Copper manufactured by laser powder bed fusion(LPBF)process typically exhibits poor strength-ductility coordination,and the addition of strengthening phases is an effective way to address this issue.To explore the eff...Copper manufactured by laser powder bed fusion(LPBF)process typically exhibits poor strength-ductility coordination,and the addition of strengthening phases is an effective way to address this issue.To explore the effects of strengthening phases on Cu,Cu-carbon nanotubes(CNTs)composites were prepared using LPBF technique with Cu-CNTs mixed powder as the matrix.The formability,microstructure,mechanical properties,electrical conductivity,and thermal properties were studied.The result shows that the prepared composites have high relative density.The addition of CNTs results in inhomogeneous equiaxed grains at the edges of the molten pool and columnar grains at the center.Compared with pure copper,the overall mechanical properties of the composite are improved:tensile strength increases by 52.8%and elongation increases by 146.4%;the electrical and thermal properties are also enhanced:thermal conductivity increases by 10.8%and electrical conductivity increases by 12.7%.展开更多
A dual-phase synergistic enhancement method was adopted to strengthen the Al-Mn-Mg-Sc-Zr alloy fabricated by laser powder bed fusion(LPBF)by leveraging the unique advantages of Er and TiB_(2).Spherical powders of 0.5w...A dual-phase synergistic enhancement method was adopted to strengthen the Al-Mn-Mg-Sc-Zr alloy fabricated by laser powder bed fusion(LPBF)by leveraging the unique advantages of Er and TiB_(2).Spherical powders of 0.5wt%Er-1wt%TiB_(2)/Al-Mn-Mg-Sc-Zr nanocomposite were prepared using vacuum homogenization technique,and the density of samples prepared through the LPBF process reached 99.8%.The strengthening and toughening mechanisms of Er-TiB_(2)were investigated.The results show that Al_(3)Er diffraction peaks are detected by X-ray diffraction analysis,and texture strength decreases according to electron backscatter diffraction results.The added Er and TiB_(2)nano-reinforcing phases act as heterogeneous nucleation sites during the LPBF forming process,hindering grain growth and effectively refining the grains.After incorporating the Er-TiB_(2)dual-phase nano-reinforcing phases,the tensile strength and elongation at break of the LPBF-deposited samples reach 550 MPa and 18.7%,which are 13.4%and 26.4%higher than those of the matrix material,respectively.展开更多
Laser powder bed fusion(LPBF)is highly suitable for forming 18Ni300 mold steel,thanks to its excellent capability in manufacturing complex shapes and outstanding capacity for regulating microstructures.It is widely us...Laser powder bed fusion(LPBF)is highly suitable for forming 18Ni300 mold steel,thanks to its excellent capability in manufacturing complex shapes and outstanding capacity for regulating microstructures.It is widely used in fields such as injection molding,die casting,and stamping dies.Adding reinforcing particles into steel is an effective means to improve its performance.Nb/18Ni300 composites were fabricated by LPBF using two kinds of Nb powders with different particle sizes,and their microstructures and properties were studied.The results show that the unmelted Nb particles are uniformly distributed in the 18Ni300 matrix and the grains are refined,which is particularly pronounced with fine Nb particles.In addition,element diffusion occurs between the particles and the matrix.The main phases of the base alloy are α-Fe and a small amount of γ-Fe.With the addition of Nb,part of the α-Fe is transformed into γ-Fe,and unmelted Nb phases appear.The addition of Nb also enhances the hardness and wear resistance of the composites but slightly reduces their tensile properties.After aging treatment,the molten pools and grain boundaries become blurred,grains are further refined,and the interfaces around the particles are thinned.The aging treatment also promotes the formation of reverted austenite.The hardness,ultimate tensile strength,and volumetric wear rate of the base alloy reach 51.9 HRC,1704 MPa,and 17.8×10^(-6) mm^(3)/(N·m),respectively.In contrast,the sample added with fine Nb particles has the highest hardness(56.1 HRC),ultimate tensile strength(1892 MPa)and yield strength(1842 MPa),and the volume wear rate of the sample added with coarse Nb particles is reduced by 90%to 1.7×10^(-6) mm^(3)/(N·m).展开更多
Fault diagnosis of rolling bearings is crucial for ensuring the stable operation of mechanical equipment and production safety in industrial environments.However,due to the nonlinearity and non-stationarity of collect...Fault diagnosis of rolling bearings is crucial for ensuring the stable operation of mechanical equipment and production safety in industrial environments.However,due to the nonlinearity and non-stationarity of collected vibration signals,single-modal methods struggle to capture fault features fully.This paper proposes a rolling bearing fault diagnosis method based on multi-modal information fusion.The method first employs the Hippopotamus Optimization Algorithm(HO)to optimize the number of modes in Variational Mode Decomposition(VMD)to achieve optimal modal decomposition performance.It combines Convolutional Neural Networks(CNN)and Gated Recurrent Units(GRU)to extract temporal features from one-dimensional time-series signals.Meanwhile,the Markovian Transition Field(MTF)is used to transform one-dimensional signals into two-dimensional images for spatial feature mining.Through visualization techniques,the effectiveness of generated images from different parameter combinations is compared to determine the optimal parameter configuration.A multi-modal network(GSTCN)is constructed by integrating Swin-Transformer and the Convolutional Block Attention Module(CBAM),where the attention module is utilized to enhance fault features.Finally,the fault features extracted from different modalities are deeply fused and fed into a fully connected layer to complete fault classification.Experimental results show that the GSTCN model achieves an average diagnostic accuracy of 99.5%across three datasets,significantly outperforming existing comparison methods.This demonstrates that the proposed model has high diagnostic precision and good generalization ability,providing an efficient and reliable solution for rolling bearing fault diagnosis.展开更多
BACKGROUND Lumbar interbody fusion(LIF)is the primary treatment for lumbar degenerative diseases.Elderly patients are prone to anxiety and depression after undergoing surgery,which affects their postoperative recovery...BACKGROUND Lumbar interbody fusion(LIF)is the primary treatment for lumbar degenerative diseases.Elderly patients are prone to anxiety and depression after undergoing surgery,which affects their postoperative recovery speed and quality of life.Effective prevention of anxiety and depression in elderly patients has become an urgent problem.AIM To investigate the trajectory of anxiety and depression levels in elderly patients after LIF,and the influencing factors.METHODS Random sampling was used to select 239 elderly patients who underwent LIF from January 2020 to December 2024 in Shenzhen Pingle Orthopedic Hospital.General information and surgery-related indices were recorded,and participants completed measures of psychological status,lumbar spine dysfunction,and quality of life.A latent class growth model was used to analyze the post-LIF trajectory of anxiety and depression levels,and unordered multi-categorical logistic regression was used to analyze the influencing factors.RESULTS Three trajectories of change in anxiety level were identified:Increasing anxiety(n=26,10.88%),decreasing anxiety(n=27,11.30%),and stable anxiety(n=186,77.82%).Likewise,three trajectories of change in depression level were identified:Increasing depression(n=30,12.55%),decreasing depression(n=26,10.88%),and stable depression(n=183,76.57%).Regression analysis showed that having no partner,female sex,elevated Oswestry dysfunction index(ODI)scores,and reduced 36-Item Short Form Health Survey scores all contributed to increased anxiety levels,whereas female sex,postoperative opioid use,and elevated ODI scores all contributed to increased depression levels.CONCLUSION During clinical observation,combining factors to predict anxiety and depression in post-LIF elderly patients enables timely intervention,quickens recovery,and enhances quality of life.展开更多
BACKGROUND Salvage of the infected long stem revision total knee arthroplasty is challenging due to the presence of well-fixed ingrown or cemented stems.Reconstructive options are limited.Above knee amputation(AKA)is ...BACKGROUND Salvage of the infected long stem revision total knee arthroplasty is challenging due to the presence of well-fixed ingrown or cemented stems.Reconstructive options are limited.Above knee amputation(AKA)is often recommended.We present a surgical technique that was successfully used on four such patients to convert them to a knee fusion(KF)using a cephalomedullary nail.CASE SUMMARY Four patients with infected long stem revision knee replacements that refused AKA had a single stage removal of their infected revision total knee followed by a KF.They were all treated with a statically locked antegrade cephalomedullary fusion nail,augmented with antibiotic impregnated bone cement.All patients had successful limb salvage and were ambulatory with assistive devices at the time of last follow-up.All were infection free at an average follow-up of 25.5 months(range 16-31).CONCLUSION Single stage cephalomedullary nailing can result in a successful KF in patients with infected long stem revision total knees.展开更多
Impact craters are important for understanding the evolution of lunar geologic and surface erosion rates,among other functions.However,the morphological characteristics of these micro impact craters are not obvious an...Impact craters are important for understanding the evolution of lunar geologic and surface erosion rates,among other functions.However,the morphological characteristics of these micro impact craters are not obvious and they are numerous,resulting in low detection accuracy by deep learning models.Therefore,we proposed a new multi-scale fusion crater detection algorithm(MSF-CDA)based on the YOLO11 to improve the accuracy of lunar impact crater detection,especially for small craters with a diameter of<1 km.Using the images taken by the LROC(Lunar Reconnaissance Orbiter Camera)at the Chang’e-4(CE-4)landing area,we constructed three separate datasets for craters with diameters of 0-70 m,70-140 m,and>140 m.We then trained three submodels separately with these three datasets.Additionally,we designed a slicing-amplifying-slicing strategy to enhance the ability to extract features from small craters.To handle redundant predictions,we proposed a new Non-Maximum Suppression with Area Filtering method to fuse the results in overlapping targets within the multi-scale submodels.Finally,our new MSF-CDA method achieved high detection performance,with the Precision,Recall,and F1 score having values of 0.991,0.987,and 0.989,respectively,perfectly addressing the problems induced by the lesser features and sample imbalance of small craters.Our MSF-CDA can provide strong data support for more in-depth study of the geological evolution of the lunar surface and finer geological age estimations.This strategy can also be used to detect other small objects with lesser features and sample imbalance problems.We detected approximately 500,000 impact craters in an area of approximately 214 km2 around the CE-4 landing area.By statistically analyzing the new data,we updated the distribution function of the number and diameter of impact craters.Finally,we identified the most suitable lighting conditions for detecting impact crater targets by analyzing the effect of different lighting conditions on the detection accuracy.展开更多
Silicon-based anodes,utilizing nanosized silicon materials,hold great promise for the next-generation of lithium-ion batteries due to their high capacity and stable expansion.This study aims to address challenges in t...Silicon-based anodes,utilizing nanosized silicon materials,hold great promise for the next-generation of lithium-ion batteries due to their high capacity and stable expansion.This study aims to address challenges in traditional slurry-coated anodes,such as agglomeration and low adhesive strength,through the application of laser powder bed fusion(LPBF).The process involves fabricating an Al-Si-Cu alloy layer on a Cu foil current collector,followed by dealloying to create a porous Si-Cu anode.Simulated and experimental results demonstrate successful alloy layer formation through optimized laser spot(55μm)and powder sizes(1-5μm).Controlled cooling produces primary Si particles ranging from 150 nm to 1μm.The resulting microstructure enhances electrochemical performance,particularly by tailoring the size of primary Si.The resultant porous Si-Cu anode,featuring uniformly distributed primary Si(200 nm)metallurgically bonded with Cu networks,exhibits an initial coulombic efficiency of 83% and a remarkable capacity retention of 80% after 300 cycles at 2 C.In-situ and ex-situ observations confirm the crucial role of anode architecture in performance enhancement.This study elucidates the influence of the LPBF microstructure on anode performance and broadens the potential application of laser powder bed fusion in battery manufacturing.展开更多
To enhance the mechanical properties of Mo alloys prepared through laser powder bed fusion(LPBF),a hot isostatic pressing(HIP)treatment was used.Results show that following HIP treatment,the porosity decreases from 0....To enhance the mechanical properties of Mo alloys prepared through laser powder bed fusion(LPBF),a hot isostatic pressing(HIP)treatment was used.Results show that following HIP treatment,the porosity decreases from 0.27%to 0.22%,enabling the elements Mo and Ti to diffuse fully and to distribute more uniformly,and to forming a substantial number of low-angle grain boundaries.The tensile strength soars from 286±32 MPa to 598±22 MPa,while the elongation increases from 0.08%±0.02%to 0.18%±0.02%,without notable alterations in grain morphology during the tensile deformation.HIP treatment eliminates the molten pool boundaries,which are the primary source for premature failure in LPBFed Mo alloys.Consequently,HIP treatment emerges as a novel and effective approach for strengthening the mechanical properties of LPBFed Mo alloys,offering a fresh perspective on producing high-performance Mo-based alloys.展开更多
WE43 is a high-strength magnesium alloy containing rare-earth elements such as Y,Gd and Nd.Nevertheless,how to further obtain the balance of strength and ductility,as well as the manufacture of complex structures is s...WE43 is a high-strength magnesium alloy containing rare-earth elements such as Y,Gd and Nd.Nevertheless,how to further obtain the balance of strength and ductility,as well as the manufacture of complex structures is still a dilemma for its engineering application.In this study,WE43 alloy samples withfine microstructures,high densification and excellent mechanical properties were successfully prepared by laser powder bed fusion(LPBF)additive manufacturing.The optimal process window was established,and the formation mechanisms of three types of porosity defects were revealed,namely lack-of-fusion pores,meltfluctuation-induced pores,and keyhole-induced pores.With the combined process of laser power of 200 W and scanning speed of 600 mm/s,samples with a high density of 99.89%were obtained.Furthermore,periodic heterogeneous microstructure was prepared along the build direction,i.e.,fine grains(∼4.1μm)at melt pool boundaries and coarse grain(∼23.6μm)inside melt pool.This was mainly due to the preferential precipitation of Zr and Mg_(3)(Gd,Nd)nano-precipitates at the melt pool boundaries providing nucleation sites for the grains.This special feature could provide an extra hetero-deformation induced(HDI)strengthening and retard fracture.The optimal tensile yield strength,ultimate tensile strength and elongation at break were 276±1 MPa,292±1 MPa and 6.1±0.2%,respectively.The obtained tensile properties were superior to those of other magnesium alloys and those fabricated by other processes.The solid solution strengthening(∼24.5%),grain boundary strengthening(∼14.4%)and HDI strengthening(∼32.2%)were the main sources of high yield strength.This work provides a guidance on studying the pore defect suppression and strengthening mechanisms of WE43 alloy and other magnesium alloys produced by LPBF.展开更多
As a universal casting Mg-RE alloy,Mg-6Gd-3Y-Zr(GW63K,wt.%)alloy exhibits superior strength-ductility synergy and holds significant potential for engineering applications.In this study,the GW63K alloy is produced usin...As a universal casting Mg-RE alloy,Mg-6Gd-3Y-Zr(GW63K,wt.%)alloy exhibits superior strength-ductility synergy and holds significant potential for engineering applications.In this study,the GW63K alloy is produced using the laser powder bed fusion(LPBF)additive manufacturing(AM)process for the first time.The printability,microstructure characteristics,and post-heat treatment conditions of the GW63K alloy are systematically investigated.The as-built GW63K samples demonstrate high relative densities exceeding 99.6%and exhibit no macroscopic and microscopic cracking across a wide range of process parameters,indicating excellent printability.An exceptional heterogeneous microstructure is observed in the as-built GW63K alloy,comprising coarse columnar grains,fine equiaxed grains with an average grain size of 21.72μm,uniformly distributed nano-sized Mg_(24)(Gd,Y)_(5)secondary phase,and numerous dislocations.Consequently,the as-built GW63K alloy displays enhanced tensile strengths and ductility compared to the as-cast alloy,with yield strength(YS),ultimate tensile strength(UTS)and elongation(EL)values of 218±4 MPa,284±5 MPa and 11.9±1.6%respectively.Additionally,due to the absence of coarse micron-sized secondary phase,a specific direct aging(T5)heat treatment regime at 200℃for 128 h is optimized for the as-built GW63K alloy to introduce dense and dispersedβ’aging precipitates.This T5 treatment surpasses the conventional solution plus aging(T6)heat treatment in enhancing mechanical properties.The LPBF-T5 GW63K alloy exhibits YS,UTS and EL values of 293±6 MPa,359±4 MPa and 2.9±0.7%,respectively.Notably,the YS of the LPBF-T5 alloy represents the highest value for the GW63K alloy,even surpassing that of the extrusion-T5 alloy.This study indicates that the GW63K alloy is a highly promising material for manufacturing near-net-shape high-strength Mg alloy components with intricate geometries using LPBF.展开更多
Poly-ether-ether-ketone/nano-silicon nitride(PEEK/nSN)composite scaffolds,fabricated by laser powder bed fusion(LPBF),show great potential for orthopedic applications due to their excellent biological performance and ...Poly-ether-ether-ketone/nano-silicon nitride(PEEK/nSN)composite scaffolds,fabricated by laser powder bed fusion(LPBF),show great potential for orthopedic applications due to their excellent biological performance and mechanical adaptability.However,the effect of nSN on LPBF processability and scaffold properties remains unclear.This study systematically investigates the processability and mechanical per-formance of PEEK/nSN composites to enable reliable clinical fabrication.The results show that adding nSN improves powder flowability and inhibits crystallization,enhancing LPBF processability.The introduction of nSN reduces PEEK’s non-isothermal crystallization Avrami exponent from 3.04 to 2.01,suggesting a transformation from a three-dimensional spherulitic to a two-dimensional lamellar crystal structure.Tensile tests reveal that the presence of nSN alters the optimal process parameters,reducing the optimal laser power from 25 W to 22 W due to increased energy absorption efficiency,as shown by an increase in absorbance at 843 cm^(-1)from 0.27 to 0.35 as the nSN content increases to 2 wt%.Porous diamond-structured scaffolds were fabricated using optimal parameters for pure PEEK,PEEK/1 wt%nSN,and PEEK/2 wt%nSN.Diamond-structured scaffolds fabricated with 1 wt%nSN showed a 12.2%increase in elastic modulus compared to pure PEEK,highlighting the enhanced mechanical performance.Over-all,this study offers key insights into the stable and customizable LPBF fabrication of PEEK/nSN porous scaffolds,providing a foundation for future research on their bioactivity and antibacterial properties for orthopedic applications.展开更多
In this study,carbon nanotubes(CNTs)/AlSi10Mg composite parts with CNTs contents ranging from 0.0 to 2.0wt.%were successfully fabricated via laser powder bed fusion(LPBF)with laser scan speeds ranging from 900 to 1,90...In this study,carbon nanotubes(CNTs)/AlSi10Mg composite parts with CNTs contents ranging from 0.0 to 2.0wt.%were successfully fabricated via laser powder bed fusion(LPBF)with laser scan speeds ranging from 900 to 1,900 mm·s^(-1).Uniform dispersion of CNTs in the powders can be achieved when their content is below 2.0wt.%.In the LPBF samples,the morphology of the CNTs is found to be directly related to their content.Especially,the length of CNTs in samples prepared by LPBF increases as the CNT content increases.The length of CNTs is approximately 200-300 nm in the 1.0wt.%CNTs/AlSi10Mg composites and approximately 500-1,000 nm in the 2.0wt.%CNTs/AlSi10Mg composites.The hardness of the composites reaches its highest value of 143.3 HV when the CNTs content is 1.0wt.%and the laser scan speed is 1,300 mm·s^(-1).It is found that the self-lubricating properties of the CNTs improve the tribological properties of the composites.The coefficient of friction(CoF)and wear rate of the samples decrease with increasing CNT content.At a CNTs content of 2.0wt.%,the CoF and wear rate of the composite decrease by approximately 14%and 30%,respectively,compared to the unreinforced matrix.The presence of CNTs leads to a more complete and refined network microstructure within the samples.Both the CNTs and the aluminum carbide contribute to the Orowan mechanism and the Hall-Petch effect within the matrix.展开更多
基金National Key Research and Development Program of China(2023YFB4606400)Supported by Longmen Laboratory Frontier Exploration Topics(LMQYTSKT003)。
文摘Copper manufactured by laser powder bed fusion(LPBF)process typically exhibits poor strength-ductility coordination,and the addition of strengthening phases is an effective way to address this issue.To explore the effects of strengthening phases on Cu,Cu-carbon nanotubes(CNTs)composites were prepared using LPBF technique with Cu-CNTs mixed powder as the matrix.The formability,microstructure,mechanical properties,electrical conductivity,and thermal properties were studied.The result shows that the prepared composites have high relative density.The addition of CNTs results in inhomogeneous equiaxed grains at the edges of the molten pool and columnar grains at the center.Compared with pure copper,the overall mechanical properties of the composite are improved:tensile strength increases by 52.8%and elongation increases by 146.4%;the electrical and thermal properties are also enhanced:thermal conductivity increases by 10.8%and electrical conductivity increases by 12.7%.
基金Shaanxi Province Qin Chuangyuan“Scientist+Engineer”Team Construction Project(2022KXJ-071)2022 Qin Chuangyuan Achievement Transformation Incubation Capacity Improvement Project(2022JH-ZHFHTS-0012)+8 种基金Shaanxi Province Key Research and Development Plan-“Two Chains”Integration Key Project-Qin Chuangyuan General Window Industrial Cluster Project(2023QCY-LL-02)Xixian New Area Science and Technology Plan(2022-YXYJ-003,2022-XXCY-010)2024 Scientific Research Project of Shaanxi National Defense Industry Vocational and Technical College(Gfy24-07)Shaanxi Vocational and Technical Education Association 2024 Vocational Education Teaching Reform Research Topic(2024SZX354)National Natural Science Foundation of China(U24A20115)2024 Shaanxi Provincial Education Department Service Local Special Scientific Research Program Project-Industrialization Cultivation Project(24JC005,24JC063)Shaanxi Province“14th Five-Year Plan”Education Science Plan,2024 Project(SGH24Y3181)National Key Research and Development Program of China(2023YFB4606400)Longmen Laboratory Frontier Exploration Topics Project(LMQYTSKT003)。
文摘A dual-phase synergistic enhancement method was adopted to strengthen the Al-Mn-Mg-Sc-Zr alloy fabricated by laser powder bed fusion(LPBF)by leveraging the unique advantages of Er and TiB_(2).Spherical powders of 0.5wt%Er-1wt%TiB_(2)/Al-Mn-Mg-Sc-Zr nanocomposite were prepared using vacuum homogenization technique,and the density of samples prepared through the LPBF process reached 99.8%.The strengthening and toughening mechanisms of Er-TiB_(2)were investigated.The results show that Al_(3)Er diffraction peaks are detected by X-ray diffraction analysis,and texture strength decreases according to electron backscatter diffraction results.The added Er and TiB_(2)nano-reinforcing phases act as heterogeneous nucleation sites during the LPBF forming process,hindering grain growth and effectively refining the grains.After incorporating the Er-TiB_(2)dual-phase nano-reinforcing phases,the tensile strength and elongation at break of the LPBF-deposited samples reach 550 MPa and 18.7%,which are 13.4%and 26.4%higher than those of the matrix material,respectively.
基金Key-Area Research and Development Program of Guangdong Province(2023B0909020004)Project of Innovation Research Team in Zhongshan(CXTD2023006)+1 种基金Natural Science Foundation of Guangdong Province(2023A1515011573)Zhongshan Social Welfare Science and Technology Research Project(2024B2022)。
文摘Laser powder bed fusion(LPBF)is highly suitable for forming 18Ni300 mold steel,thanks to its excellent capability in manufacturing complex shapes and outstanding capacity for regulating microstructures.It is widely used in fields such as injection molding,die casting,and stamping dies.Adding reinforcing particles into steel is an effective means to improve its performance.Nb/18Ni300 composites were fabricated by LPBF using two kinds of Nb powders with different particle sizes,and their microstructures and properties were studied.The results show that the unmelted Nb particles are uniformly distributed in the 18Ni300 matrix and the grains are refined,which is particularly pronounced with fine Nb particles.In addition,element diffusion occurs between the particles and the matrix.The main phases of the base alloy are α-Fe and a small amount of γ-Fe.With the addition of Nb,part of the α-Fe is transformed into γ-Fe,and unmelted Nb phases appear.The addition of Nb also enhances the hardness and wear resistance of the composites but slightly reduces their tensile properties.After aging treatment,the molten pools and grain boundaries become blurred,grains are further refined,and the interfaces around the particles are thinned.The aging treatment also promotes the formation of reverted austenite.The hardness,ultimate tensile strength,and volumetric wear rate of the base alloy reach 51.9 HRC,1704 MPa,and 17.8×10^(-6) mm^(3)/(N·m),respectively.In contrast,the sample added with fine Nb particles has the highest hardness(56.1 HRC),ultimate tensile strength(1892 MPa)and yield strength(1842 MPa),and the volume wear rate of the sample added with coarse Nb particles is reduced by 90%to 1.7×10^(-6) mm^(3)/(N·m).
基金funded by the Jilin Provincial Department of Science and Technology,grant number 20230101208JC.
文摘Fault diagnosis of rolling bearings is crucial for ensuring the stable operation of mechanical equipment and production safety in industrial environments.However,due to the nonlinearity and non-stationarity of collected vibration signals,single-modal methods struggle to capture fault features fully.This paper proposes a rolling bearing fault diagnosis method based on multi-modal information fusion.The method first employs the Hippopotamus Optimization Algorithm(HO)to optimize the number of modes in Variational Mode Decomposition(VMD)to achieve optimal modal decomposition performance.It combines Convolutional Neural Networks(CNN)and Gated Recurrent Units(GRU)to extract temporal features from one-dimensional time-series signals.Meanwhile,the Markovian Transition Field(MTF)is used to transform one-dimensional signals into two-dimensional images for spatial feature mining.Through visualization techniques,the effectiveness of generated images from different parameter combinations is compared to determine the optimal parameter configuration.A multi-modal network(GSTCN)is constructed by integrating Swin-Transformer and the Convolutional Block Attention Module(CBAM),where the attention module is utilized to enhance fault features.Finally,the fault features extracted from different modalities are deeply fused and fed into a fully connected layer to complete fault classification.Experimental results show that the GSTCN model achieves an average diagnostic accuracy of 99.5%across three datasets,significantly outperforming existing comparison methods.This demonstrates that the proposed model has high diagnostic precision and good generalization ability,providing an efficient and reliable solution for rolling bearing fault diagnosis.
基金Supported by the Scientific Research Projects of the Health System in Pingshan District,No.2023122.
文摘BACKGROUND Lumbar interbody fusion(LIF)is the primary treatment for lumbar degenerative diseases.Elderly patients are prone to anxiety and depression after undergoing surgery,which affects their postoperative recovery speed and quality of life.Effective prevention of anxiety and depression in elderly patients has become an urgent problem.AIM To investigate the trajectory of anxiety and depression levels in elderly patients after LIF,and the influencing factors.METHODS Random sampling was used to select 239 elderly patients who underwent LIF from January 2020 to December 2024 in Shenzhen Pingle Orthopedic Hospital.General information and surgery-related indices were recorded,and participants completed measures of psychological status,lumbar spine dysfunction,and quality of life.A latent class growth model was used to analyze the post-LIF trajectory of anxiety and depression levels,and unordered multi-categorical logistic regression was used to analyze the influencing factors.RESULTS Three trajectories of change in anxiety level were identified:Increasing anxiety(n=26,10.88%),decreasing anxiety(n=27,11.30%),and stable anxiety(n=186,77.82%).Likewise,three trajectories of change in depression level were identified:Increasing depression(n=30,12.55%),decreasing depression(n=26,10.88%),and stable depression(n=183,76.57%).Regression analysis showed that having no partner,female sex,elevated Oswestry dysfunction index(ODI)scores,and reduced 36-Item Short Form Health Survey scores all contributed to increased anxiety levels,whereas female sex,postoperative opioid use,and elevated ODI scores all contributed to increased depression levels.CONCLUSION During clinical observation,combining factors to predict anxiety and depression in post-LIF elderly patients enables timely intervention,quickens recovery,and enhances quality of life.
文摘BACKGROUND Salvage of the infected long stem revision total knee arthroplasty is challenging due to the presence of well-fixed ingrown or cemented stems.Reconstructive options are limited.Above knee amputation(AKA)is often recommended.We present a surgical technique that was successfully used on four such patients to convert them to a knee fusion(KF)using a cephalomedullary nail.CASE SUMMARY Four patients with infected long stem revision knee replacements that refused AKA had a single stage removal of their infected revision total knee followed by a KF.They were all treated with a statically locked antegrade cephalomedullary fusion nail,augmented with antibiotic impregnated bone cement.All patients had successful limb salvage and were ambulatory with assistive devices at the time of last follow-up.All were infection free at an average follow-up of 25.5 months(range 16-31).CONCLUSION Single stage cephalomedullary nailing can result in a successful KF in patients with infected long stem revision total knees.
基金the National Key Research and Development Program of China(Grant No.2022YFF0711400)which provided valuable financial support and resources for my research and made it possible for me to deeply explore the unknown mysteries in the field of lunar geologythe National Space Science Data Center Youth Open Project(Grant No.NSSDC2302001),which has not only facilitated the smooth progress of my research,but has also built a platform for me to communicate and cooperate with experts in the field.
文摘Impact craters are important for understanding the evolution of lunar geologic and surface erosion rates,among other functions.However,the morphological characteristics of these micro impact craters are not obvious and they are numerous,resulting in low detection accuracy by deep learning models.Therefore,we proposed a new multi-scale fusion crater detection algorithm(MSF-CDA)based on the YOLO11 to improve the accuracy of lunar impact crater detection,especially for small craters with a diameter of<1 km.Using the images taken by the LROC(Lunar Reconnaissance Orbiter Camera)at the Chang’e-4(CE-4)landing area,we constructed three separate datasets for craters with diameters of 0-70 m,70-140 m,and>140 m.We then trained three submodels separately with these three datasets.Additionally,we designed a slicing-amplifying-slicing strategy to enhance the ability to extract features from small craters.To handle redundant predictions,we proposed a new Non-Maximum Suppression with Area Filtering method to fuse the results in overlapping targets within the multi-scale submodels.Finally,our new MSF-CDA method achieved high detection performance,with the Precision,Recall,and F1 score having values of 0.991,0.987,and 0.989,respectively,perfectly addressing the problems induced by the lesser features and sample imbalance of small craters.Our MSF-CDA can provide strong data support for more in-depth study of the geological evolution of the lunar surface and finer geological age estimations.This strategy can also be used to detect other small objects with lesser features and sample imbalance problems.We detected approximately 500,000 impact craters in an area of approximately 214 km2 around the CE-4 landing area.By statistically analyzing the new data,we updated the distribution function of the number and diameter of impact craters.Finally,we identified the most suitable lighting conditions for detecting impact crater targets by analyzing the effect of different lighting conditions on the detection accuracy.
基金financially supported by the National Key Research and Development Program of China(2022YFB4602700)the National Natural Science Foundation of China(No.51975018)the Beijing Natural Science Foundation(No.2244085).
文摘Silicon-based anodes,utilizing nanosized silicon materials,hold great promise for the next-generation of lithium-ion batteries due to their high capacity and stable expansion.This study aims to address challenges in traditional slurry-coated anodes,such as agglomeration and low adhesive strength,through the application of laser powder bed fusion(LPBF).The process involves fabricating an Al-Si-Cu alloy layer on a Cu foil current collector,followed by dealloying to create a porous Si-Cu anode.Simulated and experimental results demonstrate successful alloy layer formation through optimized laser spot(55μm)and powder sizes(1-5μm).Controlled cooling produces primary Si particles ranging from 150 nm to 1μm.The resulting microstructure enhances electrochemical performance,particularly by tailoring the size of primary Si.The resultant porous Si-Cu anode,featuring uniformly distributed primary Si(200 nm)metallurgically bonded with Cu networks,exhibits an initial coulombic efficiency of 83% and a remarkable capacity retention of 80% after 300 cycles at 2 C.In-situ and ex-situ observations confirm the crucial role of anode architecture in performance enhancement.This study elucidates the influence of the LPBF microstructure on anode performance and broadens the potential application of laser powder bed fusion in battery manufacturing.
基金National Natural Science Foundation of China(52105385)Stable Support Plan Program of Shenzhen Natural Science Fund(20220810132537001)+2 种基金Guangdong Basic and Applied Basic Research Foundation(2022A1515010781)Joint Fund of Henan Province Science and Technology R&D Program(225200810002)Fundamental Research Funds of Henan Academy of Sciences(240621041)。
文摘To enhance the mechanical properties of Mo alloys prepared through laser powder bed fusion(LPBF),a hot isostatic pressing(HIP)treatment was used.Results show that following HIP treatment,the porosity decreases from 0.27%to 0.22%,enabling the elements Mo and Ti to diffuse fully and to distribute more uniformly,and to forming a substantial number of low-angle grain boundaries.The tensile strength soars from 286±32 MPa to 598±22 MPa,while the elongation increases from 0.08%±0.02%to 0.18%±0.02%,without notable alterations in grain morphology during the tensile deformation.HIP treatment eliminates the molten pool boundaries,which are the primary source for premature failure in LPBFed Mo alloys.Consequently,HIP treatment emerges as a novel and effective approach for strengthening the mechanical properties of LPBFed Mo alloys,offering a fresh perspective on producing high-performance Mo-based alloys.
基金supported by the National Natural Science Foundation of China(Nos.52275333,52375335 and U22A202494)the Stabilization Support Project of AVIC Manufacturing Technology Institute(No.KZ571801)+1 种基金the Knowledge Innovation Special Project of Wuhan(No.2022010801010302)the Fundamental Research Funds for the Central Universities(No.YCJJ20230359).
文摘WE43 is a high-strength magnesium alloy containing rare-earth elements such as Y,Gd and Nd.Nevertheless,how to further obtain the balance of strength and ductility,as well as the manufacture of complex structures is still a dilemma for its engineering application.In this study,WE43 alloy samples withfine microstructures,high densification and excellent mechanical properties were successfully prepared by laser powder bed fusion(LPBF)additive manufacturing.The optimal process window was established,and the formation mechanisms of three types of porosity defects were revealed,namely lack-of-fusion pores,meltfluctuation-induced pores,and keyhole-induced pores.With the combined process of laser power of 200 W and scanning speed of 600 mm/s,samples with a high density of 99.89%were obtained.Furthermore,periodic heterogeneous microstructure was prepared along the build direction,i.e.,fine grains(∼4.1μm)at melt pool boundaries and coarse grain(∼23.6μm)inside melt pool.This was mainly due to the preferential precipitation of Zr and Mg_(3)(Gd,Nd)nano-precipitates at the melt pool boundaries providing nucleation sites for the grains.This special feature could provide an extra hetero-deformation induced(HDI)strengthening and retard fracture.The optimal tensile yield strength,ultimate tensile strength and elongation at break were 276±1 MPa,292±1 MPa and 6.1±0.2%,respectively.The obtained tensile properties were superior to those of other magnesium alloys and those fabricated by other processes.The solid solution strengthening(∼24.5%),grain boundary strengthening(∼14.4%)and HDI strengthening(∼32.2%)were the main sources of high yield strength.This work provides a guidance on studying the pore defect suppression and strengthening mechanisms of WE43 alloy and other magnesium alloys produced by LPBF.
基金supported by the National Key Research and Development Program of China (No.2021YFB3701000)the National Natural Science Foundation of China (Nos. U21A2047, 52201129, 51821001,U2037601)+1 种基金the support by the China Postdoctoral Science Foundation (No. 2023M742219)the Postdoctoral Fellowship Program (Grade B) of CPSF(No. GZB20240419)
文摘As a universal casting Mg-RE alloy,Mg-6Gd-3Y-Zr(GW63K,wt.%)alloy exhibits superior strength-ductility synergy and holds significant potential for engineering applications.In this study,the GW63K alloy is produced using the laser powder bed fusion(LPBF)additive manufacturing(AM)process for the first time.The printability,microstructure characteristics,and post-heat treatment conditions of the GW63K alloy are systematically investigated.The as-built GW63K samples demonstrate high relative densities exceeding 99.6%and exhibit no macroscopic and microscopic cracking across a wide range of process parameters,indicating excellent printability.An exceptional heterogeneous microstructure is observed in the as-built GW63K alloy,comprising coarse columnar grains,fine equiaxed grains with an average grain size of 21.72μm,uniformly distributed nano-sized Mg_(24)(Gd,Y)_(5)secondary phase,and numerous dislocations.Consequently,the as-built GW63K alloy displays enhanced tensile strengths and ductility compared to the as-cast alloy,with yield strength(YS),ultimate tensile strength(UTS)and elongation(EL)values of 218±4 MPa,284±5 MPa and 11.9±1.6%respectively.Additionally,due to the absence of coarse micron-sized secondary phase,a specific direct aging(T5)heat treatment regime at 200℃for 128 h is optimized for the as-built GW63K alloy to introduce dense and dispersedβ’aging precipitates.This T5 treatment surpasses the conventional solution plus aging(T6)heat treatment in enhancing mechanical properties.The LPBF-T5 GW63K alloy exhibits YS,UTS and EL values of 293±6 MPa,359±4 MPa and 2.9±0.7%,respectively.Notably,the YS of the LPBF-T5 alloy represents the highest value for the GW63K alloy,even surpassing that of the extrusion-T5 alloy.This study indicates that the GW63K alloy is a highly promising material for manufacturing near-net-shape high-strength Mg alloy components with intricate geometries using LPBF.
基金supported by the National Natural Science Foundation of China(Nos.52235008 and U2341270)the National Natural Science Foundation of China(No.52105341)。
文摘Poly-ether-ether-ketone/nano-silicon nitride(PEEK/nSN)composite scaffolds,fabricated by laser powder bed fusion(LPBF),show great potential for orthopedic applications due to their excellent biological performance and mechanical adaptability.However,the effect of nSN on LPBF processability and scaffold properties remains unclear.This study systematically investigates the processability and mechanical per-formance of PEEK/nSN composites to enable reliable clinical fabrication.The results show that adding nSN improves powder flowability and inhibits crystallization,enhancing LPBF processability.The introduction of nSN reduces PEEK’s non-isothermal crystallization Avrami exponent from 3.04 to 2.01,suggesting a transformation from a three-dimensional spherulitic to a two-dimensional lamellar crystal structure.Tensile tests reveal that the presence of nSN alters the optimal process parameters,reducing the optimal laser power from 25 W to 22 W due to increased energy absorption efficiency,as shown by an increase in absorbance at 843 cm^(-1)from 0.27 to 0.35 as the nSN content increases to 2 wt%.Porous diamond-structured scaffolds were fabricated using optimal parameters for pure PEEK,PEEK/1 wt%nSN,and PEEK/2 wt%nSN.Diamond-structured scaffolds fabricated with 1 wt%nSN showed a 12.2%increase in elastic modulus compared to pure PEEK,highlighting the enhanced mechanical performance.Over-all,this study offers key insights into the stable and customizable LPBF fabrication of PEEK/nSN porous scaffolds,providing a foundation for future research on their bioactivity and antibacterial properties for orthopedic applications.
基金supported by the Natural Science Foundation of Jiangsu Higher Education Institutions of China(Grant No.23KJD460003)the Scientific Research Foundation for High-level Talents of Nanjing Institute of Technology(Grant No.YKJ202103)the National Natural Science Foundation of China(Grant Nos.92463301,92163215,52205471,52305470).
文摘In this study,carbon nanotubes(CNTs)/AlSi10Mg composite parts with CNTs contents ranging from 0.0 to 2.0wt.%were successfully fabricated via laser powder bed fusion(LPBF)with laser scan speeds ranging from 900 to 1,900 mm·s^(-1).Uniform dispersion of CNTs in the powders can be achieved when their content is below 2.0wt.%.In the LPBF samples,the morphology of the CNTs is found to be directly related to their content.Especially,the length of CNTs in samples prepared by LPBF increases as the CNT content increases.The length of CNTs is approximately 200-300 nm in the 1.0wt.%CNTs/AlSi10Mg composites and approximately 500-1,000 nm in the 2.0wt.%CNTs/AlSi10Mg composites.The hardness of the composites reaches its highest value of 143.3 HV when the CNTs content is 1.0wt.%and the laser scan speed is 1,300 mm·s^(-1).It is found that the self-lubricating properties of the CNTs improve the tribological properties of the composites.The coefficient of friction(CoF)and wear rate of the samples decrease with increasing CNT content.At a CNTs content of 2.0wt.%,the CoF and wear rate of the composite decrease by approximately 14%and 30%,respectively,compared to the unreinforced matrix.The presence of CNTs leads to a more complete and refined network microstructure within the samples.Both the CNTs and the aluminum carbide contribute to the Orowan mechanism and the Hall-Petch effect within the matrix.