep layer of both fine-tuned models and fused into one vector using MCCA.An improved manta ray foraging optimization algorithm is also proposed to select the best features from the fused feature matrix and classified using a narrow neural network classifier.The experimental process was conducted on all 11 angles of the large multi-view gait dataset(CASIA B)dataset and obtained improved accuracy than the state-of-the-art techniques.Moreover,a detailed confidence interval based analysis also shows the effectiveness of the proposed architecture for HGR. 展开更多
关键词 Human gait recognition BIOMETRIC deep learning features fusion OPTIMIZATION neural network
在线阅读 下载PDF
A Hybrid Duo-Deep Learning and Best Features Based Framework for Action Recognition
19
作者 Muhammad Naeem Akbar Farhan Riaz +3 位作者 Ahmed Bilal Awan Muhammad Attique Khan Usman Tariq Saad Rehman 《Computers, Materials & Continua》 SCIE EI 2022年第11期2555-2576,共22页
Human Action Recognition(HAR)is a current research topic in the field of computer vision that is based on an important application known as video surveillance.Researchers in computer vision have introduced various int... Human Action Recognition(HAR)is a current research topic in the field of computer vision that is based on an important application known as video surveillance.Researchers in computer vision have introduced various intelligent methods based on deep learning and machine learning,but they still face many challenges such as similarity in various actions and redundant features.We proposed a framework for accurate human action recognition(HAR)based on deep learning and an improved features optimization algorithm in this paper.From deep learning feature extraction to feature classification,the proposed framework includes several critical steps.Before training fine-tuned deep learning models–MobileNet-V2 and Darknet53–the original video frames are normalized.For feature extraction,pre-trained deep models are used,which are fused using the canonical correlation approach.Following that,an improved particle swarm optimization(IPSO)-based algorithm is used to select the best features.Following that,the selected features were used to classify actions using various classifiers.The experimental process was performed on six publicly available datasets such as KTH,UT-Interaction,UCF Sports,Hollywood,IXMAS,and UCF YouTube,which attained an accuracy of 98.3%,98.9%,99.8%,99.6%,98.6%,and 100%,respectively.In comparison with existing techniques,it is observed that the proposed framework achieved improved accuracy. 展开更多
关键词 Action recognition deep learning features fusion features selection RECOGNITION
在线阅读 下载PDF
One-Class Arabic Signature Verification: A Progressive Fusion of Optimal Features
20
作者 Ansam A.Abdulhussien Mohammad F.Nasrudin +1 位作者 Saad M.Darwish Zaid A.Alyasseri 《Computers, Materials & Continua》 SCIE EI 2023年第4期219-242,共24页
Signature verification is regarded as the most beneficial behavioral characteristic-based biometric feature in security and fraud protection.It is also a popular biometric authentication technology in forensic and com... Signature verification is regarded as the most beneficial behavioral characteristic-based biometric feature in security and fraud protection.It is also a popular biometric authentication technology in forensic and commercial transactions due to its various advantages,including noninvasiveness,user-friendliness,and social and legal acceptability.According to the literature,extensive research has been conducted on signature verification systems in a variety of languages,including English,Hindi,Bangla,and Chinese.However,the Arabic Offline Signature Verification(OSV)system is still a challenging issue that has not been investigated as much by researchers due to the Arabic script being distinguished by changing letter shapes,diacritics,ligatures,and overlapping,making verification more difficult.Recently,signature verification systems have shown promising results for recognizing signatures that are genuine or forgeries;however,performance on skilled forgery detection is still unsatisfactory.Most existing methods require many learning samples to improve verification accuracy,which is a major drawback because the number of available signature samples is often limited in the practical application of signature verification systems.This study addresses these issues by presenting an OSV system based on multifeature fusion and discriminant feature selection using a genetic algorithm(GA).In contrast to existing methods,which use multiclass learning approaches,this study uses a oneclass learning strategy to address imbalanced signature data in the practical application of a signature verification system.The proposed approach is tested on three signature databases(SID)-Arabic handwriting signatures,CEDAR(Center of Excellence for Document Analysis and Recognition),and UTSIG(University of Tehran Persian Signature),and experimental results show that the proposed system outperforms existing systems in terms of reducing the False Acceptance Rate(FAR),False Rejection Rate(FRR),and Equal Error Rate(ERR).The proposed system achieved 5%improvement. 展开更多
关键词 Offline signature verification biometric system feature fusion one-class classifier
在线阅读 下载PDF
上一页 1 2 16 下一页 到第
使用帮助 返回顶部