期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
EFFICIENT ESTIMATION OF FUNCTIONAL-COEFFICIENT REGRESSION MODELS WITH DIFFERENT SMOOTHING VARIABLES 被引量:5
1
作者 张日权 李国英 《Acta Mathematica Scientia》 SCIE CSCD 2008年第4期989-997,共9页
In this article,a procedure for estimating the coefficient functions on the functional-coefficient regression models with different smoothing variables in different coefficient functions is defined.First step,by the l... In this article,a procedure for estimating the coefficient functions on the functional-coefficient regression models with different smoothing variables in different coefficient functions is defined.First step,by the local linear technique and the averaged method,the initial estimates of the coefficient functions are given.Second step,based on the initial estimates,the efficient estimates of the coefficient functions are proposed by a one-step back-fitting procedure.The efficient estimators share the same asymptotic normalities as the local linear estimators for the functional-coefficient models with a single smoothing variable in different functions.Two simulated examples show that the procedure is effective. 展开更多
关键词 Asymptotic normality averaged method different smoothing variables functional-coefficient regression models local linear method one-step back-fitting procedure
在线阅读 下载PDF
FUNCTIONAL-COEFFICIENT REGRESSION MODEL AND ITS ESTIMATION 被引量:6
2
作者 Mei Changlin Wang NingSchool of Science,Xi’an Jiaotong Univ.,Xi’an 710049. 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2001年第3期304-314,共11页
In this paper,a class of functional-coefficient regression models is proposed and an estimation procedure based on the locally weighted least equares is suggested.This class of models,with the proposed estimation meth... In this paper,a class of functional-coefficient regression models is proposed and an estimation procedure based on the locally weighted least equares is suggested.This class of models,with the proposed estimation method,is a powerful means for exploratory data analysis. 展开更多
关键词 functional-coefficient regression model locally weighted least equares cross-validation.
在线阅读 下载PDF
Efficient Quantile Estimation for Functional-Coefficient Partially Linear Regression Models
3
作者 Zhangong ZHOU Rong JIANG Weimin QIAN 《Chinese Annals of Mathematics,Series B》 SCIE CSCD 2011年第5期729-740,共12页
The quantile estimation methods are proposed for functional-coefficient partially linear regression (FCPLR) model by combining nonparametric and functional-coefficient regression (FCR) model. The local linear sche... The quantile estimation methods are proposed for functional-coefficient partially linear regression (FCPLR) model by combining nonparametric and functional-coefficient regression (FCR) model. The local linear scheme and the integrated method are used to obtain Focal quantile estimators of all unknown functions in the FCPLR model. These resulting estimators are asymptotically normal, but each of them has big variance. To reduce variances of these quantile estimators, the one-step backfitting technique is used to obtain the efficient quantile estimators of all unknown functions, and their asymptotic normalities are derived. Two simulated examples are carried out to illustrate the proposed estimation methodology. 展开更多
关键词 functional-coefficient model Quantile regression Local linear method Backfitting technique Asymptotic normality
原文传递
Slope displacement prediction based on morphological filtering 被引量:4
4
作者 李启月 许杰 +1 位作者 王卫华 范作鹏 《Journal of Central South University》 SCIE EI CAS 2013年第6期1724-1730,共7页
Combining mathematical morphology (MM),nonparametric and nonlinear model,a novel approach for predicting slope displacement was developed to improve the prediction accuracy.A parallel-composed morphological filter wit... Combining mathematical morphology (MM),nonparametric and nonlinear model,a novel approach for predicting slope displacement was developed to improve the prediction accuracy.A parallel-composed morphological filter with multiple structure elements was designed to process measured displacement time series with adaptive multi-scale decoupling.Whereafter,functional-coefficient auto regressive (FAR) models were established for the random subsequences.Meanwhile,the trend subsequence was processed by least squares support vector machine (LSSVM) algorithm.Finally,extrapolation results obtained were superposed to get the ultimate prediction result.Case study and comparative analysis demonstrate that the presented method can optimize training samples and show a good nonlinear predicting performance with low risk of choosing wrong algorithms.Mean absolute percentage error (MAPE) and root mean square error (RMSE) of the MM-FAR&LSSVM predicting results are as low as 1.670% and 0.172 mm,respectively,which means that the prediction accuracy are improved significantly. 展开更多
关键词 slope displacement prediction parallel-composed morphological filter functional-coefficient auto regressive predictionaccuracy
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部