Recently, high-precision trajectory prediction of ballistic missiles in the boost phase has become a research hotspot. This paper proposes a trajectory prediction algorithm driven by data and knowledge(DKTP) to solve ...Recently, high-precision trajectory prediction of ballistic missiles in the boost phase has become a research hotspot. This paper proposes a trajectory prediction algorithm driven by data and knowledge(DKTP) to solve this problem. Firstly, the complex dynamics characteristics of ballistic missile in the boost phase are analyzed in detail. Secondly, combining the missile dynamics model with the target gravity turning model, a knowledge-driven target three-dimensional turning(T3) model is derived. Then, the BP neural network is used to train the boost phase trajectory database in typical scenarios to obtain a datadriven state parameter mapping(SPM) model. On this basis, an online trajectory prediction framework driven by data and knowledge is established. Based on the SPM model, the three-dimensional turning coefficients of the target are predicted by using the current state of the target, and the state of the target at the next moment is obtained by combining the T3 model. Finally, simulation verification is carried out under various conditions. The simulation results show that the DKTP algorithm combines the advantages of data-driven and knowledge-driven, improves the interpretability of the algorithm, reduces the uncertainty, which can achieve high-precision trajectory prediction of ballistic missile in the boost phase.展开更多
Data mining (also known as Knowledge Discovery in Databases - KDD) is defined as the nontrivial extraction of implicit, previously unknown, and potentially useful information from data. The aims and objectives of data...Data mining (also known as Knowledge Discovery in Databases - KDD) is defined as the nontrivial extraction of implicit, previously unknown, and potentially useful information from data. The aims and objectives of data mining are to discover knowledge of interest to user needs.Data mining is really a useful tool in many domains such as marketing, decision making, etc. However, some basic issues of data mining are ignored. What is data mining? What is the product of a data mining process? What are we doing in a data mining process? Is there any rule we should obey in a data mining process? In order to discover patterns and knowledge really interesting and actionable to the real world Zhang et al proposed a domain-driven human-machine-cooperated data mining process.Zhao and Yao proposed an interactive user-driven classification method using the granule network. In our work, we find that data mining is a kind of knowledge transforming process to transform knowledge from data format into symbol format. Thus, no new knowledge could be generated (born) in a data mining process. In a data mining process, knowledge is just transformed from data format, which is not understandable for human, into symbol format,which is understandable for human and easy to be used.It is similar to the process of translating a book from Chinese into English.In this translating process,the knowledge itself in the book should remain unchanged. What will be changed is the format of the knowledge only. That is, the knowledge in the English book should be kept the same as the knowledge in the Chinese one.Otherwise, there must be some mistakes in the translating proces, that is, we are transforming knowledge from one format into another format while not producing new knowledge in a data mining process. The knowledge is originally stored in data (data is a representation format of knowledge). Unfortunately, we can not read, understand, or use it, since we can not understand data. With this understanding of data mining, we proposed a data-driven knowledge acquisition method based on rough sets. It also improved the performance of classical knowledge acquisition methods. In fact, we also find that the domain-driven data mining and user-driven data mining do not conflict with our data-driven data mining. They could be integrated into domain-oriented data-driven data mining. It is just like the views of data base. Users with different views could look at different partial data of a data base. Thus, users with different tasks or objectives wish, or could discover different knowledge (partial knowledge) from the same data base. However, all these partial knowledge should be originally existed in the data base. So, a domain-oriented data-driven data mining method would help us to extract the knowledge which is really existed in a data base, and really interesting and actionable to the real world.展开更多
Cyber Threat Intelligence(CTI)is a valuable resource for cybersecurity defense,but it also poses challenges due to its multi-source and heterogeneous nature.Security personnel may be unable to use CTI effectively to u...Cyber Threat Intelligence(CTI)is a valuable resource for cybersecurity defense,but it also poses challenges due to its multi-source and heterogeneous nature.Security personnel may be unable to use CTI effectively to understand the condition and trend of a cyberattack and respond promptly.To address these challenges,we propose a novel approach that consists of three steps.First,we construct the attack and defense analysis of the cybersecurity ontology(ADACO)model by integrating multiple cybersecurity databases.Second,we develop the threat evolution prediction algorithm(TEPA),which can automatically detect threats at device nodes,correlate and map multisource threat information,and dynamically infer the threat evolution process.TEPA leverages knowledge graphs to represent comprehensive threat scenarios and achieves better performance in simulated experiments by combining structural and textual features of entities.Third,we design the intelligent defense decision algorithm(IDDA),which can provide intelligent recommendations for security personnel regarding the most suitable defense techniques.IDDA outperforms the baseline methods in the comparative experiment.展开更多
In the era of big data,where vast amounts of information are being generated and collected at an unprecedented rate,there is a pressing demand for innovative data-driven multi-modal fusion methods.These methods aim to...In the era of big data,where vast amounts of information are being generated and collected at an unprecedented rate,there is a pressing demand for innovative data-driven multi-modal fusion methods.These methods aim to integrate diverse neuroimaging per-spectives to extract meaningful insights and attain a more comprehensive understanding of complex psychiatric disorders.However,analyzing each modality separately may only reveal partial insights or miss out on important correlations between different types of data.This is where data-driven multi-modal fusion techniques come into play.By combining information from multiple modalities in a synergistic manner,these methods enable us to uncover hidden patterns and relationships that would otherwise remain unnoticed.In this paper,we present an extensive overview of data-driven multimodal fusion approaches with or without prior information,with specific emphasis on canonical correlation analysis and independent component analysis.The applications of such fusion methods are wide-ranging and allow us to incorporate multiple factors such as genetics,environment,cognition,and treatment outcomes across various brain disorders.After summarizing the diverse neuropsychiatric magnetic resonance imaging fusion applications,we further discuss the emerging neuroimaging analyzing trends in big data,such as N-way multimodal fusion,deep learning approaches,and clinical translation.Overall,multimodal fusion emerges as an imperative approach providing valuable insights into the under-lying neural basis of mental disorders,which can uncover subtle abnormalities or potential biomarkers that may benefit targeted treatments and personalized medical interventions.展开更多
设备运维是保障生产正常进行的重要基础,现有的智能运维技术主要依赖信号分析、数据挖掘或专家知识重用。然而,随着设备自动化和集成化程度的提高,其各类运行异常的表征信号、多源致因和维护方案之间的关系呈现出更高的模糊性和复杂性,...设备运维是保障生产正常进行的重要基础,现有的智能运维技术主要依赖信号分析、数据挖掘或专家知识重用。然而,随着设备自动化和集成化程度的提高,其各类运行异常的表征信号、多源致因和维护方案之间的关系呈现出更高的模糊性和复杂性,将信号、数据和知识进行融合分析是提高设备运维精度和效率的关键。为此,采用知识图谱技术将“人”、“机”、“物”三元数据融合来支撑复杂设备的异常诊断和维护方案决策,提高运维智能化程度、避免决策片面性。首先,对设备运维领域人机物三元数据进行定义并完成三元本体设计,指导知识图数据层的构建。其次,对人机物三元数据进行预处理并搭建了统一混合注意力机制联合抽取模型(Joint entity and relation extraction model with mixed attention,MAREL)从三元数据中自动抽取知识,并建立三元知识之间的关联关系,以此实现人机物三元数据的融合;MAREL模型将任务拆解为两个关联的解码模块来解决实体重叠问题,利用混合注意力机制增强模型的长文本处理能力,在中文数据集SKE上的测试证明MAREL具有优异的性能。最后,以某汽车生产机器人设备运维人机物知识图谱的构建为例,验证了所提方法的有效性,结果表明知识图谱能够将人机物三元数据有效融合,为工业设备的智能运维提供支持。展开更多
基金the National Natural Science Foundation of China (Grants No. 12072090 and No.12302056) to provide fund for conducting experiments。
文摘Recently, high-precision trajectory prediction of ballistic missiles in the boost phase has become a research hotspot. This paper proposes a trajectory prediction algorithm driven by data and knowledge(DKTP) to solve this problem. Firstly, the complex dynamics characteristics of ballistic missile in the boost phase are analyzed in detail. Secondly, combining the missile dynamics model with the target gravity turning model, a knowledge-driven target three-dimensional turning(T3) model is derived. Then, the BP neural network is used to train the boost phase trajectory database in typical scenarios to obtain a datadriven state parameter mapping(SPM) model. On this basis, an online trajectory prediction framework driven by data and knowledge is established. Based on the SPM model, the three-dimensional turning coefficients of the target are predicted by using the current state of the target, and the state of the target at the next moment is obtained by combining the T3 model. Finally, simulation verification is carried out under various conditions. The simulation results show that the DKTP algorithm combines the advantages of data-driven and knowledge-driven, improves the interpretability of the algorithm, reduces the uncertainty, which can achieve high-precision trajectory prediction of ballistic missile in the boost phase.
文摘Data mining (also known as Knowledge Discovery in Databases - KDD) is defined as the nontrivial extraction of implicit, previously unknown, and potentially useful information from data. The aims and objectives of data mining are to discover knowledge of interest to user needs.Data mining is really a useful tool in many domains such as marketing, decision making, etc. However, some basic issues of data mining are ignored. What is data mining? What is the product of a data mining process? What are we doing in a data mining process? Is there any rule we should obey in a data mining process? In order to discover patterns and knowledge really interesting and actionable to the real world Zhang et al proposed a domain-driven human-machine-cooperated data mining process.Zhao and Yao proposed an interactive user-driven classification method using the granule network. In our work, we find that data mining is a kind of knowledge transforming process to transform knowledge from data format into symbol format. Thus, no new knowledge could be generated (born) in a data mining process. In a data mining process, knowledge is just transformed from data format, which is not understandable for human, into symbol format,which is understandable for human and easy to be used.It is similar to the process of translating a book from Chinese into English.In this translating process,the knowledge itself in the book should remain unchanged. What will be changed is the format of the knowledge only. That is, the knowledge in the English book should be kept the same as the knowledge in the Chinese one.Otherwise, there must be some mistakes in the translating proces, that is, we are transforming knowledge from one format into another format while not producing new knowledge in a data mining process. The knowledge is originally stored in data (data is a representation format of knowledge). Unfortunately, we can not read, understand, or use it, since we can not understand data. With this understanding of data mining, we proposed a data-driven knowledge acquisition method based on rough sets. It also improved the performance of classical knowledge acquisition methods. In fact, we also find that the domain-driven data mining and user-driven data mining do not conflict with our data-driven data mining. They could be integrated into domain-oriented data-driven data mining. It is just like the views of data base. Users with different views could look at different partial data of a data base. Thus, users with different tasks or objectives wish, or could discover different knowledge (partial knowledge) from the same data base. However, all these partial knowledge should be originally existed in the data base. So, a domain-oriented data-driven data mining method would help us to extract the knowledge which is really existed in a data base, and really interesting and actionable to the real world.
文摘Cyber Threat Intelligence(CTI)is a valuable resource for cybersecurity defense,but it also poses challenges due to its multi-source and heterogeneous nature.Security personnel may be unable to use CTI effectively to understand the condition and trend of a cyberattack and respond promptly.To address these challenges,we propose a novel approach that consists of three steps.First,we construct the attack and defense analysis of the cybersecurity ontology(ADACO)model by integrating multiple cybersecurity databases.Second,we develop the threat evolution prediction algorithm(TEPA),which can automatically detect threats at device nodes,correlate and map multisource threat information,and dynamically infer the threat evolution process.TEPA leverages knowledge graphs to represent comprehensive threat scenarios and achieves better performance in simulated experiments by combining structural and textual features of entities.Third,we design the intelligent defense decision algorithm(IDDA),which can provide intelligent recommendations for security personnel regarding the most suitable defense techniques.IDDA outperforms the baseline methods in the comparative experiment.
基金supported by the Natural Science Foundation of China (62373062,82022035)the China Postdoctoral Science Foundation (2022M710434)+1 种基金the National Institute of Health grants (R01EB005846,R01MH117107,and R01MH118695)the National Science Foundation (2112455).
文摘In the era of big data,where vast amounts of information are being generated and collected at an unprecedented rate,there is a pressing demand for innovative data-driven multi-modal fusion methods.These methods aim to integrate diverse neuroimaging per-spectives to extract meaningful insights and attain a more comprehensive understanding of complex psychiatric disorders.However,analyzing each modality separately may only reveal partial insights or miss out on important correlations between different types of data.This is where data-driven multi-modal fusion techniques come into play.By combining information from multiple modalities in a synergistic manner,these methods enable us to uncover hidden patterns and relationships that would otherwise remain unnoticed.In this paper,we present an extensive overview of data-driven multimodal fusion approaches with or without prior information,with specific emphasis on canonical correlation analysis and independent component analysis.The applications of such fusion methods are wide-ranging and allow us to incorporate multiple factors such as genetics,environment,cognition,and treatment outcomes across various brain disorders.After summarizing the diverse neuropsychiatric magnetic resonance imaging fusion applications,we further discuss the emerging neuroimaging analyzing trends in big data,such as N-way multimodal fusion,deep learning approaches,and clinical translation.Overall,multimodal fusion emerges as an imperative approach providing valuable insights into the under-lying neural basis of mental disorders,which can uncover subtle abnormalities or potential biomarkers that may benefit targeted treatments and personalized medical interventions.
文摘设备运维是保障生产正常进行的重要基础,现有的智能运维技术主要依赖信号分析、数据挖掘或专家知识重用。然而,随着设备自动化和集成化程度的提高,其各类运行异常的表征信号、多源致因和维护方案之间的关系呈现出更高的模糊性和复杂性,将信号、数据和知识进行融合分析是提高设备运维精度和效率的关键。为此,采用知识图谱技术将“人”、“机”、“物”三元数据融合来支撑复杂设备的异常诊断和维护方案决策,提高运维智能化程度、避免决策片面性。首先,对设备运维领域人机物三元数据进行定义并完成三元本体设计,指导知识图数据层的构建。其次,对人机物三元数据进行预处理并搭建了统一混合注意力机制联合抽取模型(Joint entity and relation extraction model with mixed attention,MAREL)从三元数据中自动抽取知识,并建立三元知识之间的关联关系,以此实现人机物三元数据的融合;MAREL模型将任务拆解为两个关联的解码模块来解决实体重叠问题,利用混合注意力机制增强模型的长文本处理能力,在中文数据集SKE上的测试证明MAREL具有优异的性能。最后,以某汽车生产机器人设备运维人机物知识图谱的构建为例,验证了所提方法的有效性,结果表明知识图谱能够将人机物三元数据有效融合,为工业设备的智能运维提供支持。