针对无人机视角下的目标存在多尺度、目标小、被遮挡与背景复杂等问题,提出了一种基于动态样本注意力尺度序列的YOLOv8改进算法BDAD-YOLO。通过引入BiFormer的思想来改造原模型骨干结构,提高模型对关键信息的关注度,更好地保留目标细粒...针对无人机视角下的目标存在多尺度、目标小、被遮挡与背景复杂等问题,提出了一种基于动态样本注意力尺度序列的YOLOv8改进算法BDAD-YOLO。通过引入BiFormer的思想来改造原模型骨干结构,提高模型对关键信息的关注度,更好地保留目标细粒度细节信息。由于目标存在大小、位置等多变性,传统卷积并不能很好地处理这一情况,因此基于DCN(deformable convolutional network)的思想,设计了一种可以增强对小目标特征提取的C2_DCf模块,从而进一步提高颈部网络中小目标层对特征信息的融合。提出一种基于动态样本的注意力尺度序列融合框架AFD(attention-scale sequence fusion framework based on dynamic samples),使用轻量化动态点采样并通过融合不同尺度的特征图来增强网络提取多尺度信息的能力。使用WIoU损失函数,改善小目标低质量数据对梯度的不利影响,以加快网络收敛速度。实验结果表明,在VisDrone数据集中的val集与test集上平均精度(mAP@0.5)分别提升了4.6个百分点、3.7个百分点,在DOTA数据集上平均精度(mAP@0.5)提升了2.4个百分点,证明了改进算法的有效性和普适性。展开更多
交通标志在检测过程中,因受天气和光照强度的影响,导致检测时出现错检、漏检等问题,针对此问题提出一种融合空间信息的交通标志检测算法。首先,在网络中使用坐标卷积,增强网络对坐标位置信息的敏锐性。其次,在主干特征提取中加入坐标注...交通标志在检测过程中,因受天气和光照强度的影响,导致检测时出现错检、漏检等问题,针对此问题提出一种融合空间信息的交通标志检测算法。首先,在网络中使用坐标卷积,增强网络对坐标位置信息的敏锐性。其次,在主干特征提取中加入坐标注意力机制,可以更好地关注融合处的空间位置信息。在特征融合部分使用多尺度加权融合网络和金字塔池化,利用加权计算和跳跃连接的方式,增强低层与高层之间的语义信息融合效果。最后,使用边框回归损失函数(Scalable Intersection over Union Loss,SIoU)提高目标定位的准确性。在CCTSDB2021和GTSDB数据集上的实验结果显示,该方法在2种数据集上的平均精度(mean Average Precision,mAP)分别达到84.9%和98.5%,与主流检测模型对比有显著提升,较原模型分别提升了5.39个百分点和1.67个百分点,提高了交通标志的检测精度。展开更多
针对输电线路巡检中无人机拍摄角度下器械易形变及带臂机械不同工作状态下特征复杂难以捕获的问题,提出一种基于阶梯式特征融合的外力破坏检测方法。该方法首先通过融合可变形大卷积核注意力网络提取无人机拍摄图像的特征信息;其次,利...针对输电线路巡检中无人机拍摄角度下器械易形变及带臂机械不同工作状态下特征复杂难以捕获的问题,提出一种基于阶梯式特征融合的外力破坏检测方法。该方法首先通过融合可变形大卷积核注意力网络提取无人机拍摄图像的特征信息;其次,利用多尺度序列特征融合模块进行阶梯式特征融合;然后,对检测头进行轻量化操作以减少参数量;最后,提出渐变完全交并比抑制(gradual complete intersection over union non-maximum suppression,GCIoU NMS)损失函数优化模型。在自建数据集上的实验表明,该方法的mAP50%和mAP50%-95%分别提高10.5和10.2百分点,达到86.8%和58.4%;在VOC数据集上,mAP50%和mAP50%-95%分别提高7.3和8.1百分点,达到79.5%和58.8%。实验结果表明,该方法有效提升了目标检测性能,对复杂环境下输电线路外部破坏检测具有重要参考价值。展开更多
文摘针对无人机视角下的目标存在多尺度、目标小、被遮挡与背景复杂等问题,提出了一种基于动态样本注意力尺度序列的YOLOv8改进算法BDAD-YOLO。通过引入BiFormer的思想来改造原模型骨干结构,提高模型对关键信息的关注度,更好地保留目标细粒度细节信息。由于目标存在大小、位置等多变性,传统卷积并不能很好地处理这一情况,因此基于DCN(deformable convolutional network)的思想,设计了一种可以增强对小目标特征提取的C2_DCf模块,从而进一步提高颈部网络中小目标层对特征信息的融合。提出一种基于动态样本的注意力尺度序列融合框架AFD(attention-scale sequence fusion framework based on dynamic samples),使用轻量化动态点采样并通过融合不同尺度的特征图来增强网络提取多尺度信息的能力。使用WIoU损失函数,改善小目标低质量数据对梯度的不利影响,以加快网络收敛速度。实验结果表明,在VisDrone数据集中的val集与test集上平均精度(mAP@0.5)分别提升了4.6个百分点、3.7个百分点,在DOTA数据集上平均精度(mAP@0.5)提升了2.4个百分点,证明了改进算法的有效性和普适性。
文摘交通标志在检测过程中,因受天气和光照强度的影响,导致检测时出现错检、漏检等问题,针对此问题提出一种融合空间信息的交通标志检测算法。首先,在网络中使用坐标卷积,增强网络对坐标位置信息的敏锐性。其次,在主干特征提取中加入坐标注意力机制,可以更好地关注融合处的空间位置信息。在特征融合部分使用多尺度加权融合网络和金字塔池化,利用加权计算和跳跃连接的方式,增强低层与高层之间的语义信息融合效果。最后,使用边框回归损失函数(Scalable Intersection over Union Loss,SIoU)提高目标定位的准确性。在CCTSDB2021和GTSDB数据集上的实验结果显示,该方法在2种数据集上的平均精度(mean Average Precision,mAP)分别达到84.9%和98.5%,与主流检测模型对比有显著提升,较原模型分别提升了5.39个百分点和1.67个百分点,提高了交通标志的检测精度。
文摘针对输电线路巡检中无人机拍摄角度下器械易形变及带臂机械不同工作状态下特征复杂难以捕获的问题,提出一种基于阶梯式特征融合的外力破坏检测方法。该方法首先通过融合可变形大卷积核注意力网络提取无人机拍摄图像的特征信息;其次,利用多尺度序列特征融合模块进行阶梯式特征融合;然后,对检测头进行轻量化操作以减少参数量;最后,提出渐变完全交并比抑制(gradual complete intersection over union non-maximum suppression,GCIoU NMS)损失函数优化模型。在自建数据集上的实验表明,该方法的mAP50%和mAP50%-95%分别提高10.5和10.2百分点,达到86.8%和58.4%;在VOC数据集上,mAP50%和mAP50%-95%分别提高7.3和8.1百分点,达到79.5%和58.8%。实验结果表明,该方法有效提升了目标检测性能,对复杂环境下输电线路外部破坏检测具有重要参考价值。