Fusarium head blight(FHB)is a disease caused by several Fusarium species,notably,F.culmorum and F.grami-nearum.These pathogens adversely affect the technological and sanitary qualities of cereal grains,particularly du...Fusarium head blight(FHB)is a disease caused by several Fusarium species,notably,F.culmorum and F.grami-nearum.These pathogens adversely affect the technological and sanitary qualities of cereal grains,particularly durum wheat.Under favorable environmental conditions and in susceptible varieties,these Fusarium species can significantly reduce both the quantity and quality of crops.This study evaluated the pathogenicity of the two Fusarium species(FC2006 and FG2008)in the growth of durum wheat coleoptiles.The plant material included four commercially grown parental varieties(G9,G10,G11,G12)and eight breeding lines(G1,G2,G3,G4,G5,G6,G7,G8).In vitro tests revealed that both Fusarium species significantly reduced the coleoptile growth across the studied varieties and lines(p≤0.001).The control test had an average coleoptile length of 37.87 mm.In contrast,seeds inoculated with FC2006 had an average length of 0.62 mm,and those inoculated with FG2008 had only 0.064 mm.Although there was a slight difference in aggressiveness between the two spe-cies,it was not statistically significant(p>0.05).Some variability was also noted in the responses of the durum wheat varieties and lines.The G8 genotype showed remarkable behavior in both isolates,with an average length of 1.83 mm for FC2006 and 0.4 mm for FG2008.The other genotypes showed total inhibition of coleoptile growth(0 mm).Thesefindings highlight the importance of conducting further research on the defense mechanisms of durum wheat against Fusarium and assessing the local varieties’pathogenicity to better explore the interactions between these pathogens and durum wheat genotypes under in vitro conditions.展开更多
Fusarium ear rot(FER),caused by Fusarium verticillioides,is a destructive fungal disease of maize.FER resistance is a complex,quantitatively inherited trait controlled by multiple minor-effect genes.In this study,we e...Fusarium ear rot(FER),caused by Fusarium verticillioides,is a destructive fungal disease of maize.FER resistance is a complex,quantitatively inherited trait controlled by multiple minor-effect genes.In this study,we employed two recombinant inbred line(RIL)populations with the common resistant parental line CML304 to identify FER-resistance loci.Initial QTL analysis identified 23 FER-resistance QTL,each explaining 5.21%-30.51%of the total phenotypic variation.Notably,one major QTL,qRfv2,on chromosome 2 was repeatedly detected,accounting for 11.92%-30.51%of the total phenotypic variation.qRfv2 was fine mapped to an interval of 1.01 Mb,flanked by the markers IDP8 and IDP10.qRfv2 is a semidominant resistance gene that could reduce the disease severity index(DSI)by 12.4%-20%,suggesting its potential for enhancing FER resistance in maize.Transcriptome analysis showed that 22 of the 28 annotated functional genes in the qRfv2 region displayed differential expression between parental lines in response to FER.One of the candidate genes,ZmLOX6,was validated to presumably provide a positive effect on FER resistance.Our study provides a basis for the potential cloning and application of FER resistance genes in maize breeding.展开更多
Yellow rust(Puccinia striiformis f.sp.Tritici,YR)and fusarium head blight(Fusarium graminearum,FHB)are the two main diseases affecting wheat in the main grain-producing areas of East China,which is common for the two ...Yellow rust(Puccinia striiformis f.sp.Tritici,YR)and fusarium head blight(Fusarium graminearum,FHB)are the two main diseases affecting wheat in the main grain-producing areas of East China,which is common for the two diseases to appear simultaneously in some main production areas.It is necessary to discriminate wheat YR and FHB at the regional scale to accurately locate the disease in space,conduct detailed disease severity monitoring,and scientific control.Four images on different dates were acquired from Sentinel-2,Landsat-8,and Gaofen-1 during the critical period of winter wheat,and 22 remote sensing features that characterize the wheat growth status were then calculated.Meanwhile,6 meteorological parameters that reflect the wheat phenological information were also obtained by combining the site meteorological data and spatial interpolation technology.Then,the principal components(PCs)of comprehensive remote sensing and meteorological features were extracted with principal component analysis(PCA).The PCs-based discrimination models were established to map YR and FHB damage using the random forest(RF)and backpropagation neural network(BPNN).The models’performance was verified based on the disease field truth data(57 plots during the filling period)and 5-fold cross-validation.The results revealed that the PCs obtained after PCA dimensionality reduction outperformed the initial features(IFs)from remote sensing and meteorology in discriminating between the two diseases.Compared to the IFs,the average area under the curve for both micro-average and macro-average ROC curves increased by 0.07 in the PCs-based RF models and increased by 0.16 and 0.13,respectively,in the PCs-based BPNN models.Notably,the PCs-based BPNN discrimination model emerged as the most effective,achieving an overall accuracy of 83.9%.Our proposed discrimination model for wheat YR and FHB,coupled with multi-source remote sensing images and meteorological data,overcomes the limitations of a single-sensor and single-phase remote sensing information in multiple stress discrimination in cloudy and rainy areas.It performs well in revealing the damage spatial distribution of the two diseases at a regional scale,providing a basis for detailed disease severity monitoring,and scientific prevention and control.展开更多
Previously we isolated three Fusarium strains(a F.sacchari strain namely GXUF-1,and another two F.commune strains namely GXUF-2 and GXUF-3),and we verified that GXUF-3 was able to cause sugarcane root rot to the chewi...Previously we isolated three Fusarium strains(a F.sacchari strain namely GXUF-1,and another two F.commune strains namely GXUF-2 and GXUF-3),and we verified that GXUF-3 was able to cause sugarcane root rot to the chewing cane cultivar Badila.Considering that Fusarium spp.are a group of widely distributed fungal pathogens,we tested whether these three Fusarium isolates were able to cause root rot to Badila as well as sugar-making cane cultivar(Guitang42),using a suitable inoculation method established based on infection assays using Badila.We found that the three Fusarium strains were able to cause root rot symptoms to both Badila and Guitang42,to different extents.To better investigate the potential pathogenicity mechanisms,we performed Illumina high-throughput sequencing and analyzed the whole genomic sequence data of these three Fusarium strains.The results reveal that the assembly sizes of the three Fusarium strains were in a range of 44.7-48.2 Mb,with G+C contents of 48.0-48.5%,and 14,154-15,175 coding genes.The coding genes were annotated by multiple public databases,and potential pathogenic genes were predicted using proprietary databases(such as PHI,DFVF,CAZy,etc.).Furthermore,based on evolutionary analysis of the coding sequence,we found that contraction and expansion of gene families occurred in the three Fusarium strains.Overall,our results suggest a potential risk that the root rot disease may occur to the sugar-making canes although it was initially spotted from fruit cane,and provide clues to understand the pathogenic mechanisms of Fusarium spp.causing sugarcane root rot.展开更多
In order to elucidate the relationship between the pathogen carriage rate in seeds of muskmelon(Cucumis melo L.)and the incidence rate of Fusarium wilt of muskmelon(FWM),as well as to identify potential biological con...In order to elucidate the relationship between the pathogen carriage rate in seeds of muskmelon(Cucumis melo L.)and the incidence rate of Fusarium wilt of muskmelon(FWM),as well as to identify potential biological control agents against FWM,this study conducted both pot and field experiments to evaluate the efficacy of Gongzhulingmycin on FWM and its impact on muskmelon yield.The results indicated that the pathogen carriage rates of different species in muskmelon seeds varied significantly,showing a positive correlation with disease incidence during the seedling stage.The results from pot tests indicated that in comparison to the control,disease indices were significantly reduced following treatment with prochloraz and 100 times Gongzhulingmycin at both 7 days and 14 days post-emergence of FWM symptoms.Concurrently,root growth was enhanced.Field experiment outcomes demonstrated that relative to the control,there was a decrease in FWM incidence during the fruit-setting stage,along with an increase in theoretical output per square kilometer for muskmelon.Although the efficacy of Gongzhulingmycin against FWM was lower than that observed for prochloraz,it exhibited significant effects on biomass enhancement and disease resistance.Therefore,it showed promise as a potential biological control agent for managing FWM.展开更多
Apple replant disease is a complex soil syndrome that occurs when the same fields are repeatedly utilized for apple orchard cultivation.It can be caused by various pathogens,and Fusarium solani is the main pathogen.Fu...Apple replant disease is a complex soil syndrome that occurs when the same fields are repeatedly utilized for apple orchard cultivation.It can be caused by various pathogens,and Fusarium solani is the main pathogen.Fusarium solani disrupts the structure and function of the orchard soil ecosystem and inhibits the growth and development of apple trees,significantly impacting the quality and yield of apples.In this study,we conducted a transcriptome comparison between uninoculated apple saplings and those inoculated with F:solani.The differentially expressed genes were mainly enriched in processes such as response to symbiotic fungus.Plant defensins are antimicrobial peptides,but their roles during F.solani infection remain unclear.We performed a genome-wide identification of apple defensin genes and identified 25 genes with the conserved motif of eight cysteine residues.In wildtype apple rootstock inoculated with F.solani,the root surface cells experienced severe damage,and showed significant differences in the total root length,total root projection area,root tips,root forks,and total root surface area compared to the control group.qRT-PCR analysis revealed that MdDEF3 and MdDEF25 were triggered in response to F.solani infection in apples.Subcellular localization showed specific expression of the MdDEF3-YFP and MdDEF25-YFP proteins on the cell membrane.Overexpressing theMdDEF25-YFP fusiongene enhanced resistance against F.solani in apple,providing a new strategy for the future prevention and biological control of apple replantdisease.展开更多
Vascular wilt caused by Fusarium oxysporum f.sp.batatas(Fob)is a devastating disease threatening global sweet potato production.To elucidate Fob’s pathogenicitymechanisms and informeffective control strategies,we gen...Vascular wilt caused by Fusarium oxysporum f.sp.batatas(Fob)is a devastating disease threatening global sweet potato production.To elucidate Fob’s pathogenicitymechanisms and informeffective control strategies,we generated a green fluorescent protein(GFP)-tagged Fob strain to track infection dynamics in sweet potato susceptible cultivar Xinzhonghua and resistant cultivar Xiangshu75-55,respectively.Through cytological observation,we found in the susceptible Xinzhonghua,Fob predominantly colonized stem villi,injured root growth points,and directly invaded vascular bundles through stemwounds.Spore germination peaked at 2-3 h post-inoculation(hpi),followed by cyclical mycelial expansion and sporulation within vascular tissues with sustaining infection.In contrast,the resistant Xiangshu75-55 exhibited strong suppression of Fob:spores rarely germinated in vascular bundles or on trichomes by 3 hpi,and mature hyphae were absent in stems at 24 hpi.Quantitative reverse transcription PCR(qRT-PCR)confirmed significantly higher Fob biomass in Xinzhonghua than in Xiangshu75-55 by 16 hpi.Additionally,transcriptional profiling revealed distinct pathogen-host interactions during the compatible and incompatible reactions.In Xinzhonghua,Fob virulence genes FobPGX1,FobICL1,FobCTF2,FobFUB5 and FobFUB6 were upregulated within 16 hpi.Conversely,host defense genes IbMAPKK9,IbWRKY61,IbWRKY75,IbSWEET10,IbBBX24 and IbPIF4 were activated in Xiangshu75-55 during the same period.This study provides spatiotemporal cytological and molecular insights into Fob pathogenicity and host resistance,offering a foundation for early disease detection and improved Fusarium wilt management in sweet potato.展开更多
Fusarium graminearum(F.graminearum)is a severe phytopathogen threatening agriculture production and food security.Paeonol,serves as a plant-derived natural component,is a promising antifungal agent.At a concentration ...Fusarium graminearum(F.graminearum)is a severe phytopathogen threatening agriculture production and food security.Paeonol,serves as a plant-derived natural component,is a promising antifungal agent.At a concentration of 0.3125 mg/mL,paeonol was adequate to fully inhibit the growth of F.graminearum mycelia within 3 days.Fourier-Transform Infrared Spectroscopy(FT-IR)analysis showed that paeonol had no impact on the outer surface of F.graminearum cell walls.While propidium iodide staining,extracellular conductivity,and pH value measurements demonstrated that paeonol disrupted the cell membrane.Furthermore,lipid oxidation and osmotic stress responses were observed in F.graminearum treated with paeonol,resulting in a 47.23%rise in malondialdehyde(MDA)levels and a 515.43%increase in glycerol levels.Moreover,on the 7th day after exposure to paeonol treatment,the deoxynivalenol(DON)level was significantly reduced,measuring only onefifth of that in the control group.Finally,paeonol was shown to inhibit F.graminearum on wheat grains and steamed bread slices.These results,for the first time,revealed the inhibitory mode of action of paeonol against F.graminearum as reflected by disruption of cell membrane integrity,induction of lipid oxidation and osmotic pressure,as well as DON biosynthesis.Furthermore,this study provided scientific evidence for the potential applications of paeonol in agriculture and food industry.展开更多
Elucidating the microbial mechanisms that trigger Fusarium wilt represents a key step in addressing the barriers to sustainable cropping.However,from the perspective of the complete microbiome,the integrated role of s...Elucidating the microbial mechanisms that trigger Fusarium wilt represents a key step in addressing the barriers to sustainable cropping.However,from the perspective of the complete microbiome,the integrated role of soil nutrients and microbial community in the fields with different rates of wilt disease remains unclear.In this study,we examined the potential interrelationships among the nutrients,bacteria,fungi,and protists in rhizospheric soils collected from the fields with watermelon cropping for 7 years at the Zhuanghang Experimental Station of Shanghai Academy of Agricultural Sciences,China.The soils collected were characterized by a high(HW,81.25%)or low(LW,6.25%)wilting rate.The HW soil was found to contain a higher abundance of Fusarium oxysporum(1.30-fold higher)than the LW soil,along with higher contents of available phosphorus(1.31-fold higher)and available potassium(2.39-fold higher).In addition,the interkingdom correlation between protists and bacteria in the HW soil was 2.08-fold higher than that in the LW soil.Furthermore,structural equation modeling revealed that an excess of soil available potassium enhanced the predation by potentially detrimental phagotrophic protists on potentially beneficial bacteria.In summary,our findings indicated that a balanced nutrient input and the interactions between protists(Cercomonas and Colpoda)and beneficial bacteria(Bacillus)played important roles in controlling the incidence of watermelon Fusarium wilt.展开更多
The natural curcumin-mediated photodynamic inactivation(PDI)was developed,and its inactivation potency against Fusarium graminearum in vitro and in vivo was systematically investigated by fluorescence probe assay,tryp...The natural curcumin-mediated photodynamic inactivation(PDI)was developed,and its inactivation potency against Fusarium graminearum in vitro and in vivo was systematically investigated by fluorescence probe assay,trypan blue staining,scanning electron microscope(SEM),confocal laser scanning microscopy(CLSM),etc.Results showed that under the irradiation of blue LED,the photosensitizer of curcumin was excited to generate massive reactive oxygen species(ROS)in the cells of F.graminearum,and the PDI completely inactivated their mycelia and spores under the treatment of 150μM curcumin and 10.8 J/cm^(2)irradiation.Further analysis found that the PDI ruptured the cellular microstructures,damaged the cell membrane by increasing its permeability and oxidizing the lipids,degraded the intracellular DNA and proteins inside the spores of F.graminearum.Meanwhile,the PDI also potently killed>99.99%spores of F.graminearum on maize under the treatment of 200μM curcumin and 10.8 J/cm^(2)irradiation.Moreover,the PDI suppressed the production of zearalenone(ZEN),and residual ZEN could not be detected after the storage of maize for 10 days.Therefore,this study systematically explored the inactivation efficiency of curcumin-mediated PDI against both the mycelia and spores of F.graminearum,which provides a valid and promising method to control the fungal hazards in grains.展开更多
The use of RNA interference(RNAi)technology to control pests is explored by researchers globally.Even though RNA is a new class of pest control compound unlike conventional chemical pesticides,the evolution of pest re...The use of RNA interference(RNAi)technology to control pests is explored by researchers globally.Even though RNA is a new class of pest control compound unlike conventional chemical pesticides,the evolution of pest resistance needs to be considered.Here,we first investigate RNAi-based biopesticide resistance of Fusarium asiaticum,which is responsible for devastating diseases of plants,for example,Fusarium head blight.Five resistant strains were isolated from 500 strains that treated with UV-mutagenesis.The mutation common to all of the five resistant mutants occurred in the gene encoding Dicer2(point mutations at codon 1005 and 1007),which were under strong purifying selection pressure.To confirm whether the mutations in Dicer2 confer resistance to RNAi,we exchanged the Dicer2 locus between the sensitive strain and the resistant strain by homologous double exchange.The transformed mutants,Dicer2^(R1005D)and Dicer2^(E1007H),exhibited resistance to dsRNA in vitro.Further study showed that mutations of R1005D and E1007H affected the intramolecular interactions of Dicer2,resulting in the dysfunction of RNase III domain of Dicer2.The amount of sRNAs produced by Dicer2^(R1005D)and Dicer2^(E1007H)was extremely reduced along with variation of sRNA length.Together,these findings revealed a new potential mechanism of RNAi resistance and provided insight into RNAi-related biopesticide deployment for fungal control.展开更多
In yeast,the stress-responsive protein Whi2 interacts with phosphatase Psr1 to form a complex that regulates cell growth,reproduction,infection,and the stress response.However,the roles of Whi2 and Psr1 in Fusarium gr...In yeast,the stress-responsive protein Whi2 interacts with phosphatase Psr1 to form a complex that regulates cell growth,reproduction,infection,and the stress response.However,the roles of Whi2 and Psr1 in Fusarium graminearum remain unclear.In this study,we identified homologous genes of WHI2 and PSR1 in F.graminearum and evaluated their functions by constructing deletion mutants.By comparing the responses of the mutants to different stressors,we found that FgWHI2 and FgPSR1 were involved in responding to osmotic,cell wall and cell membrane stresses,while also affecting the sexual and asexual reproduction in F.graminearum.Our studies demonstrated that FgWHI2 and FgPSR1 regulate the biosynthesis of ergosterol and the transcriptional level of FgCYP51C,which is a CYP51 paralogues unique to Fusarium species.This study also found that the deoxynivalenol(DON)production of FgWHI2 and FgPSR1 deletion mutants was reduced by≥90%and DON production was positively correlated with the transcriptional levels of FgWHI2 and FgPSR1.In addition,we observed that FgWHI2 and FgPSR1 were involved in regulating the sensitivity of F.graminearum to chlorothalonil,fluazinam,azoxystrobin,phenamacril,and oligomycin.This study revealed cross-resistance between chlorothalonil and fluazinam.Meanwhile,chlorothalonil and fluazinam inhibited DON biosynthesis by altering the normal expression of FgWhi2 and FgPsr1.Interestingly,the subcellular localization of FgWhi2 and FgPsr1 was significantly altered after treatment with chlorothalonil and fluazinam,with increased co-localization.Collectively,these findings indicate that FgWHI2 and FgPSR1 play crucial roles in stress response mechanisms,reproductive processes,secondary metabolite synthesis,and fungicide sensitivity in F.graminearum.展开更多
基金This Research was funded by la Direction Générale de la Recherche Scientifique et du Développement Technologique(DGRSDT),Algeria,and the Researchers Supporting Project number(RSP2024R390),King Saud University,Riyadh,Saudi Arabia.
文摘Fusarium head blight(FHB)is a disease caused by several Fusarium species,notably,F.culmorum and F.grami-nearum.These pathogens adversely affect the technological and sanitary qualities of cereal grains,particularly durum wheat.Under favorable environmental conditions and in susceptible varieties,these Fusarium species can significantly reduce both the quantity and quality of crops.This study evaluated the pathogenicity of the two Fusarium species(FC2006 and FG2008)in the growth of durum wheat coleoptiles.The plant material included four commercially grown parental varieties(G9,G10,G11,G12)and eight breeding lines(G1,G2,G3,G4,G5,G6,G7,G8).In vitro tests revealed that both Fusarium species significantly reduced the coleoptile growth across the studied varieties and lines(p≤0.001).The control test had an average coleoptile length of 37.87 mm.In contrast,seeds inoculated with FC2006 had an average length of 0.62 mm,and those inoculated with FG2008 had only 0.064 mm.Although there was a slight difference in aggressiveness between the two spe-cies,it was not statistically significant(p>0.05).Some variability was also noted in the responses of the durum wheat varieties and lines.The G8 genotype showed remarkable behavior in both isolates,with an average length of 1.83 mm for FC2006 and 0.4 mm for FG2008.The other genotypes showed total inhibition of coleoptile growth(0 mm).Thesefindings highlight the importance of conducting further research on the defense mechanisms of durum wheat against Fusarium and assessing the local varieties’pathogenicity to better explore the interactions between these pathogens and durum wheat genotypes under in vitro conditions.
基金financially funded by the National Natural Science Foundation of China(U2004205)the China Agricultural University-Syngenta Project.
文摘Fusarium ear rot(FER),caused by Fusarium verticillioides,is a destructive fungal disease of maize.FER resistance is a complex,quantitatively inherited trait controlled by multiple minor-effect genes.In this study,we employed two recombinant inbred line(RIL)populations with the common resistant parental line CML304 to identify FER-resistance loci.Initial QTL analysis identified 23 FER-resistance QTL,each explaining 5.21%-30.51%of the total phenotypic variation.Notably,one major QTL,qRfv2,on chromosome 2 was repeatedly detected,accounting for 11.92%-30.51%of the total phenotypic variation.qRfv2 was fine mapped to an interval of 1.01 Mb,flanked by the markers IDP8 and IDP10.qRfv2 is a semidominant resistance gene that could reduce the disease severity index(DSI)by 12.4%-20%,suggesting its potential for enhancing FER resistance in maize.Transcriptome analysis showed that 22 of the 28 annotated functional genes in the qRfv2 region displayed differential expression between parental lines in response to FER.One of the candidate genes,ZmLOX6,was validated to presumably provide a positive effect on FER resistance.Our study provides a basis for the potential cloning and application of FER resistance genes in maize breeding.
基金supported by National Key R&D Program of China(2022YFD2000100)National Natural Science Foundation of China(42401400)Zhejiang Provincial Key Research and Development Program(2023C02018).
文摘Yellow rust(Puccinia striiformis f.sp.Tritici,YR)and fusarium head blight(Fusarium graminearum,FHB)are the two main diseases affecting wheat in the main grain-producing areas of East China,which is common for the two diseases to appear simultaneously in some main production areas.It is necessary to discriminate wheat YR and FHB at the regional scale to accurately locate the disease in space,conduct detailed disease severity monitoring,and scientific control.Four images on different dates were acquired from Sentinel-2,Landsat-8,and Gaofen-1 during the critical period of winter wheat,and 22 remote sensing features that characterize the wheat growth status were then calculated.Meanwhile,6 meteorological parameters that reflect the wheat phenological information were also obtained by combining the site meteorological data and spatial interpolation technology.Then,the principal components(PCs)of comprehensive remote sensing and meteorological features were extracted with principal component analysis(PCA).The PCs-based discrimination models were established to map YR and FHB damage using the random forest(RF)and backpropagation neural network(BPNN).The models’performance was verified based on the disease field truth data(57 plots during the filling period)and 5-fold cross-validation.The results revealed that the PCs obtained after PCA dimensionality reduction outperformed the initial features(IFs)from remote sensing and meteorology in discriminating between the two diseases.Compared to the IFs,the average area under the curve for both micro-average and macro-average ROC curves increased by 0.07 in the PCs-based RF models and increased by 0.16 and 0.13,respectively,in the PCs-based BPNN models.Notably,the PCs-based BPNN discrimination model emerged as the most effective,achieving an overall accuracy of 83.9%.Our proposed discrimination model for wheat YR and FHB,coupled with multi-source remote sensing images and meteorological data,overcomes the limitations of a single-sensor and single-phase remote sensing information in multiple stress discrimination in cloudy and rainy areas.It performs well in revealing the damage spatial distribution of the two diseases at a regional scale,providing a basis for detailed disease severity monitoring,and scientific prevention and control.
基金supported by National Natural Science Foundation of China(U23A20148)Key Projects of Guangzhou Science and Technology Plan(201904020010)。
文摘Previously we isolated three Fusarium strains(a F.sacchari strain namely GXUF-1,and another two F.commune strains namely GXUF-2 and GXUF-3),and we verified that GXUF-3 was able to cause sugarcane root rot to the chewing cane cultivar Badila.Considering that Fusarium spp.are a group of widely distributed fungal pathogens,we tested whether these three Fusarium isolates were able to cause root rot to Badila as well as sugar-making cane cultivar(Guitang42),using a suitable inoculation method established based on infection assays using Badila.We found that the three Fusarium strains were able to cause root rot symptoms to both Badila and Guitang42,to different extents.To better investigate the potential pathogenicity mechanisms,we performed Illumina high-throughput sequencing and analyzed the whole genomic sequence data of these three Fusarium strains.The results reveal that the assembly sizes of the three Fusarium strains were in a range of 44.7-48.2 Mb,with G+C contents of 48.0-48.5%,and 14,154-15,175 coding genes.The coding genes were annotated by multiple public databases,and potential pathogenic genes were predicted using proprietary databases(such as PHI,DFVF,CAZy,etc.).Furthermore,based on evolutionary analysis of the coding sequence,we found that contraction and expansion of gene families occurred in the three Fusarium strains.Overall,our results suggest a potential risk that the root rot disease may occur to the sugar-making canes although it was initially spotted from fruit cane,and provide clues to understand the pathogenic mechanisms of Fusarium spp.causing sugarcane root rot.
基金Supported by the Key Research and Development Project of the Department of Science and Technology of Jilin Province(20230203175SF)。
文摘In order to elucidate the relationship between the pathogen carriage rate in seeds of muskmelon(Cucumis melo L.)and the incidence rate of Fusarium wilt of muskmelon(FWM),as well as to identify potential biological control agents against FWM,this study conducted both pot and field experiments to evaluate the efficacy of Gongzhulingmycin on FWM and its impact on muskmelon yield.The results indicated that the pathogen carriage rates of different species in muskmelon seeds varied significantly,showing a positive correlation with disease incidence during the seedling stage.The results from pot tests indicated that in comparison to the control,disease indices were significantly reduced following treatment with prochloraz and 100 times Gongzhulingmycin at both 7 days and 14 days post-emergence of FWM symptoms.Concurrently,root growth was enhanced.Field experiment outcomes demonstrated that relative to the control,there was a decrease in FWM incidence during the fruit-setting stage,along with an increase in theoretical output per square kilometer for muskmelon.Although the efficacy of Gongzhulingmycin against FWM was lower than that observed for prochloraz,it exhibited significant effects on biomass enhancement and disease resistance.Therefore,it showed promise as a potential biological control agent for managing FWM.
基金supported by a project grant from the Key Research and Development and Promotion Projects of Henan Province,China(212102110113)the Special Fund for Henan Agriculture Research System,China(HARS-22-09-Z2).
文摘Apple replant disease is a complex soil syndrome that occurs when the same fields are repeatedly utilized for apple orchard cultivation.It can be caused by various pathogens,and Fusarium solani is the main pathogen.Fusarium solani disrupts the structure and function of the orchard soil ecosystem and inhibits the growth and development of apple trees,significantly impacting the quality and yield of apples.In this study,we conducted a transcriptome comparison between uninoculated apple saplings and those inoculated with F:solani.The differentially expressed genes were mainly enriched in processes such as response to symbiotic fungus.Plant defensins are antimicrobial peptides,but their roles during F.solani infection remain unclear.We performed a genome-wide identification of apple defensin genes and identified 25 genes with the conserved motif of eight cysteine residues.In wildtype apple rootstock inoculated with F.solani,the root surface cells experienced severe damage,and showed significant differences in the total root length,total root projection area,root tips,root forks,and total root surface area compared to the control group.qRT-PCR analysis revealed that MdDEF3 and MdDEF25 were triggered in response to F.solani infection in apples.Subcellular localization showed specific expression of the MdDEF3-YFP and MdDEF25-YFP proteins on the cell membrane.Overexpressing theMdDEF25-YFP fusiongene enhanced resistance against F.solani in apple,providing a new strategy for the future prevention and biological control of apple replantdisease.
基金supported by the following grants,Earmarked fund for CARS-10-Sweet potato,High-quality development of agriculture“5511”collaborative innovation project(XTCXGC2021005)Natural Science Foundation of Fujian province(2021J01495)+1 种基金Basic Scientific Research Special Project for Fujian Provincial Public Research Institutes(2021R1031008)Science and Technology Innovation Team of Fujian Academy of Agricultural Sciences(CXTD2021012-1).
文摘Vascular wilt caused by Fusarium oxysporum f.sp.batatas(Fob)is a devastating disease threatening global sweet potato production.To elucidate Fob’s pathogenicitymechanisms and informeffective control strategies,we generated a green fluorescent protein(GFP)-tagged Fob strain to track infection dynamics in sweet potato susceptible cultivar Xinzhonghua and resistant cultivar Xiangshu75-55,respectively.Through cytological observation,we found in the susceptible Xinzhonghua,Fob predominantly colonized stem villi,injured root growth points,and directly invaded vascular bundles through stemwounds.Spore germination peaked at 2-3 h post-inoculation(hpi),followed by cyclical mycelial expansion and sporulation within vascular tissues with sustaining infection.In contrast,the resistant Xiangshu75-55 exhibited strong suppression of Fob:spores rarely germinated in vascular bundles or on trichomes by 3 hpi,and mature hyphae were absent in stems at 24 hpi.Quantitative reverse transcription PCR(qRT-PCR)confirmed significantly higher Fob biomass in Xinzhonghua than in Xiangshu75-55 by 16 hpi.Additionally,transcriptional profiling revealed distinct pathogen-host interactions during the compatible and incompatible reactions.In Xinzhonghua,Fob virulence genes FobPGX1,FobICL1,FobCTF2,FobFUB5 and FobFUB6 were upregulated within 16 hpi.Conversely,host defense genes IbMAPKK9,IbWRKY61,IbWRKY75,IbSWEET10,IbBBX24 and IbPIF4 were activated in Xiangshu75-55 during the same period.This study provides spatiotemporal cytological and molecular insights into Fob pathogenicity and host resistance,offering a foundation for early disease detection and improved Fusarium wilt management in sweet potato.
基金support from the Grain,Oil,and Food Engineering Technology Research Center of the State Grain and Reserves Administration/Key Laboratory of Henan Province(GO202206)the Cultivation Program for Young Backbone Teachers at Henan University of Technology+3 种基金the Key R&D Projects in Henan Province(231111113300)Double First-Class Discipline Construction Program of Henan University of Technology(0517-24410014)National Key Research and Development Program of China(2023YFF1104600)Joint Research Fund for science and technology R&D Projects of Henan Province(225200810066).
文摘Fusarium graminearum(F.graminearum)is a severe phytopathogen threatening agriculture production and food security.Paeonol,serves as a plant-derived natural component,is a promising antifungal agent.At a concentration of 0.3125 mg/mL,paeonol was adequate to fully inhibit the growth of F.graminearum mycelia within 3 days.Fourier-Transform Infrared Spectroscopy(FT-IR)analysis showed that paeonol had no impact on the outer surface of F.graminearum cell walls.While propidium iodide staining,extracellular conductivity,and pH value measurements demonstrated that paeonol disrupted the cell membrane.Furthermore,lipid oxidation and osmotic stress responses were observed in F.graminearum treated with paeonol,resulting in a 47.23%rise in malondialdehyde(MDA)levels and a 515.43%increase in glycerol levels.Moreover,on the 7th day after exposure to paeonol treatment,the deoxynivalenol(DON)level was significantly reduced,measuring only onefifth of that in the control group.Finally,paeonol was shown to inhibit F.graminearum on wheat grains and steamed bread slices.These results,for the first time,revealed the inhibitory mode of action of paeonol against F.graminearum as reflected by disruption of cell membrane integrity,induction of lipid oxidation and osmotic pressure,as well as DON biosynthesis.Furthermore,this study provided scientific evidence for the potential applications of paeonol in agriculture and food industry.
基金supported by Ningbo Science and Technology Bureau,China(Nos.2021Z0472021Z04)+3 种基金the Department of Agriculture and Rural Development of Zhejiang Province,China(No.2022SNJF024)the Outstanding Team Program of Shanghai Academy of Agricultural Science 425,China(No.Hu-Nong-Ke-Zhuo 2022(008))the National Agricultural Experimental Station for Agricultural Environment,Fengxian,China(No.NAES035AE03)the K.C.Wong Magna Fund in Ningbo University,China。
文摘Elucidating the microbial mechanisms that trigger Fusarium wilt represents a key step in addressing the barriers to sustainable cropping.However,from the perspective of the complete microbiome,the integrated role of soil nutrients and microbial community in the fields with different rates of wilt disease remains unclear.In this study,we examined the potential interrelationships among the nutrients,bacteria,fungi,and protists in rhizospheric soils collected from the fields with watermelon cropping for 7 years at the Zhuanghang Experimental Station of Shanghai Academy of Agricultural Sciences,China.The soils collected were characterized by a high(HW,81.25%)or low(LW,6.25%)wilting rate.The HW soil was found to contain a higher abundance of Fusarium oxysporum(1.30-fold higher)than the LW soil,along with higher contents of available phosphorus(1.31-fold higher)and available potassium(2.39-fold higher).In addition,the interkingdom correlation between protists and bacteria in the HW soil was 2.08-fold higher than that in the LW soil.Furthermore,structural equation modeling revealed that an excess of soil available potassium enhanced the predation by potentially detrimental phagotrophic protists on potentially beneficial bacteria.In summary,our findings indicated that a balanced nutrient input and the interactions between protists(Cercomonas and Colpoda)and beneficial bacteria(Bacillus)played important roles in controlling the incidence of watermelon Fusarium wilt.
基金supported by the National Key Research and Development Program of China(2022YFE0139500)National Natural Science Foundation of China(32102105)+3 种基金Guangdong Basic and Applied Basic Research Foundation(2024A15150130262023A1515140136)Special Projects in Key Areas of Higher Education Institution in Guangdong Province(2024ZDZX2090)Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing(2022B1212010015)。
文摘The natural curcumin-mediated photodynamic inactivation(PDI)was developed,and its inactivation potency against Fusarium graminearum in vitro and in vivo was systematically investigated by fluorescence probe assay,trypan blue staining,scanning electron microscope(SEM),confocal laser scanning microscopy(CLSM),etc.Results showed that under the irradiation of blue LED,the photosensitizer of curcumin was excited to generate massive reactive oxygen species(ROS)in the cells of F.graminearum,and the PDI completely inactivated their mycelia and spores under the treatment of 150μM curcumin and 10.8 J/cm^(2)irradiation.Further analysis found that the PDI ruptured the cellular microstructures,damaged the cell membrane by increasing its permeability and oxidizing the lipids,degraded the intracellular DNA and proteins inside the spores of F.graminearum.Meanwhile,the PDI also potently killed>99.99%spores of F.graminearum on maize under the treatment of 200μM curcumin and 10.8 J/cm^(2)irradiation.Moreover,the PDI suppressed the production of zearalenone(ZEN),and residual ZEN could not be detected after the storage of maize for 10 days.Therefore,this study systematically explored the inactivation efficiency of curcumin-mediated PDI against both the mycelia and spores of F.graminearum,which provides a valid and promising method to control the fungal hazards in grains.
基金funded by the National Natural Science Foundation of China(32372585)the Natural Science Foundation of Jiangsu Province,China(BK20231471)the National Training Program of Innovation and Entrepreneurship for Undergraduates,China(202210307013Z)。
文摘The use of RNA interference(RNAi)technology to control pests is explored by researchers globally.Even though RNA is a new class of pest control compound unlike conventional chemical pesticides,the evolution of pest resistance needs to be considered.Here,we first investigate RNAi-based biopesticide resistance of Fusarium asiaticum,which is responsible for devastating diseases of plants,for example,Fusarium head blight.Five resistant strains were isolated from 500 strains that treated with UV-mutagenesis.The mutation common to all of the five resistant mutants occurred in the gene encoding Dicer2(point mutations at codon 1005 and 1007),which were under strong purifying selection pressure.To confirm whether the mutations in Dicer2 confer resistance to RNAi,we exchanged the Dicer2 locus between the sensitive strain and the resistant strain by homologous double exchange.The transformed mutants,Dicer2^(R1005D)and Dicer2^(E1007H),exhibited resistance to dsRNA in vitro.Further study showed that mutations of R1005D and E1007H affected the intramolecular interactions of Dicer2,resulting in the dysfunction of RNase III domain of Dicer2.The amount of sRNAs produced by Dicer2^(R1005D)and Dicer2^(E1007H)was extremely reduced along with variation of sRNA length.Together,these findings revealed a new potential mechanism of RNAi resistance and provided insight into RNAi-related biopesticide deployment for fungal control.
基金supported by the National Key Research and Development Program of China(2022YFD1400100)the Jiangsu Agriculture Science and Technology Innovation Fund,China(CX(21)2037)+1 种基金the Guidance Foundation of the Hainan Institute of Nanjing Agricultural University,China(NAUSY-MS03)the Postgraduate Research&Practice Innovation Program of Jiangsu Province,China(KYCX20_0596)。
文摘In yeast,the stress-responsive protein Whi2 interacts with phosphatase Psr1 to form a complex that regulates cell growth,reproduction,infection,and the stress response.However,the roles of Whi2 and Psr1 in Fusarium graminearum remain unclear.In this study,we identified homologous genes of WHI2 and PSR1 in F.graminearum and evaluated their functions by constructing deletion mutants.By comparing the responses of the mutants to different stressors,we found that FgWHI2 and FgPSR1 were involved in responding to osmotic,cell wall and cell membrane stresses,while also affecting the sexual and asexual reproduction in F.graminearum.Our studies demonstrated that FgWHI2 and FgPSR1 regulate the biosynthesis of ergosterol and the transcriptional level of FgCYP51C,which is a CYP51 paralogues unique to Fusarium species.This study also found that the deoxynivalenol(DON)production of FgWHI2 and FgPSR1 deletion mutants was reduced by≥90%and DON production was positively correlated with the transcriptional levels of FgWHI2 and FgPSR1.In addition,we observed that FgWHI2 and FgPSR1 were involved in regulating the sensitivity of F.graminearum to chlorothalonil,fluazinam,azoxystrobin,phenamacril,and oligomycin.This study revealed cross-resistance between chlorothalonil and fluazinam.Meanwhile,chlorothalonil and fluazinam inhibited DON biosynthesis by altering the normal expression of FgWhi2 and FgPsr1.Interestingly,the subcellular localization of FgWhi2 and FgPsr1 was significantly altered after treatment with chlorothalonil and fluazinam,with increased co-localization.Collectively,these findings indicate that FgWHI2 and FgPSR1 play crucial roles in stress response mechanisms,reproductive processes,secondary metabolite synthesis,and fungicide sensitivity in F.graminearum.