期刊文献+
共找到1,942篇文章
< 1 2 98 >
每页显示 20 50 100
Enhanced Feature Fusion Segmentation for Tumor Detection Using Intelligent Techniques
1
作者 R.Radha R.Gopalakrishnan 《Intelligent Automation & Soft Computing》 SCIE 2023年第3期3113-3127,共15页
In thefield of diagnosis of medical images the challenge lies in tracking and identifying the defective cells and the extent of the defective region within the complex structure of a brain cavity.Locating the defective... In thefield of diagnosis of medical images the challenge lies in tracking and identifying the defective cells and the extent of the defective region within the complex structure of a brain cavity.Locating the defective cells precisely during the diagnosis phase helps tofight the greatest exterminator of mankind.Early detec-tion of these defective cells requires an accurate computer-aided diagnostic system(CAD)that supports early treatment and promotes survival rates of patients.An ear-lier version of CAD systems relies greatly on the expertise of radiologist and it con-sumed more time to identify the defective region.The manuscript takes the efficacy of coalescing features like intensity,shape,and texture of the magnetic resonance image(MRI).In the Enhanced Feature Fusion Segmentation based classification method(EEFS)the image is enhanced and segmented to extract the prominent fea-tures.To bring out the desired effect the EEFS method uses Enhanced Local Binary Pattern(EnLBP),Partisan Gray Level Co-occurrence Matrix Histogram of Oriented Gradients(PGLCMHOG),and iGrab cut method to segment image.These prominent features along with deep features are coalesced to provide a single-dimensional fea-ture vector that is effectively used for prediction.The coalesced vector is used with the existing classifiers to compare the results of these classifiers with that of the gen-erated vector.The generated vector provides promising results with commendably less computatio nal time for pre-processing and classification of MR medical images. 展开更多
关键词 Enhanced local binary pattern LEVEL iGrab cut method magnetic resonance image computer aided diagnostic system enhanced feature fusion segmentation enhanced local binary pattern
在线阅读 下载PDF
Fusion of Infrared and Visible Light Images Based on Region Segmentation 被引量:12
2
作者 刘坤 郭雷 +1 位作者 李晖晖 陈敬松 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2009年第1期75-80,共6页
This article proposes a novel method to fuse infrared and visible light images based on region segmentation. Region segmen-tation is used to determine important regions and background information in the input image. T... This article proposes a novel method to fuse infrared and visible light images based on region segmentation. Region segmen-tation is used to determine important regions and background information in the input image. The non-subsampled contourlet transform (NSCT) provides a flexible multiresolution,local and directional image expansion,and also a sparse representation for two-dimensional (2-D) piecewise smooth signal building images,and then different fusion rules are applied to fuse the NSCT coefficients fo... 展开更多
关键词 image processing image fusion non-subsampled contourlet transform region segmentation infrared imaging
原文传递
Semantic Segmentation Based Remote Sensing Data Fusion on Crops Detection 被引量:1
3
作者 Jose Pena Yumin Tan Wuttichai Boonpook 《Journal of Computer and Communications》 2019年第7期53-64,共12页
Data fusion is usually an important process in multi-sensor remotely sensed imagery integration environments with the aim of enriching features lacking in the sensors involved in the fusion process. This technique has... Data fusion is usually an important process in multi-sensor remotely sensed imagery integration environments with the aim of enriching features lacking in the sensors involved in the fusion process. This technique has attracted much interest in many researches especially in the field of agriculture. On the other hand, deep learning (DL) based semantic segmentation shows high performance in remote sensing classification, and it requires large datasets in a supervised learning way. In the paper, a method of fusing multi-source remote sensing images with convolution neural networks (CNN) for semantic segmentation is proposed and applied to identify crops. Venezuelan Remote Sensing Satellite-2 (VRSS-2) and the high-resolution of Google Earth (GE) imageries have been used and more than 1000 sample sets have been collected for supervised learning process. The experiment results show that the crops extraction with an average overall accuracy more than 93% has been obtained, which demonstrates that data fusion combined with DL is highly feasible to crops extraction from satellite images and GE imagery, and it shows that deep learning techniques can serve as an invaluable tools for larger remote sensing data fusion frameworks, specifically for the applications in precision farming. 展开更多
关键词 Data fusion CROPS DETECTION SEMANTIC segmentATION VRSS-2
暂未订购
A Local Contrast Fusion Based 3D Otsu Algorithm for Multilevel Image Segmentation 被引量:13
4
作者 Ashish Kumar Bhandari Arunangshu Ghosh Immadisetty Vinod Kumar 《IEEE/CAA Journal of Automatica Sinica》 EI CSCD 2020年第1期200-213,共14页
To overcome the shortcomings of 1 D and 2 D Otsu’s thresholding techniques, the 3 D Otsu method has been developed.Among all Otsu’s methods, 3 D Otsu technique provides the best threshold values for the multi-level ... To overcome the shortcomings of 1 D and 2 D Otsu’s thresholding techniques, the 3 D Otsu method has been developed.Among all Otsu’s methods, 3 D Otsu technique provides the best threshold values for the multi-level thresholding processes. In this paper, to improve the quality of segmented images, a simple and effective multilevel thresholding method is introduced. The proposed approach focuses on preserving edge detail by computing the 3 D Otsu along the fusion phenomena. The advantages of the presented scheme include higher quality outcomes, better preservation of tiny details and boundaries and reduced execution time with rising threshold levels. The fusion approach depends upon the differences between pixel intensity values within a small local space of an image;it aims to improve localized information after the thresholding process. The fusion of images based on local contrast can improve image segmentation performance by minimizing the loss of local contrast, loss of details and gray-level distributions. Results show that the proposed method yields more promising segmentation results when compared to conventional1 D Otsu, 2 D Otsu and 3 D Otsu methods, as evident from the objective and subjective evaluations. 展开更多
关键词 1D Otsu 2D Otsu 3D Otsu image fusion local contrast multi-level image segmentation
在线阅读 下载PDF
FDiff-Fusion:基于模糊逻辑驱动的医学图像扩散融合网络分割模型
5
作者 耿胜 丁卫平 +3 位作者 鞠恒荣 黄嘉爽 姜舒 王海鹏 《计算机科学》 北大核心 2025年第6期274-285,共12页
医学图像分割在临床诊疗和病理分析中具有重要的应用价值。近年来,去噪扩散模型在图像分割建模方面取得了显著成功,其能够更好地捕获图像中的复杂结构和细节信息。然而,利用去噪扩散模型进行医学图像分割的方法大多忽略了分割目标的边... 医学图像分割在临床诊疗和病理分析中具有重要的应用价值。近年来,去噪扩散模型在图像分割建模方面取得了显著成功,其能够更好地捕获图像中的复杂结构和细节信息。然而,利用去噪扩散模型进行医学图像分割的方法大多忽略了分割目标的边界不确定和区域模糊因素,从而造成了最终分割结果的不稳定性和不准确性。为了解决这一问题,提出了一种基于模糊逻辑驱动的医学图像扩散融合网络分割模型(FDiff-Fusion)。该模型通过将去噪扩散模型集成到经典U-Net网络中,有效地从输入医学图像中提取丰富的语义信息。由于医学图像的分割目标边界不确定性和区域模糊化现象普遍存在,因此在U-Net网络的跳跃路径上设计了一种模糊学习模块。该模块为输入的编码特征设置多个模糊隶属度函数,以描述特征点之间的相似程度,并对模糊隶属度函数应用模糊规则处理,从而增强了模型对不确定边界和模糊区域的建模能力。此外,为了提高模型分割结果的准确性和鲁棒性,在测试阶段引入了基于迭代注意力特征融合的方法。该方法将局部上下文信息添加到注意力模块中的全局上下文信息中,以融合每个去噪时间步的预测结果。实验结果显示,与现有的先进分割网络相比,FDiff-Fusion在BRATS 2020脑肿瘤数据集上获得的平均Dice分数和HD95距离分别为84.16%和2.473mm,在BTCV腹部多器官数据集上获得的平均Dice分数和HD95距离分别为83.82%和7.98mm,表现出良好的分割性能。 展开更多
关键词 去噪扩散模型 U-Net网络 医学图像分割 模糊学习 迭代注意力特征融合
在线阅读 下载PDF
Adjacent Segment Disease after Long Spinal Fusion Ending at L5 for Adult Spinal Deformity: A Retrospective Cohort Study
6
作者 Ryota Kimura Michio Hongo +6 位作者 Eiji Abe Takahi Kobayashi Kazuma Kikuchi Hayato Kinoshita Yuji Kasukawa Daisuke Kudo Naohisa Miyakoshi 《Open Journal of Orthopedics》 2022年第6期268-276,共9页
Study Design: This is a retrospective cohort study using data from the adult spinal deformity (ASD) database of a single institution. Purpose: To investigate the incidence of proximal junctional failure and distal jun... Study Design: This is a retrospective cohort study using data from the adult spinal deformity (ASD) database of a single institution. Purpose: To investigate the incidence of proximal junctional failure and distal junctional failure (DJF) after ASD surgery with a lower instrumented vertebra (LIV) at L5. Overview of Literature: Spinopelvic fixation from the lower thoracic vertebra to the pelvis is the current gold standard treatment for ASD. However, the LIV at L5 is acceptable in some cases. Methods: Fifty-six patients who underwent corrective surgery for ASD with LIV at L5 were included. The upper instrumented vertebra (UIV) was T7 in one patient, T9 in 14, T10 in three, T11 in four, T12 in eight, L1 in 10, and L2 in 16. Regarding clinical parameters, age, sex, curve types of Scoliosis Research Society-Schwab classification, number of levels fused, follow-up period, hip bone mallow density, revision surgery rate, and radiographic measurements were compared between the T (UIV: T7 - 10) and TL (UIV: T11 - L2) groups. Results: The revision surgery rate was 19.6% overall. In the T and TL groups, it was 27.8%, and 15.8%, respectively (p = 0.305). The rate of DJF in the T group (33.3%) was significantly higher than in the TL group (5.3%). The rate of proximal junctional kyphosis in the T group (55.6%) was higher than in the TL group (28.9%), with no significant difference. The mean global alignment, sagittal vertical axis, and C7 plumb line-central sacral vertical line were not different between both groups. Conclusions: ASD surgery with LIV set at L5 and UIV set at the thoracic vertebrae (T7 - T10) has a risk of adjacent segment disease. 展开更多
关键词 Adjacent segment Disease Adult Spinal Deformity Spinal Long fusion L5 Distal Junctional Failure Proximal Junctional Failure
暂未订购
三种内固定技术在腰椎间融合中对邻近节段退变生物力学的影响
7
作者 阿卜杜萨拉木·托合提 肖扬 +5 位作者 王轶希 穆斯塔帕·米吉提 陈琪豪 买买提明·赛依提 郭海龙 帕尔哈提·热西提 《中国组织工程研究》 北大核心 2026年第3期586-595,共10页
背景:改良皮质骨轨迹技术由作者团队在2019年提出,是在传统皮质骨轨迹技术基础上的重要改良,先前的研究已充分展示了该技术在固定节段所具备的优良生物力学性能。然而,关于改良皮质骨轨迹技术在邻近节段退变中的具体生物力学变化,尤其... 背景:改良皮质骨轨迹技术由作者团队在2019年提出,是在传统皮质骨轨迹技术基础上的重要改良,先前的研究已充分展示了该技术在固定节段所具备的优良生物力学性能。然而,关于改良皮质骨轨迹技术在邻近节段退变中的具体生物力学变化,尤其是在后路腰椎间融合和经椎间孔腰椎间融合术式下,对邻近节段活动度及椎间盘应力的影响,目前尚缺乏深入系统的研究。目的:探讨改良皮质骨轨迹技术在后路腰椎间融合和经椎间孔腰椎间融合术中对邻近节段退变生物力学的影响。方法:对3具人体尸体标本进行CT扫描,建立并验证3种L1-S1腰椎三维有限元模型,在每个模型中的L4-L5节段模拟行后路腰椎间融合或经椎间孔腰椎间融合术,并分别用3种内固定技术(改良皮质骨轨迹、皮质骨轨迹、传统椎弓根螺钉)固定住L4-L5节段。在L1椎体表面上加载垂直向下400 N的压缩力和7.5 N的扭矩后,记录在模拟脊柱的前屈、后伸、左侧弯、右侧弯、左旋转、右旋转等6种工况时L3-4、L5-S1节段的活动度及椎间盘最大应力,比较并分析3种内固定技术在两种融合术中对邻近节段退变的影响。结果与结论:①在后路腰椎间融合模型中,改良皮质骨轨迹螺钉组较皮质骨轨迹、传统椎弓根螺钉组在6种工况时的邻近节段(L3-L4,L5-S1)活动度均有所减少;改良皮质骨轨迹螺钉组较传统椎弓根螺钉组在后伸时的上位邻近节段(L3-L4)椎间盘最大应力显著减少(P=0.005),而在下位邻近节段(L5-S1)椎间盘应力表现出较大的分散性;皮质骨轨迹螺钉组与传统椎弓根螺钉组相比同样在后伸时显著减少(P=0.03);②相比于经椎间孔腰椎间融合模型,改良皮质骨轨迹、皮质骨轨迹、传统椎弓根螺钉3种内固定技术在后路腰椎间融合模型中6种工况下的下位邻近节段(L5-S1)活动度表现出减少的趋势,而上下位邻近节段(L3-L4,L5-S1)椎间盘最大应力均表现出了增加的趋势;③提示在后路腰椎间融合模型中,改良皮质骨轨迹技术展现出更优的生物力学特性,尤其在减少邻近节段活动度方面表现显著,有助于减轻邻近节段退变风险。 展开更多
关键词 腰椎融合 邻近节段退变 皮质骨轨迹 有限元分析 生物力学 数字化医学
暂未订购
水稻齿叶矮缩病毒Segment 9 dsRNA的序列分析及其在大肠杆菌DE3中的表达 被引量:5
8
作者 卢雄斌 周国瑛 +1 位作者 吴建华 龚祖埙 《病毒学报》 CAS CSCD 北大核心 1997年第1期68-74,共7页
通过有机试剂抽提,CF-11纤维素柱层析,从感染水稻齿叶矮缩病毒菲律宾分离株(RiceRaggedStuntVirus,Philippineisolate,简称RRSV-P)的水稻植株中获取该病毒的全基因组,即获得从... 通过有机试剂抽提,CF-11纤维素柱层析,从感染水稻齿叶矮缩病毒菲律宾分离株(RiceRaggedStuntVirus,Philippineisolate,简称RRSV-P)的水稻植株中获取该病毒的全基因组,即获得从Segment1到Segment10(S1-S10)的10条双链RNA(dsRNA),然后设计合适的引物,用RT-PCR方法得到S9的cDNA并将其克隆到pUC119质粒上扩增,以双链测序法测定该cDNA的全序列。同时又将此cDNA克隆到大肠杆菌表达质粒pGEX-3X上,在大肠杆菌菌株DE3中用IPTG诱导表达,经超声波破菌、离心、Glutathione-sepharose4B亲和层析,得到纯化的分子量为64kD的融合蛋白。 展开更多
关键词 植物病毒 水稻 齿叶矮缩病毒 segment9 序列分析
在线阅读 下载PDF
基于局部上下文引导特征深度融合的轻量级医学图像分割方法
9
作者 任向阳 赵梦媛 +2 位作者 胡微 刘刚琼 毕莹 《郑州大学学报(理学版)》 北大核心 2026年第1期65-71,共7页
现有的基于深度学习的医学图像分割方法,大多是利用大量的训练数据拟合检测网络,以获得优异的检测性能。这些方法往往需要较大的模型参数,导致检测实时性较差。为此,提出了基于局部上下文引导特征深度融合轻量级医学分割网络(local cont... 现有的基于深度学习的医学图像分割方法,大多是利用大量的训练数据拟合检测网络,以获得优异的检测性能。这些方法往往需要较大的模型参数,导致检测实时性较差。为此,提出了基于局部上下文引导特征深度融合轻量级医学分割网络(local context guided feature deep fusion lightweight medical segmentation network,LCGML-net)。LCGML-net通过精确的特征选择与特征融合来减少模型拟合所需的参数数量,从而在保证检测精度的同时实现更小的模型参数。在特征提取阶段和映射阶段,分别通过提取和融合目标的多层次多尺度局部上下文特征来丰富特征表达和精准分割。在STARE、CHASEDB1和KITS19等多个基准数据集上开展的实验证明,与其他方法相比,所提出的LCGML-net具有最佳的检测性能和最小的模型参数。 展开更多
关键词 医学图像分割 神经网络 局部上下文特征 特征深度融合
在线阅读 下载PDF
基于In-fusion技术的ERECTA基因植物表达载体的构建 被引量:6
10
作者 陈菲帆 王琪琦 +3 位作者 钟辉丽 付冰冰 任丹莉 李玉红 《北方园艺》 CAS 北大核心 2015年第18期110-115,共6页
以黄瓜品种‘长春密刺’(CCMC)为试材,利用高保真酶Iproof及不依赖于酶切的In-fusion技术,构建基于本底启动子驱动的黄瓜ERECTA基因的植物表达载体,以探讨ERECTA基因在黄瓜中的功能,以期为黄瓜抗性性状的遗传改良提供技术支持。结果表明... 以黄瓜品种‘长春密刺’(CCMC)为试材,利用高保真酶Iproof及不依赖于酶切的In-fusion技术,构建基于本底启动子驱动的黄瓜ERECTA基因的植物表达载体,以探讨ERECTA基因在黄瓜中的功能,以期为黄瓜抗性性状的遗传改良提供技术支持。结果表明:从CCMC的基因组DNA中克隆的2段gERECTA(DNA序列)长度分别为8 940bp和9 812bp,并分别命名为CsgERECTA-Flag和CsgERECTA-Poly。经过质粒PCR、梯度片段PCR和测序结果的鉴定表明,pCAMBIA3301-gERECTA的2个植物表达载体都已成功构建并转入根癌农杆菌EHA105中。 展开更多
关键词 黄瓜 ERECTA 长片段扩增 In-fusion 表达载体
原文传递
基于RGB与深度图像融合的生菜表型特征估算方法 被引量:5
11
作者 陆声链 李沂杨 +3 位作者 李帼 贾小泽 鞠青青 钱婷婷 《农业机械学报》 北大核心 2025年第1期84-91,101,共9页
采用自动化手段对植物生长过程中的表型特征进行精准测量对于育种和栽培等应用具有重要意义。本文围绕工厂化生菜种植中的表型特征无损精准检测需求,通过融合深度相机采集的RGB图像和深度图像,利用改进的DeepLabv3+模型进行图像分割,并... 采用自动化手段对植物生长过程中的表型特征进行精准测量对于育种和栽培等应用具有重要意义。本文围绕工厂化生菜种植中的表型特征无损精准检测需求,通过融合深度相机采集的RGB图像和深度图像,利用改进的DeepLabv3+模型进行图像分割,并通过双模态回归网络对生菜表型特征进行估算。本文改进的分割模型的骨干网络由Xception替换为MobileViTv2,以增强其全局感知能力和性能;在回归网络中,提出了卷积双模态特征融合模块CMMCM,用于估算生菜的表型特征。在包含4个生菜品种的公开数据集上的实验结果表明,本文方法可对鲜质量、干质量、冠幅、叶面积和株高共5种生菜表型特征进行估算,决定系数分别达到0.9222、0.9314、0.8620、0.9359和0.8875。相较于未添加CMMCM和SE模块的RGB和深度图的表型参数估计基准ResNet-10(双模态),本文改进的模型决定系数分别提高2.54%、2.54%、1.48%、2.99%和4.88%,单幅图像检测耗时为44.8 ms,说明该方法对于双模态图像融合的生菜表型特征无损提取具有较高的准确性和实时性。 展开更多
关键词 生菜 表型估算 模态融合 分割模型 RGB图像 深度图像
在线阅读 下载PDF
特征级语义感知引导的多模态图像融合算法 被引量:1
12
作者 张梅 金叶 +1 位作者 朱金辉 贺霖 《电子与信息学报》 北大核心 2025年第8期2909-2918,共10页
在自动驾驶领域,红外和可见光的融合图像因其能够提供显著目标和丰富的纹理细节而备受关注。然而现有的大部分融合算法单方面关注融合图像的视觉质量和评价指标,而忽略了高级视觉任务的需求。另外,虽然一些融合方法尝试结合高级视觉任务... 在自动驾驶领域,红外和可见光的融合图像因其能够提供显著目标和丰富的纹理细节而备受关注。然而现有的大部分融合算法单方面关注融合图像的视觉质量和评价指标,而忽略了高级视觉任务的需求。另外,虽然一些融合方法尝试结合高级视觉任务,但是其效果受限于语义先验和融合任务之间的交互不足且没有考虑到不同特征差异性的影响。因此,该文提出了特征级语义感知引导的多模态图像融合算法,使语义先验知识与融合任务进行充分交互,提高融合结果在后续的分割任务中的性能。对于语义特征和融合图像特征两者的差异性,提出了双特征交互模块,以实现不同特征的充分交互和选择。对于红外和可见光两种不同模态特征的差异性,提出了多源空间注意力融合模块,以实现不同模态信息的有效集成和互补。该文在3个公共数据集上进行了实验,结果表明该方法的融合结果优于其他方法且泛化能力较好,而且在各种融合算法联合分割任务的性能比较实验中也表明了该方法在分割任务中的优越性。 展开更多
关键词 图像融合 联合分割任务 语义感知 特征级引导
在线阅读 下载PDF
Treatment of Single Level Lumbar Spondylolisthesis with Lumbar Interbody Fusion via Oblique Lateral Approach (OLIF)
13
作者 Jinpeng Zheng Dun Liu +3 位作者 Jing Shi Han Wu Ping Cao Bing Hu 《Surgical Science》 2023年第1期46-54,共9页
Objectives: To investigate the effect of lumbar interbody fusion via the oblique lateral approach (OLIF) in the treatment of single level lumbar spondylolisthesis. Methods: Retrospective analysis was made on 32 cases ... Objectives: To investigate the effect of lumbar interbody fusion via the oblique lateral approach (OLIF) in the treatment of single level lumbar spondylolisthesis. Methods: Retrospective analysis was made on 32 cases of single level lumbar spondylolisthesis treated by lumbar interbody fusion via the oblique lateral approach from July 2020 to July 2021. 14 males and 18 females;the age was (66.5 ± 11.5) years (55 - 82 years). 1) The operation time, intraoperative blood loss and complications were recorded;2) the scores of visual analog scale. VAS and Oswestry disability index (ODI) of low back pain and lower limb pain were collected before operation and at the last follow-up;by observing the imaging data, the height of the intervertebral space, the anterior convex angle of the intervertebral space, the anterior convex angle of the lumbar spine, the sagittal diameter of the dural sac and the spondylolisthesis were measured. Results: All patients successfully completed the operation, the average operation time was (103.9 ± 21.1) min, the average intraoperative bleeding volume was (72.3 ± 16.4) ml. There was no vascular injury during the operation, no infection occurred in all surgical incisions, and Class I/A healing was achieved. The VAS scores of low back pain and leg pain before operation and at the last follow-up were lower than those before operation, and the difference was statistically significant (P < 0.05);the ODI at the last follow-up was lower than that before operation, and the difference was statistically significant (P < 0.05). At the last follow-up, the height of intervertebral space, the height of intervertebral foramen and the sagittal diameter of dural sac were greater than those before operation, with statistically significant differences (P < 0.05);the spondylolisthesis rate at the last follow-up was lower than that before operation, with a statistically significant difference (P < 0.05). Left thigh surface numbness occurred in 2 cases (6.3%) and disappeared after 1 week;Hip flexion weakness occurred in 1 case (0.03%), which recovered after 12 days;there were no complications such as retroperitoneal hematoma, ureteral injury, retrograde ejaculation, intestinal and lumbar plexus injury. Conclusion: The early clinical effect of OLIF in the treatment of single level lumbar spondylolisthesis is significant. This surgical method is minimally invasive, safe and effective, which can significantly reduce the amount of intraoperative bleeding and reduce the risk of postoperative complications. Its main working principle is to make the annulus fibrosus, posterior longitudinal ligament and ligamentum flavum shrink and recover the height of the intervertebral space through decompression, loosening and stretching of the intervertebral space, so as to achieve the reduction of the slipped vertebral body, increase the height of the intervertebral foramen Enlarge the spinal canal volume and eliminate dynamic compression to play an indirect decompression role, improve the symptoms of low back and leg pain, and reconstruct the stability of the spine through interbody fusion. 展开更多
关键词 Oblique Lateral Approach Lumbar Interbody fusion Single segment Lumbar Spondylolisthesis
暂未订购
基于交叉融合自注意力的点云语义分割 被引量:1
14
作者 舒军 王帅 +1 位作者 杨莉 陈宇 《中南民族大学学报(自然科学版)》 CAS 2025年第1期96-106,共11页
针对目前点云语义分割算法通常采用简单的串联三维原始坐标信息方式建模几何信息,导致建模不完整问题.提出了交叉融合自注意力网络,在该网络的编码层中设计了交叉融合自注意力机制模块,通过交互学习坐标和特征信息,提高局部细粒度特征... 针对目前点云语义分割算法通常采用简单的串联三维原始坐标信息方式建模几何信息,导致建模不完整问题.提出了交叉融合自注意力网络,在该网络的编码层中设计了交叉融合自注意力机制模块,通过交互学习坐标和特征信息,提高局部细粒度特征描述能力,使得几何信息建模更加完整.同时为了更好地结合浅层与高层特征,提出了一种层级特征融合模块,通过自适应地连接网络不同层,实现不同层的特征整合.在S3DIS、Semantic3D和SemanticKITTI数据集上实验表明:该算法优于RandLA-Net等先进算法. 展开更多
关键词 点云 语义分割 交叉融合自注意力 层级特征融合
在线阅读 下载PDF
DS-TransFusion:基于改进Swin Transformer的视网膜血管自动分割 被引量:3
15
作者 杨本臣 王建宇 金海波 《工程科学学报》 EI CSCD 北大核心 2024年第10期1889-1898,共10页
视网膜血管的准确分割在辅助筛查各种疾病方面具有重大意义.然而,当前流行的模型仍存在细小血管的分割不清晰,以及眼底血管分支末端与背景的对比度较低等问题.针对这些问题,本文提出了一种全新的视网膜血管分割模型,命名为Dual Swin Tra... 视网膜血管的准确分割在辅助筛查各种疾病方面具有重大意义.然而,当前流行的模型仍存在细小血管的分割不清晰,以及眼底血管分支末端与背景的对比度较低等问题.针对这些问题,本文提出了一种全新的视网膜血管分割模型,命名为Dual Swin Transformer Fusion(DS-TransFusion).首先,DS-TransFusion采用基于Swin Transformer的双尺度编码器子网络,以提取视网膜血管的粗粒度和细粒度特征.其次,在跳跃连接处引入了Transformer交互融合注意力(TIFA)模块,用于丰富跨视图上下文建模和语义依赖,同时捕获来自不同图像视图的数据之间的长期相关性.最后,在编码器和解码器之间,DS-TransFusion采用了多尺度注意力(MA),用于收集多尺度特征表示的全局对应关系,进一步优化模型的分割效果.实验结果表明,DS-TransFusion在公共数据集STARE、CHASEDB1和DRIVE上表现出色,准确率分别达到了96.50%、97.22%和97.80%,灵敏度达到84.10%、84.55%和83.17%.实验表明DS-TransFusion能有效提高视网膜血管分割的精度,准确分割出细小血管.对视网膜血管分割的准确度、灵敏度和特异性都有大幅提高,与现有的SOTA方法相比具有更好的分割性能. 展开更多
关键词 视网膜血管分割 眼底图像 多尺度注意力 特征融合 Swin TRANSFORMER
在线阅读 下载PDF
An intelligent target-segmentation algorithm for aerial images
16
作者 陈东 王炎 崔有志 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 1999年第3期16-17,共2页
Knowledge-based multi-feaure-fusion and multi-resolution analysis is for adapive image segment -ation and experimental results show it can be used to extraot targets from complicated backgcround with the help of Prior... Knowledge-based multi-feaure-fusion and multi-resolution analysis is for adapive image segment -ation and experimental results show it can be used to extraot targets from complicated backgcround with the help of Priorknowledge and artificial intelligence. 展开更多
关键词 TARGET segmentATION prior KNOWLEDGE multi-feature-fusion and multi-resolution-analysis
在线阅读 下载PDF
跨模态多层特征融合的遥感影像语义分割 被引量:2
17
作者 李智杰 程鑫 +3 位作者 李昌华 高元 薛靖裕 介军 《计算机科学与探索》 北大核心 2025年第4期989-1000,共12页
多模态语义分割网络能够利用不同模态中的互补信息来提高分割精度,在地物分类领域具有广泛的应用潜力。然而,现有的多模态遥感影像语义分割模型大多忽略了深度特征的几何形状信息,未将多层特征充分利用就进行融合,导致跨模态特征提取不... 多模态语义分割网络能够利用不同模态中的互补信息来提高分割精度,在地物分类领域具有广泛的应用潜力。然而,现有的多模态遥感影像语义分割模型大多忽略了深度特征的几何形状信息,未将多层特征充分利用就进行融合,导致跨模态特征提取不充分,融合效果不理想。针对这些问题,提出了一种基于多模态特征提取和多层特征融合的遥感影像语义分割模型。通过构建双分支编码器,模型能够分别提取遥感影像的光谱信息和归一化数字表面模型(nDSM)的高程信息,并深入挖掘nDSM的几何形状信息。引入跨层丰富模块细化完善每层特征,从深层到浅层充分利用多层的特征信息。完善后的特征通过注意力特征融合模块,对特征进行差异性互补和交叉融合,以减轻分支结构之间的差异,充分发挥多模态特征的优势,从而提高遥感影像分割精度。在ISPRS Vaihingen和Potsdam数据集上进行实验,mF1分数分别达到了90.88%和93.41%,平均交互比(mIoU)分别达到了83.49%和87.85%,相较于当前主流算法,该算法实现了更准确的遥感影像语义分割。 展开更多
关键词 遥感影像 归一化数字表面模型(nDSM) 语义分割 特征提取 特征融合
在线阅读 下载PDF
AUTOMATIC SEGMENTATION OF HIPPOCAMPAL SUBFIELDS BASED ON MULTI-ATLAS IMAGE SEGMENTATION TECHNIQUES 被引量:2
18
作者 Shi Yonggang Zhang Xueping Liu Zhiwen 《Journal of Electronics(China)》 2014年第2期121-128,共8页
The volume of hippocampal subfields is closely related with early diagnosis of Alzheimer's disease.Due to the anatomical complexity of hippocampal subfields,automatic segmentation merely on the content of MR image... The volume of hippocampal subfields is closely related with early diagnosis of Alzheimer's disease.Due to the anatomical complexity of hippocampal subfields,automatic segmentation merely on the content of MR images is extremely difficult.We presented a method which combines multi-atlas image segmentation with extreme learning machine based bias detection and correction technique to achieve a fully automatic segmentation of hippocampal subfields.Symmetric diffeomorphic registration driven by symmetric mutual information energy was implemented in atlas registration,which allows multi-modal image registration and accelerates execution time.An exponential function based label fusion strategy was proposed for the normalized similarity measure case in segmentation combination,which yields better combination accuracy.The test results show that this method is effective,especially for the larger subfields with an overlap of more than 80%,which is competitive with the current methods and is of potential clinical significance. 展开更多
关键词 Hippocampal subfields Image segmentation Symmetric diffeomorphism Mutual information Label fusion Extreme Learning Machine(ELM)
暂未订购
基于多尺度特征融合的马铃薯疮痂病图像语义分割方法
19
作者 吴秋兰 尚素雅 +5 位作者 张家辉 孙守鑫 张峰 周波 高峥 史文宠 《山东大学学报(工学版)》 北大核心 2025年第4期1-8,17,共9页
为了精确分割马铃薯疮痂病斑,提出一种名为MSFF-UNet的语义分割模型。在模型解码器向上融合的同时进行特征增强,通过进行卷积和归一化操作,增强区分不同尺寸病斑的生长状况,也可增加多维度的特征融合功能,对解码器的高层次数据强化特征... 为了精确分割马铃薯疮痂病斑,提出一种名为MSFF-UNet的语义分割模型。在模型解码器向上融合的同时进行特征增强,通过进行卷积和归一化操作,增强区分不同尺寸病斑的生长状况,也可增加多维度的特征融合功能,对解码器的高层次数据强化特征提取后与低层次数据进行特征融合,以捕获不同尺度下的马铃薯或疮痂病斑的语义数据。结果表明,改进后的马铃薯疮痂病图像语义分割模型精确率、类别平均像素准确率、平均交并比分别为93.90%、93.51%、87.72%,能够较准确地分割马铃薯与疮痂病斑。 展开更多
关键词 语义分割 特征融合 UNet 马铃薯 疮痂病
原文传递
煤矿井下采掘工作场景非均质图像去雾与增强技术 被引量:1
20
作者 张旭辉 解彦彬 +6 位作者 杨文娟 张超 万继成 董征 王彦群 蒋杰 李龙 《煤田地质与勘探》 北大核心 2025年第1期245-256,共12页
【目的】针对煤矿井下采掘作业中采煤和除尘活动引发尘雾分布不均及复杂光照条件,导致视频图像模糊不清、信息量和细节丢失等问题,提出了一种井下采掘工作场景非均质图像去雾与增强技术。【方法】首先对雾图进行区域分割,计算不同亮度... 【目的】针对煤矿井下采掘作业中采煤和除尘活动引发尘雾分布不均及复杂光照条件,导致视频图像模糊不清、信息量和细节丢失等问题,提出了一种井下采掘工作场景非均质图像去雾与增强技术。【方法】首先对雾图进行区域分割,计算不同亮度区域的全局暗通道环境光均值,并与通过自适应伽马矫正和多尺度高斯滤波得到的局部亮通道环境光进行加权融合,以获得精确的环境光估计。为了保证图像细节的同时实现自然去雾效果,采用多尺度融合矫正技术处理透射图,并利用联合双边滤波得到精细化的透射图,结合大气散射模型,实现尘雾图像的清晰化。针对去雾后的图像整体较暗且对比度不足,进一步采用修正白平衡处理,将图像转换到HSV空间,提出自适应饱和度矫正和改进对比度增强算法,并结合拉普拉斯锐化提升图像的细节和对比度。【结果和结论】通过选取DCP、MRP、OSFD、MF-LIME、CEEF 5种算法处理真实典型的场景图像,并采用多项指标与本研究算法处理结果进行对比实验,结果表明:与新颖优秀算法的最优指标对比,提出算法相比CEEF在平均梯度的平均提升约为两倍,提升了图像的清晰度;相比MRP的信息熵平均降低约为1%,保留了更多图像信息;相比OSFD的标准差平均提升约为6%,改善了图像对比度;相比CEEF的FADE平均降低约为23%,能更有效地降低尘雾密度且运行速度较快,表现出更优越的性能。提出的算法能够有效提高煤矿井下采掘工作场景中模糊图像的视觉效果和图像质量,增强了其在工程应用中的实用性。 展开更多
关键词 区域分割 暗亮通道融合 对比度增强 修正白平衡 自适应饱和度矫正 采掘作业
在线阅读 下载PDF
上一页 1 2 98 下一页 到第
使用帮助 返回顶部