Subcortical vascular mild cognitive impairment(svMCI)is a common prodromal stage of vascular dementia.Although mounting evidence has suggested abnormalities in several single brain network metrics,few studies have exp...Subcortical vascular mild cognitive impairment(svMCI)is a common prodromal stage of vascular dementia.Although mounting evidence has suggested abnormalities in several single brain network metrics,few studies have explored the consistency between functional and structural connectivity networks in svMCI.Here,we constructed such networks using resting-state f MRI for functional connectivity and diffusion tensor imaging for structural connectivity in 30 patients with svMCI and 30 normal controls.The functional networks were then parcellated into topological modules,corresponding to several well-defined functional domains.The coupling between the functional and structural networks was finally estimated and compared at the multiscale network level(whole brain and modular level).We found no significant intergroup differences in the functional–structural coupling within the whole brain;however,there was significantly increased functional–structural coupling within the dorsal attention module and decreased functional–structural coupling within the ventral attention module in the svMCI group.In addition,the svMCI patients demonstrated decreased intramodular connectivity strength in the visual,somatomotor,and dorsal attention modules as well as decreased intermodular connectivity strength between several modules in the functional network,mainly linking the visual,somatomotor,dorsal attention,ventral attention,and frontoparietal control modules.There was no significant correlation between the altered module-level functional–structural coupling and cognitive performance in patients with svMCI.These findings demonstrate for the first time that svMCI is reflected in a selective aberrant topological organization in multiscale brain networks and may improve our understanding of the pathophysiological mechanisms underlying svMCI.展开更多
High entropy materials(HEMs)are the promising electrocatalysts for anion exchange membrane electrolyser(AEMs)and proton exchange membrane fuel cells(PEMFCs)due to the intriguing cocktail effect,wide design space,tailo...High entropy materials(HEMs)are the promising electrocatalysts for anion exchange membrane electrolyser(AEMs)and proton exchange membrane fuel cells(PEMFCs)due to the intriguing cocktail effect,wide design space,tailorable electronic structure,and entropy stabilization effect.The precise fabrication of HEMs with functional nanostructures provides a crucial avenue to optimize the adsorption strength and catalytic activity for electrocatalysis.This review comprehensively summarizes the development of HEMs,focusing on the principles and strategies of structural design,and the catalytic mechanism towards hydrogen evolution reaction,oxygen evolution reaction and oxygen reduction reaction for the development of high-performance electrocatalysts.The complexity inherent in the interactions between different elements,the changes in the d-band center and the Gibbs free energies during the catalytic progress,as well as the coordination environment of the active sites associated with the unique crystal structure to improve the catalytic performance are discussed.We also provide a perspective on the challenges and future development direction of HEMs in electrocatalysis.This review will contribute to the design and development of HEMs-based catalysts for the next generation of electrochemical applications.展开更多
Land use change is a fundamental factor affecting ecosystem’s structures and functions.However,few studies have explored the ecological disturbance caused by land use change from a combined structural and functional ...Land use change is a fundamental factor affecting ecosystem’s structures and functions.However,few studies have explored the ecological disturbance caused by land use change from a combined structural and functional perspective.In this study,the ecological structural disturbance index(SDI)and functional disturbance index(FDI)were introduced to quantitatively evaluate ecological disturbance caused by land use change in a typical karst area—Huangping County,Guizhou Province,China during 2009–2019.Results show that although the area of ecological land increased during past 10 yr,there had been a fragmentation trend of ecological land.Agricultural occupation was more severe than construction encroachment on ecological land.The grids with negative structural disturbance were consistent with areas of obvious dynamic loss and gain of ecological land.Ecological fragmentation had a greater impact than habitat gain in grids with negative structural disturbance.The ecosystem service functions of supply,adjustment,support,and culture were obviously affected by land use change,and the total FDI reflects the trade-off among them.Negative FDI values were easily observed in the rocky desertification area or water and soil loss area.The combination analysis of the SDI and FDI indicated the characteristic of codirectional ecologically structural and functional disturbance in the majority of grids.The findings improve our understanding of multiple relationships among ecological disturbances and provide valuable information for guiding land use activities.展开更多
Spinal cord injury results in paralysis, sensory disturbances, sphincter dysfunction, and multiple systemic secondary conditions, most arising from autonomic dysregulation. All this produces profound negative psychoso...Spinal cord injury results in paralysis, sensory disturbances, sphincter dysfunction, and multiple systemic secondary conditions, most arising from autonomic dysregulation. All this produces profound negative psychosocial implications for affected people, their families, and their communities;the financial costs can be challenging for their families and health institutions. Treatments aimed at restoring the spinal cord after spinal cord injury, which have been tested in animal models or clinical trials, generally seek to counteract one or more of the secondary mechanisms of injury to limit the extent of the initial damage. Most published works on structural/functional restoration in acute and chronic spinal cord injury stages use a single type of treatment: a drug or trophic factor, transplant of a cell type, and implantation of a biomaterial. Despite the significant benefits reported in animal models, when translating these successful therapeutic strategies to humans, the result in clinical trials has been considered of little relevance because the improvement, when present, is usually insufficient. Until now, most studies designed to promote neuroprotection or regeneration at different stages after spinal cord injury have used single treatments. Considering the occurrence of various secondary mechanisms of injury in the acute and sub-acute phases of spinal cord injury, it is reasonable to speculate that more than one therapeutic agent could be required to promote structural and functional restoration of the damaged spinal cord. Treatments that combine several therapeutic agents, targeting different mechanisms of injury, which, when used as a single therapy, have shown some benefits, allow us to assume that they will have synergistic beneficial effects. Thus, this narrative review article aims to summarize current trends in the use of strategies that combine therapeutic agents administered simultaneously or sequentially, seeking structural and functional restoration of the injured spinal cord.展开更多
Macrocyclic hosts play a crucial role in supramolecular chemistry and the development of supramolecular functional materials.Their well-defined cavities and diverse host-vip interactions endow macrocycles with excel...Macrocyclic hosts play a crucial role in supramolecular chemistry and the development of supramolecular functional materials.Their well-defined cavities and diverse host-vip interactions endow macrocycles with excellent stimuli responsiveness,facilitating efficient assembly construction.However,the limited availability of functional groups in conventional macrocycles restricts their ability to meet the demand for fabricating materials with multiple functionalities.To address this limitation,several research groups have introduced tetraphenylethylene(TPE),a well-known building block renowned for its remarkable aggregation-induced emission(AIE)effect,into the macrocycle framework.Herein,this paper summarizes the combination strategies and synergistic approaches that achieve multi-functionality by integrating TPE and macrocyclic architectures.The emission characteristics of TPE-embedded macrocycles are elucidated,and it is anticipated that more AIE-type macrocycles with innovative backbones and broad applications will emerge.展开更多
Color as an indispensable element in our life brings vitality to us and enriches our lifestyles through decorations,indicators,and information carriers.Structural color offers an intriguing strategy to achieve novel f...Color as an indispensable element in our life brings vitality to us and enriches our lifestyles through decorations,indicators,and information carriers.Structural color offers an intriguing strategy to achieve novel functions and endows color with additional levels of significance in anti-counterfeiting,display,sensor,and printing.Furthermore,structural colors possess excellent properties,such as resistance to extreme external conditions,high brightness,saturation,and purity.Devices and platforms based on structural color have significantly changed our life and are becoming increasingly important.Here,we reviewed four typical applications of structural color and analyzed their advantages and shortcomings.First,a series of mechanisms and fabrication methods are briefly summarized and compared.Subsequently,recent progress of structural color and its applications were discussed in detail.For each application field,we classified them into several types in terms of their functions and properties.Finally,we analyzed recent emerging technologies and their potential for integration into structural color devices,as well as the corresponding challenges.展开更多
This study investigated the effects of planting duration(1,5,10 and 15 years)on soil properties,bacterial community diversity,and function in the rhizosphere of Zanthoxylum bungeanum.We employed Illumina highthroughpu...This study investigated the effects of planting duration(1,5,10 and 15 years)on soil properties,bacterial community diversity,and function in the rhizosphere of Zanthoxylum bungeanum.We employed Illumina highthroughput sequencing and PICRUSt2 functional prediction to analyze the structure and functional potential of rhizosphere soil bacterial communities.The Mantel test and redundancy analysis were used to identify physicochemical factors influencing bacterial community structure and function.The results indicated significant differences in rhizosphere soil physicochemical properties across planting years:the content of organic matter,alkaline hydrolyzable nitrogen in the soil,as well as the activity of invertase,urease,and alkaline phosphatase initially increased and then decreased,while available potassium,Olsen-phosphorus content,and peroxidase activity continued to increase.However,bacterial alpha diversity(Chao1 and Shannon indices)and the number of amplicon sequence variants increased continuously with planting duration.Principal coordinate analysis and Adonis tests revealed that the planting year significantly influenced the bacterial community structure(p<0.05).The phyla Proteobacteria,Actinobacteria,Acidobacteriota and Chloroflexi collectively constituted 56.7%to 71.2%of the relative abundance,representing the dominant taxa.PICRUSt2 predictions indicated key functional categories(cellular processes,metabolism,genetic information processing,and environmental information processing)each exceeding 10%relative abundance.BugBase analysis revealed a progressive increase in aerobic and oxidative stress-tolerant bacteria and a decrease in anaerobic and potentially pathogenic bacteria.Differential indicator species analysis identified Firmicutes,Planctomycetes,Methylomirabilota and Actinobacteriota as key discriminators for the 1-,5-,10-and 15-year stages,respectively.Organic matter,alkaline phosphatase,soil pH,and available phosphorus were the primary physicochemical drivers of bacterial communities.Notably,soil organic matter significantly influenced both the community structure(p<0.05)and predictedmetabolic functions(p<0.05).In conclusion,prolonged planting duration significantly enhanced rhizosphere microbial diversity and functional gene abundance in Z.bungeanumwhile driving the structural succession of bacterial communities dominated by Proteobacteria,Actinobacteria,Acidobacteriota,and Chloroflexi.This ecological shift,characterized by increased aerobic/oxidative-stress taxa and decreased anaerobic/pathogenic bacteria,was primarily regulated by soil organic matter,a key driver shaping both community structure and metabolic functions,ultimately improving soil microecological health.展开更多
This study was carried out to assess plasticity to drought of 30 adult fig cultivars,based on a screening of leaf structural and functional traits under sustained deficit irrigation,corresponding to 60%of crop evapotr...This study was carried out to assess plasticity to drought of 30 adult fig cultivars,based on a screening of leaf structural and functional traits under sustained deficit irrigation,corresponding to 60%of crop evapotranspiration.All trees,three per cultivar,are planted in an ex-situ collection in Sais plain,northern Morocco.The measurements concerned leaf area,blade thickness,trichomes density,trichome hair length,stomatal density,stomatal dimensions,stomatal area index,chlorophyll concentration index,relative water content,stomatal conductance,leaf temperature,water loss in detached leaves,cuticular wax content,proline content,total phenolic compounds,and total soluble sugars.The ranking of cultivars regarding drought tolerance was established based on a two-level clustering approach,primarily relying on chlorophyll concentration index and secondarily on water status traits.Results showed significant genotypic variations for all measured traits,except phenolic compounds content.Correlations between structural and functional traits have pinpointed blade thickness and trichome hair length as the key indicators of fig drought tolerance,owing to their involvement in maintaining chlorophyll content under water stress conditions.The extent of the variations shows that fig leaf is endowed with a wide structural and functional diversity,which can give to the species potential for resilience to various environmental stresses,including drought.Among the cultivars assessed,two exotic varieties,“Kadota”and“Royal Blanck”,as well as four local cultivars,namely,“Ferqouch Jmel”,“El Qoti Labied”,“Hamra”and“Fassi”showed the highest drought plasticity level.展开更多
Crude oil pollution is a significant global environmental challenge.The eastern Gansu Province on the Loess Plateau,an important agricultural region containing the Changqing Oilfield,is facing increasing crude oil con...Crude oil pollution is a significant global environmental challenge.The eastern Gansu Province on the Loess Plateau,an important agricultural region containing the Changqing Oilfield,is facing increasing crude oil contamination.Understanding how microbial communities respond to varying pollution levels is critical for developing effective bioremediation strategies.This study examined how different concentrations of crude oil affect soil properties and microbial communities in Qingyang City,eastern Gansu Province,China by comparing lightly polluted(1895.84-2696.54 mg/kg total petroleum hydrocarbons(TPH)),heavily polluted(4964.25-7153.61 mg/kg TPH),and uncontaminated(CK)soils.Results revealed that petroleum contamination significantly increased total organic carbon(TOC),pH,C:N:P ratio,and the activities of dehydrogenase(DHA)and polyphenol oxidase(PPO),while reducing total nitrogen(TN),available nitrogen(AN),total phosphorus(TP),available phosphorus(AP),available potassium(AK),soil organic matter(SOM),soil water content(SWC),the activities of urease(URE)and alkaline phosphatase(APA),and microbial alpha diversity(P<0.050).Light pollution(LP)soils demonstrated an increase in culturable microorganisms,whereas heavy pollution(HP)soils exhibited increased hydrocarbon-degrading microbes and higher expression of key functional genes,such as alkane monooxygenase(AlkB),cytochrome P450 alkane hydroxylases(P450),catechol 2,3-dioxygenase(C23O),and naphthalene dioxygenase(Nah)(P<0.050).Non-metric multidimensional scaling(NMDS)and redundancy analysis(RDA)indicated evident variations in microbial community structure across different oil contamination levels.LP soils were dominated by bacterial genera Pseudoxanthomonas and Solimonadaceae,whereas Pseudomonas,Nocardioides,and hydrocarbon-degrading genera(Marinobacter,Idiomarina,and Halomonas)were predominant in HP soils.The fungal genus Pseudallescheria exhibited the most pronounced abundance shift between LP and HP soils(P<0.050).Environmental factor analysis identified AN,SWC,TN,SOM,and alpha diversity indices(Shannon index and Chao1 index)as the key differentiators of CK soils,whereas the pollutant levels and metal content were characterized in HP soils.Hydrocarbon-degrading microbial abundance was a defining trait of HP soils.Metabolic pathway analysis revealed enhanced aromatic hydrocarbon degradation in HP soils,indicating microbial adaptation to severe contamination.These findings demonstrated that crude oil pollution suppressed soil nutrients while reshaping the structure and function of microbial communities.Pollution intensity directly affected microbial composition and degradation potential.This study offers valuable insights into microbial responses across contamination gradients and supports the development of targeted bioremediation strategies for oil-contaminated loess soils.展开更多
BACKGROUND Chronic kidney disease is a progressive disease that evolves towards the deve-lopment of end-stage renal disease.The superimposition of renal impairment on a complex disease,namely human immunodeficiency vi...BACKGROUND Chronic kidney disease is a progressive disease that evolves towards the deve-lopment of end-stage renal disease.The superimposition of renal impairment on a complex disease,namely human immunodeficiency virus(HIV)infection,will raise the burden of comorbidities and,predict worse outcomes in this group of the population.AIM To evaluate the structural and functional defects of kidney in patients with HIV infection.METHODS This cross-sectional study involved 227 patients with HIV infection.Participants were selected by simple random sampling method.Eligible participants included HIV infection-positive adults aged 18 years and above.Exclusion criteria en-compassed individuals with preexisting hypertension,diabetes mellitus,chronic kidney disease,chronic liver disease,and those receiving nephrotoxic drugs.Informed consent was obtained.Data collection involved recording medical histories,conducting clinical examinations,and performing baseline blood investigations and ultrasono-graphy to assess renal function and structural abnormalities.RESULTS The mean age of participants was 41 years.Females constituted 66.5%;78% were on Tenofovir-based regimen.The mean duration of HIV infection was 5 years;mean duration of antiretroviral therapy was 4 years.67.4% had a body mass index over 25.World Health Organization staging of HIV infection revealed that 41.9%were in stage 3,30%in stage 2.35.7% had cluster differentiation 4 counts<200.The mean creatinine was 1 mg/dL and mean urea was 25.1 mg/dL.54.6%had estimated glomerular filtration rate of<60.Enlarged kidneys in 39.2%and increased echogenicity in 82.8%of participants.A decline in estimated glomerular filtration rate and an increase in kidney size was significantly associated with advancing HIV stages.CONCLUSION Both structural and functional kidney abnormalities are common in patients with HIV infection.These abnor-malities increase with disease progression,underscoring the need for regular and consistent renal monitoring.展开更多
Spinal cord injury represents a severe form of central nervous system trauma for which effective treatments remain limited.Microglia is the resident immune cells of the central nervous system,play a critical role in s...Spinal cord injury represents a severe form of central nervous system trauma for which effective treatments remain limited.Microglia is the resident immune cells of the central nervous system,play a critical role in spinal cord injury.Previous studies have shown that microglia can promote neuronal survival by phagocytosing dead cells and debris and by releasing neuroprotective and anti-inflammatory factors.However,excessive activation of microglia can lead to persistent inflammation and contribute to the formation of glial scars,which hinder axonal regeneration.Despite this,the precise role and mechanisms of microglia during the acute phase of spinal cord injury remain controversial and poorly understood.To elucidate the role of microglia in spinal cord injury,we employed the colony-stimulating factor 1 receptor inhibitor PLX5622 to deplete microglia.We observed that sustained depletion of microglia resulted in an expansion of the lesion area,downregulation of brain-derived neurotrophic factor,and impaired functional recovery after spinal cord injury.Next,we generated a transgenic mouse line with conditional overexpression of brain-derived neurotrophic factor specifically in microglia.We found that brain-derived neurotrophic factor overexpression in microglia increased angiogenesis and blood flow following spinal cord injury and facilitated the recovery of hindlimb motor function.Additionally,brain-derived neurotrophic factor overexpression in microglia reduced inflammation and neuronal apoptosis during the acute phase of spinal cord injury.Furthermore,through using specific transgenic mouse lines,TMEM119,and the colony-stimulating factor 1 receptor inhibitor PLX73086,we demonstrated that the neuroprotective effects were predominantly due to brain-derived neurotrophic factor overexpression in microglia rather than macrophages.In conclusion,our findings suggest the critical role of microglia in the formation of protective glial scars.Depleting microglia is detrimental to recovery of spinal cord injury,whereas targeting brain-derived neurotrophic factor overexpression in microglia represents a promising and novel therapeutic strategy to enhance motor function recovery in patients with spinal cord injury.展开更多
Hydrogel scaffolds have numerous potential applications in the tissue engineering field.However,tough hydrogel scaffolds implanted in vivo are seldom reported because it is difficult to balance biocompatibility and hi...Hydrogel scaffolds have numerous potential applications in the tissue engineering field.However,tough hydrogel scaffolds implanted in vivo are seldom reported because it is difficult to balance biocompatibility and high mechanical properties.Inspired by Chinese ramen,we propose a universal fabricating method(printing-P,training-T,cross-linking-C,PTC&PCT)for tough hydrogel scaffolds to fill this gap.First,3D printing fabricates a hydrogel scaffold with desired structures(P).Then,the scaffold could have extraordinarily high mechanical properties and functional surface structure by cycle mechanical training with salting-out assistance(T).Finally,the training results are fixed by photo-cross-linking processing(C).The tough gelatin hydrogel scaffolds exhibit excellent tensile strength of 6.66 MPa(622-fold untreated)and have excellent biocompatibility.Furthermore,this scaffold possesses functional surface structures from nanometer to micron to millimeter,which can efficiently induce directional cell growth.Interestingly,this strategy can produce bionic human tissue with mechanical properties of 10 kPa-10 MPa by changing the type of salt,and many hydrogels,such as gelatin and silk,could be improved with PTC or PCT strategies.Animal experiments show that this scaffold can effectively promote the new generation of muscle fibers,blood vessels,and nerves within 4 weeks,prompting the rapid regeneration of large-volume muscle loss injuries.展开更多
Functional gastrointestinal disorders(FGIDs),including irritable bowel syndrome(IBS),functional dyspepsia(FD),and gastroesophageal reflux disease(GERD),present persistent diagnostic and therapeutic challenges due to s...Functional gastrointestinal disorders(FGIDs),including irritable bowel syndrome(IBS),functional dyspepsia(FD),and gastroesophageal reflux disease(GERD),present persistent diagnostic and therapeutic challenges due to symptom heterogeneity and the absence of reliable biomarkers.Artificial intelligence(AI)enables the integration of multimodal data to enhance FGID management through precision diagnostics and preventive healthcare.This minireview summarizes recent advancements in AI applications for FGIDs,highlighting progress in diagnostic accuracy,subtype classification,personalized interventions,and preventive strategies inspired by the traditional Chinese medicine concept of“treating the undiseased”.Machine learning and deep learning algorithms have demonstrated value in improving IBS diagnosis,refining FD neuro-gastrointestinal subtyping,and screening for GERD-related complications.Moreover,AI supports dietary,psychological,and integrative medicine-based interventions to improve patient adherence and quality of life.Nonetheless,key challenges remain,including data heterogeneity,limited model interpretability,and the need for robust clinical validation.Future directions emphasize interdisciplinary collaboration,the development of multimodal and explainable AI models,and the creation of patientcentered platforms to facilitate a shift from reactive treatment to proactive prevention.This review provides a systematic framework to guide the clinical application and theoretical innovation of AI in FGIDs.展开更多
We investigated the structural evolution and elecfronic properties of ConC3-/0 and ConC4-/0 (n=1-4) clusters by using mass-selected photoelectron spectroscopy and density functional theory calculations. The adiabati...We investigated the structural evolution and elecfronic properties of ConC3-/0 and ConC4-/0 (n=1-4) clusters by using mass-selected photoelectron spectroscopy and density functional theory calculations. The adiabatic and vertical detachment energies of CO1-4C3- and COl-4C4- were obtained from their photoelectron spectra. By comparing the theoretical results with the experimental data, the global minimum structures were determined. The results indicate that the carbon atoms of ConC3-/0 and ConC4-/0 (n=1-4) are separated from each other gradually with increasing number of cobalt atoms but a C2 unit still remains at n=4. It is interesting that the Co2C3- and Co2C4- anions have planar structures whereas the neutral Co2C3 and Co2C4 have linear structures with the Co atoms at two ends. The Co3C3- anion has a planar structure with a Co2C2 four-membered ring and a Co3C four-membered ring sharing a Co-Co bond, while the neutral Co3C3 is a three-dimensional structure with a C2 unit and a C atom connecting to two faces of the Co3 triangle.展开更多
BACKGROUND Suicide constitutes the second leading cause of death among adolescents globally and represents a critical public health concern.The neural mechanisms underlying suicidal behavior in adolescents with major ...BACKGROUND Suicide constitutes the second leading cause of death among adolescents globally and represents a critical public health concern.The neural mechanisms underlying suicidal behavior in adolescents with major depressive disorder(MDD)remain poorly understood.Aberrant resting-state functional connectivity(rsFC)in the amygdala,a key region implicated in emotional regulation and threat detection,is strongly implicated in depression and suicidal behavior.AIM To investigate rsFC alterations between amygdala subregions and whole-brain networks in adolescent patients with depression and suicide attempts.METHODS Resting-state functional magnetic resonance imaging data were acquired from 32 adolescents with MDD and suicide attempts(sMDD)group,33 adolescents with MDD but without suicide attempts(nsMDD)group,and 34 demographically matched healthy control(HC)group,with the lateral and medial amygdala(MeA)defined as regions of interest.The rsFC patterns of amygdala subregions were compared across the three groups,and associations between aberrant rsFC values and clinical symptom severity scores were examined.RESULTS Compared with the nsMDD group,the sMDD group exhibited reduced rsFC between the right lateral amygdala(LA)and the right inferior occipital gyrus as well as the left middle occipital gyrus.Compared with the HC group,the abnormal brain regions of rsFC in the sMDD group and nsMDD group involve the parahippocampal gyrus(PHG)and fusiform gyrus.In the sMDD group,right MeA and right temporal pole:Superior temporal gyrus rsFC value negatively correlated with the Rosenberg Self-Esteem Scale scores(r=-0.409,P=0.025),while left LA and right PHG rsFC value positively correlated with the Adolescent Self-Rating Life Events Checklist interpersonal relationship scores(r=0.372,P=0.043).CONCLUSION Aberrant rsFC changes between amygdala subregions and these brain regions provide novel insights into the underlying neural mechanisms of suicide attempts in adolescents with MDD.展开更多
The stability and electrocatalytic efficiency of transition metal oxides for water splitting is determined by geometric and electronic structure,especially under high current densities.Herein,a newly designed lamella-...The stability and electrocatalytic efficiency of transition metal oxides for water splitting is determined by geometric and electronic structure,especially under high current densities.Herein,a newly designed lamella-heterostructured nanoporous CoFe/CoFe_(2)O_(4) and CeO_(2−x),in situ grown on nickel foam(NF),holds great promise as a high-efficient bifunctional electrocatalyst(named R-CoFe/Ce/NF)for water splitting.Experimental characterization verifies surface reconstruction from CoFe alloy/oxide to highly active CoFeOOH during in situ electrochemical polarization.By virtues of three-dimensional nanoporous architecture and abundant electroactive CoFeOOH/CeO_(2−x) heterostructure interfaces,the R-CoFe/Ce/NF electrode achieves low overpotentials for oxygen evolution(η_(10)=227 mV;η_(500)=450 mV)and hydrogen evolution(η_(10)=35 mV;η_(408)=560 mV)reactions with high normalized electrochemical active surface areas,respectively.Additionally,the alkaline full water splitting electrolyzer of R-CoFe/Ce/NF||R-CoFe/Ce/NF achieves a current density of 50 mA·cm^(−2) only at 1.75 V;the decline of activity is satisfactory after 100-h durability test at 300 mA·cm^(−2).Density functional theory also demonstrates that the electron can transfer from CeO_(2−x) by virtue of O atom to CoFeOOH at CoFeOOH/CeO_(2−x) heterointerfaces and enhancing the adsorption of reactant,thus optimizing electronic structure and Gibbs free energies for the improvement of the activity for water splitting.展开更多
Flash Joule heating(FJH),as a high-efficiency and low-energy consumption technology for advanced materials synthesis,has shown significant potential in the synthesis of graphene and other functional carbon materials.B...Flash Joule heating(FJH),as a high-efficiency and low-energy consumption technology for advanced materials synthesis,has shown significant potential in the synthesis of graphene and other functional carbon materials.Based on the Joule effect,the solid carbon sources can be rapidly heated to ultra-high temperatures(>3000 K)through instantaneous high-energy current pulses during FJH,thus driving the rapid rearrangement and graphitization of carbon atoms.This technology demonstrates numerous advantages,such as solvent-and catalyst-free features,high energy conversion efficiency,and a short process cycle.In this review,we have systematically summarized the technology principle and equipment design for FJH,as well as its raw materials selection and pretreatment strategies.The research progress in the FJH synthesis of flash graphene,carbon nanotubes,graphene fibers,and anode hard carbon,as well as its by-products,is also presented.FJH can precisely optimize the microstructures of carbon materials(e.g.,interlayer spacing of turbostratic graphene,defect concentration,and heteroatom doping)by regulating its operation parameters like flash voltage and flash time,thereby enhancing their performances in various applications,such as composite reinforcement,metal-ion battery electrodes,supercapacitors,and electrocatalysts.However,this technology is still challenged by low process yield,macroscopic material uniformity,and green power supply system construction.More research efforts are also required to promote the transition of FJH from laboratory to industrial-scale applications,thus providing innovative solutions for advanced carbon materials manufacturing and waste management toward carbon neutrality.展开更多
Electrocatalytic nitrate-to-ammonia conversion offers dual environmental and sustainable synthesis benefits,but achieving high efficiency with low-cost catalysts remains a major challenge.This review focuses on cobalt...Electrocatalytic nitrate-to-ammonia conversion offers dual environmental and sustainable synthesis benefits,but achieving high efficiency with low-cost catalysts remains a major challenge.This review focuses on cobalt-based electrocatalysts,emphasizing their structural engineering for enhanced the performance of electrocatalytic nitrate reduction reaction(NO3RR)through dimensional control,compositional tuning,and coordination microenvironment modulation.Notably,by critically analyzing metallic cobalt,cobalt alloys,cobalt compounds,cobalt single atom and molecular catalyst configurations,we firstly establish correlations between atomic-scale structural features and catalytic performance in a coordination environment perspective for NO3RR,including the dynamic reconstruction during operation and its impact on active site.Synergizing experimental breakthroughs with computational modeling,we decode mechanisms underlying competitive hydrogen evolution suppression,intermediate adsorption-energy optimization,and durability enhancement in complex aqueous environments.The development of cobalt-based catalysts was summarized and prospected,and the emerging opportunities of machine learning in accelerating the research and development of high-performance catalysts and the configuration of series reactors for scalable nitrate-to-ammonia systems were also introduced.Bridging surface science and applications,it outlines a framework for designing multifunctional electrocatalysts to restore nitrogen cycle balance sustainably.展开更多
AIM:To build a functional generalized estimating equation(GEE)model to detect glaucomatous visual field progression and compare the performance of the proposed method with that of commonly employed algorithms.METHODS:...AIM:To build a functional generalized estimating equation(GEE)model to detect glaucomatous visual field progression and compare the performance of the proposed method with that of commonly employed algorithms.METHODS:Totally 716 eyes of 716 patients with primary open angle glaucoma(POAG)with at least 5 reliable 24-2 test results and 2y of follow-up were selected.The functional GEE model was used to detect perimetric progression in the training dataset(501 eyes).In the testing dataset(215 eyes),progression was evaluated the functional GEE model,mean deviation(MD)and visual field index(VFI)rates of change,Advanced Glaucoma Intervention Study(AGIS)and Collaborative Initial Glaucoma Treatment Study(CIGTS)scores,and pointwise linear regression(PLR).RESULTS:The proposed method showed the highest proportion of eyes detected as progression(54.4%),followed by the VFI rate(34.4%),PLR(23.3%),and MD rate(21.4%).The CIGTS and AGIS scores had a lower proportion of eyes detected as progression(7.9%and 5.1%,respectively).The time to detection of progression was significantly shorter for the proposed method than that of other algorithms(adjusted P≤0.019).The VFI rate displayed moderate pairwise agreement with the proposed method(k=0.47).CONCLUSION:The functional GEE model shows the highest proportion of eyes detected as perimetric progression and the shortest time to detect perimetric progression in patients with POAG.展开更多
Carbon-based air cathodes offer low cost,high electrical conductivity,and structural tunability.However,they suffer from limited catalytic activity and inefficient gas transport,and they typically rely on noble metal ...Carbon-based air cathodes offer low cost,high electrical conductivity,and structural tunability.However,they suffer from limited catalytic activity and inefficient gas transport,and they typically rely on noble metal additives or complex multilayer configurations.To tackle these issues,this study devised a self-activated integrated carbon-based air cathode.By integrating in situ catalytic site construction with structural optimization,the strategy not only induces the formation of oxygen functional groups(─C─OH,─C═O,─COOH),hierarchical pores,and uniformly distributed active sites,but also establishes a favorable electronic and mass-transport environment.Furthermore,the roll-pressing-based integrated design streamlines electrode construction,reinforces interfacial bonding,and significantly enhances mechanical stability.Density functional theory(DFT)calculations show that oxygen functional groups initiate hydrogen bonding interaction and promote charge enrichment,which improves the activity of the cathode and facilitates intermediate adsorption/desorption in oxygen reduction and evolution reactions processes.As a result,the integrated air cathode-based rechargeable zinc-air batteries(RZABs)achieve a high specific capacity of 811 mAh g^(-1).It also performs well in quasi-solid-state RZABs and silicon-air batteries systems across a wide temperature range,demonstrating strong adaptability and application potential.This study provides a scalable and cost-effective design strategy for high-performance carbon-based air cathodes,offering new insights into advancing durable and practical metal-air energy systems.展开更多
基金supported by the Natural Science Foundation of Tianjin Municipal Science and Technology Commission(18JCQNJC10900)Tianjin Natural Science Foundation(17JCZDJC36300)。
文摘Subcortical vascular mild cognitive impairment(svMCI)is a common prodromal stage of vascular dementia.Although mounting evidence has suggested abnormalities in several single brain network metrics,few studies have explored the consistency between functional and structural connectivity networks in svMCI.Here,we constructed such networks using resting-state f MRI for functional connectivity and diffusion tensor imaging for structural connectivity in 30 patients with svMCI and 30 normal controls.The functional networks were then parcellated into topological modules,corresponding to several well-defined functional domains.The coupling between the functional and structural networks was finally estimated and compared at the multiscale network level(whole brain and modular level).We found no significant intergroup differences in the functional–structural coupling within the whole brain;however,there was significantly increased functional–structural coupling within the dorsal attention module and decreased functional–structural coupling within the ventral attention module in the svMCI group.In addition,the svMCI patients demonstrated decreased intramodular connectivity strength in the visual,somatomotor,and dorsal attention modules as well as decreased intermodular connectivity strength between several modules in the functional network,mainly linking the visual,somatomotor,dorsal attention,ventral attention,and frontoparietal control modules.There was no significant correlation between the altered module-level functional–structural coupling and cognitive performance in patients with svMCI.These findings demonstrate for the first time that svMCI is reflected in a selective aberrant topological organization in multiscale brain networks and may improve our understanding of the pathophysiological mechanisms underlying svMCI.
基金supported by the Guangdong Basic and Applied Basic Research Fund Project(2022A1515140061,No.11000-2344014)Startup Foundation for Postdoctor by Dongguan University of Technology(No.11000-221110149)the High-level Talents Program(contract number 2023JC10L014)of the Department of Science and Technology of Guangdong Province。
文摘High entropy materials(HEMs)are the promising electrocatalysts for anion exchange membrane electrolyser(AEMs)and proton exchange membrane fuel cells(PEMFCs)due to the intriguing cocktail effect,wide design space,tailorable electronic structure,and entropy stabilization effect.The precise fabrication of HEMs with functional nanostructures provides a crucial avenue to optimize the adsorption strength and catalytic activity for electrocatalysis.This review comprehensively summarizes the development of HEMs,focusing on the principles and strategies of structural design,and the catalytic mechanism towards hydrogen evolution reaction,oxygen evolution reaction and oxygen reduction reaction for the development of high-performance electrocatalysts.The complexity inherent in the interactions between different elements,the changes in the d-band center and the Gibbs free energies during the catalytic progress,as well as the coordination environment of the active sites associated with the unique crystal structure to improve the catalytic performance are discussed.We also provide a perspective on the challenges and future development direction of HEMs in electrocatalysis.This review will contribute to the design and development of HEMs-based catalysts for the next generation of electrochemical applications.
基金Under the auspices of the National Natural Science Foundation of China(No.41661088,32101593,42361028)Science and Technology Program of Guizhou Province(No.Qiankehe Zhongyindi[2023]005)+1 种基金2024 Humanities and Social Science Research Project of Guizhou Provincial Department of Education(No.24RWZX007)Graduate Research Fund Project of Guizhou Province(No.2024YJSKYJJ153)。
文摘Land use change is a fundamental factor affecting ecosystem’s structures and functions.However,few studies have explored the ecological disturbance caused by land use change from a combined structural and functional perspective.In this study,the ecological structural disturbance index(SDI)and functional disturbance index(FDI)were introduced to quantitatively evaluate ecological disturbance caused by land use change in a typical karst area—Huangping County,Guizhou Province,China during 2009–2019.Results show that although the area of ecological land increased during past 10 yr,there had been a fragmentation trend of ecological land.Agricultural occupation was more severe than construction encroachment on ecological land.The grids with negative structural disturbance were consistent with areas of obvious dynamic loss and gain of ecological land.Ecological fragmentation had a greater impact than habitat gain in grids with negative structural disturbance.The ecosystem service functions of supply,adjustment,support,and culture were obviously affected by land use change,and the total FDI reflects the trade-off among them.Negative FDI values were easily observed in the rocky desertification area or water and soil loss area.The combination analysis of the SDI and FDI indicated the characteristic of codirectional ecologically structural and functional disturbance in the majority of grids.The findings improve our understanding of multiple relationships among ecological disturbances and provide valuable information for guiding land use activities.
文摘Spinal cord injury results in paralysis, sensory disturbances, sphincter dysfunction, and multiple systemic secondary conditions, most arising from autonomic dysregulation. All this produces profound negative psychosocial implications for affected people, their families, and their communities;the financial costs can be challenging for their families and health institutions. Treatments aimed at restoring the spinal cord after spinal cord injury, which have been tested in animal models or clinical trials, generally seek to counteract one or more of the secondary mechanisms of injury to limit the extent of the initial damage. Most published works on structural/functional restoration in acute and chronic spinal cord injury stages use a single type of treatment: a drug or trophic factor, transplant of a cell type, and implantation of a biomaterial. Despite the significant benefits reported in animal models, when translating these successful therapeutic strategies to humans, the result in clinical trials has been considered of little relevance because the improvement, when present, is usually insufficient. Until now, most studies designed to promote neuroprotection or regeneration at different stages after spinal cord injury have used single treatments. Considering the occurrence of various secondary mechanisms of injury in the acute and sub-acute phases of spinal cord injury, it is reasonable to speculate that more than one therapeutic agent could be required to promote structural and functional restoration of the damaged spinal cord. Treatments that combine several therapeutic agents, targeting different mechanisms of injury, which, when used as a single therapy, have shown some benefits, allow us to assume that they will have synergistic beneficial effects. Thus, this narrative review article aims to summarize current trends in the use of strategies that combine therapeutic agents administered simultaneously or sequentially, seeking structural and functional restoration of the injured spinal cord.
基金the National Natural Science Foundation of China(No.22271154)the Science Fund for Distinguished Young Scholars of Jiangsu Province(No.BK20240078).
文摘Macrocyclic hosts play a crucial role in supramolecular chemistry and the development of supramolecular functional materials.Their well-defined cavities and diverse host-vip interactions endow macrocycles with excellent stimuli responsiveness,facilitating efficient assembly construction.However,the limited availability of functional groups in conventional macrocycles restricts their ability to meet the demand for fabricating materials with multiple functionalities.To address this limitation,several research groups have introduced tetraphenylethylene(TPE),a well-known building block renowned for its remarkable aggregation-induced emission(AIE)effect,into the macrocycle framework.Herein,this paper summarizes the combination strategies and synergistic approaches that achieve multi-functionality by integrating TPE and macrocyclic architectures.The emission characteristics of TPE-embedded macrocycles are elucidated,and it is anticipated that more AIE-type macrocycles with innovative backbones and broad applications will emerge.
基金financially supported by the Natural Science Foundation of Shaanxi Province(Grant No.2024JC-YBMS-291)Special Support Program for High-level Talents of Shaanxi Province(No.2020-44)。
文摘Color as an indispensable element in our life brings vitality to us and enriches our lifestyles through decorations,indicators,and information carriers.Structural color offers an intriguing strategy to achieve novel functions and endows color with additional levels of significance in anti-counterfeiting,display,sensor,and printing.Furthermore,structural colors possess excellent properties,such as resistance to extreme external conditions,high brightness,saturation,and purity.Devices and platforms based on structural color have significantly changed our life and are becoming increasingly important.Here,we reviewed four typical applications of structural color and analyzed their advantages and shortcomings.First,a series of mechanisms and fabrication methods are briefly summarized and compared.Subsequently,recent progress of structural color and its applications were discussed in detail.For each application field,we classified them into several types in terms of their functions and properties.Finally,we analyzed recent emerging technologies and their potential for integration into structural color devices,as well as the corresponding challenges.
基金supported by Forestry and Grassland Science and Technology Innovation Project(LCKJCX2022001)from Forestry and Grassland Bureau of Gansu Province’s.
文摘This study investigated the effects of planting duration(1,5,10 and 15 years)on soil properties,bacterial community diversity,and function in the rhizosphere of Zanthoxylum bungeanum.We employed Illumina highthroughput sequencing and PICRUSt2 functional prediction to analyze the structure and functional potential of rhizosphere soil bacterial communities.The Mantel test and redundancy analysis were used to identify physicochemical factors influencing bacterial community structure and function.The results indicated significant differences in rhizosphere soil physicochemical properties across planting years:the content of organic matter,alkaline hydrolyzable nitrogen in the soil,as well as the activity of invertase,urease,and alkaline phosphatase initially increased and then decreased,while available potassium,Olsen-phosphorus content,and peroxidase activity continued to increase.However,bacterial alpha diversity(Chao1 and Shannon indices)and the number of amplicon sequence variants increased continuously with planting duration.Principal coordinate analysis and Adonis tests revealed that the planting year significantly influenced the bacterial community structure(p<0.05).The phyla Proteobacteria,Actinobacteria,Acidobacteriota and Chloroflexi collectively constituted 56.7%to 71.2%of the relative abundance,representing the dominant taxa.PICRUSt2 predictions indicated key functional categories(cellular processes,metabolism,genetic information processing,and environmental information processing)each exceeding 10%relative abundance.BugBase analysis revealed a progressive increase in aerobic and oxidative stress-tolerant bacteria and a decrease in anaerobic and potentially pathogenic bacteria.Differential indicator species analysis identified Firmicutes,Planctomycetes,Methylomirabilota and Actinobacteriota as key discriminators for the 1-,5-,10-and 15-year stages,respectively.Organic matter,alkaline phosphatase,soil pH,and available phosphorus were the primary physicochemical drivers of bacterial communities.Notably,soil organic matter significantly influenced both the community structure(p<0.05)and predictedmetabolic functions(p<0.05).In conclusion,prolonged planting duration significantly enhanced rhizosphere microbial diversity and functional gene abundance in Z.bungeanumwhile driving the structural succession of bacterial communities dominated by Proteobacteria,Actinobacteria,Acidobacteriota,and Chloroflexi.This ecological shift,characterized by increased aerobic/oxidative-stress taxa and decreased anaerobic/pathogenic bacteria,was primarily regulated by soil organic matter,a key driver shaping both community structure and metabolic functions,ultimately improving soil microecological health.
文摘This study was carried out to assess plasticity to drought of 30 adult fig cultivars,based on a screening of leaf structural and functional traits under sustained deficit irrigation,corresponding to 60%of crop evapotranspiration.All trees,three per cultivar,are planted in an ex-situ collection in Sais plain,northern Morocco.The measurements concerned leaf area,blade thickness,trichomes density,trichome hair length,stomatal density,stomatal dimensions,stomatal area index,chlorophyll concentration index,relative water content,stomatal conductance,leaf temperature,water loss in detached leaves,cuticular wax content,proline content,total phenolic compounds,and total soluble sugars.The ranking of cultivars regarding drought tolerance was established based on a two-level clustering approach,primarily relying on chlorophyll concentration index and secondarily on water status traits.Results showed significant genotypic variations for all measured traits,except phenolic compounds content.Correlations between structural and functional traits have pinpointed blade thickness and trichome hair length as the key indicators of fig drought tolerance,owing to their involvement in maintaining chlorophyll content under water stress conditions.The extent of the variations shows that fig leaf is endowed with a wide structural and functional diversity,which can give to the species potential for resilience to various environmental stresses,including drought.Among the cultivars assessed,two exotic varieties,“Kadota”and“Royal Blanck”,as well as four local cultivars,namely,“Ferqouch Jmel”,“El Qoti Labied”,“Hamra”and“Fassi”showed the highest drought plasticity level.
基金supported by the Natural Science Foundation of Gansu Province(23JRRM0752,22JR5RA345,21JR1RM333)the Project of Science and Technology Specialist in Gansu Province(24CXGM002)+2 种基金the National Natural Science Foundation of China(31860148)the Research Fund Project for PhD of Longdong University(XYBYZK2208)the Natural Science Foundation of Longdong University(HXZK2488).
文摘Crude oil pollution is a significant global environmental challenge.The eastern Gansu Province on the Loess Plateau,an important agricultural region containing the Changqing Oilfield,is facing increasing crude oil contamination.Understanding how microbial communities respond to varying pollution levels is critical for developing effective bioremediation strategies.This study examined how different concentrations of crude oil affect soil properties and microbial communities in Qingyang City,eastern Gansu Province,China by comparing lightly polluted(1895.84-2696.54 mg/kg total petroleum hydrocarbons(TPH)),heavily polluted(4964.25-7153.61 mg/kg TPH),and uncontaminated(CK)soils.Results revealed that petroleum contamination significantly increased total organic carbon(TOC),pH,C:N:P ratio,and the activities of dehydrogenase(DHA)and polyphenol oxidase(PPO),while reducing total nitrogen(TN),available nitrogen(AN),total phosphorus(TP),available phosphorus(AP),available potassium(AK),soil organic matter(SOM),soil water content(SWC),the activities of urease(URE)and alkaline phosphatase(APA),and microbial alpha diversity(P<0.050).Light pollution(LP)soils demonstrated an increase in culturable microorganisms,whereas heavy pollution(HP)soils exhibited increased hydrocarbon-degrading microbes and higher expression of key functional genes,such as alkane monooxygenase(AlkB),cytochrome P450 alkane hydroxylases(P450),catechol 2,3-dioxygenase(C23O),and naphthalene dioxygenase(Nah)(P<0.050).Non-metric multidimensional scaling(NMDS)and redundancy analysis(RDA)indicated evident variations in microbial community structure across different oil contamination levels.LP soils were dominated by bacterial genera Pseudoxanthomonas and Solimonadaceae,whereas Pseudomonas,Nocardioides,and hydrocarbon-degrading genera(Marinobacter,Idiomarina,and Halomonas)were predominant in HP soils.The fungal genus Pseudallescheria exhibited the most pronounced abundance shift between LP and HP soils(P<0.050).Environmental factor analysis identified AN,SWC,TN,SOM,and alpha diversity indices(Shannon index and Chao1 index)as the key differentiators of CK soils,whereas the pollutant levels and metal content were characterized in HP soils.Hydrocarbon-degrading microbial abundance was a defining trait of HP soils.Metabolic pathway analysis revealed enhanced aromatic hydrocarbon degradation in HP soils,indicating microbial adaptation to severe contamination.These findings demonstrated that crude oil pollution suppressed soil nutrients while reshaping the structure and function of microbial communities.Pollution intensity directly affected microbial composition and degradation potential.This study offers valuable insights into microbial responses across contamination gradients and supports the development of targeted bioremediation strategies for oil-contaminated loess soils.
文摘BACKGROUND Chronic kidney disease is a progressive disease that evolves towards the deve-lopment of end-stage renal disease.The superimposition of renal impairment on a complex disease,namely human immunodeficiency virus(HIV)infection,will raise the burden of comorbidities and,predict worse outcomes in this group of the population.AIM To evaluate the structural and functional defects of kidney in patients with HIV infection.METHODS This cross-sectional study involved 227 patients with HIV infection.Participants were selected by simple random sampling method.Eligible participants included HIV infection-positive adults aged 18 years and above.Exclusion criteria en-compassed individuals with preexisting hypertension,diabetes mellitus,chronic kidney disease,chronic liver disease,and those receiving nephrotoxic drugs.Informed consent was obtained.Data collection involved recording medical histories,conducting clinical examinations,and performing baseline blood investigations and ultrasono-graphy to assess renal function and structural abnormalities.RESULTS The mean age of participants was 41 years.Females constituted 66.5%;78% were on Tenofovir-based regimen.The mean duration of HIV infection was 5 years;mean duration of antiretroviral therapy was 4 years.67.4% had a body mass index over 25.World Health Organization staging of HIV infection revealed that 41.9%were in stage 3,30%in stage 2.35.7% had cluster differentiation 4 counts<200.The mean creatinine was 1 mg/dL and mean urea was 25.1 mg/dL.54.6%had estimated glomerular filtration rate of<60.Enlarged kidneys in 39.2%and increased echogenicity in 82.8%of participants.A decline in estimated glomerular filtration rate and an increase in kidney size was significantly associated with advancing HIV stages.CONCLUSION Both structural and functional kidney abnormalities are common in patients with HIV infection.These abnor-malities increase with disease progression,underscoring the need for regular and consistent renal monitoring.
基金supported by the National Natural Science Foundation of China,Nos.82072165 and 82272256(both to XM)the Key Project of Xiangyang Central Hospital,No.2023YZ03(to RM)。
文摘Spinal cord injury represents a severe form of central nervous system trauma for which effective treatments remain limited.Microglia is the resident immune cells of the central nervous system,play a critical role in spinal cord injury.Previous studies have shown that microglia can promote neuronal survival by phagocytosing dead cells and debris and by releasing neuroprotective and anti-inflammatory factors.However,excessive activation of microglia can lead to persistent inflammation and contribute to the formation of glial scars,which hinder axonal regeneration.Despite this,the precise role and mechanisms of microglia during the acute phase of spinal cord injury remain controversial and poorly understood.To elucidate the role of microglia in spinal cord injury,we employed the colony-stimulating factor 1 receptor inhibitor PLX5622 to deplete microglia.We observed that sustained depletion of microglia resulted in an expansion of the lesion area,downregulation of brain-derived neurotrophic factor,and impaired functional recovery after spinal cord injury.Next,we generated a transgenic mouse line with conditional overexpression of brain-derived neurotrophic factor specifically in microglia.We found that brain-derived neurotrophic factor overexpression in microglia increased angiogenesis and blood flow following spinal cord injury and facilitated the recovery of hindlimb motor function.Additionally,brain-derived neurotrophic factor overexpression in microglia reduced inflammation and neuronal apoptosis during the acute phase of spinal cord injury.Furthermore,through using specific transgenic mouse lines,TMEM119,and the colony-stimulating factor 1 receptor inhibitor PLX73086,we demonstrated that the neuroprotective effects were predominantly due to brain-derived neurotrophic factor overexpression in microglia rather than macrophages.In conclusion,our findings suggest the critical role of microglia in the formation of protective glial scars.Depleting microglia is detrimental to recovery of spinal cord injury,whereas targeting brain-derived neurotrophic factor overexpression in microglia represents a promising and novel therapeutic strategy to enhance motor function recovery in patients with spinal cord injury.
基金supported by the Innovative Research Group Project of the National Natural Science Foundation of China(T2121004)Key Programme(52235007)National Outstanding Youth Foundation of China(52325504).
文摘Hydrogel scaffolds have numerous potential applications in the tissue engineering field.However,tough hydrogel scaffolds implanted in vivo are seldom reported because it is difficult to balance biocompatibility and high mechanical properties.Inspired by Chinese ramen,we propose a universal fabricating method(printing-P,training-T,cross-linking-C,PTC&PCT)for tough hydrogel scaffolds to fill this gap.First,3D printing fabricates a hydrogel scaffold with desired structures(P).Then,the scaffold could have extraordinarily high mechanical properties and functional surface structure by cycle mechanical training with salting-out assistance(T).Finally,the training results are fixed by photo-cross-linking processing(C).The tough gelatin hydrogel scaffolds exhibit excellent tensile strength of 6.66 MPa(622-fold untreated)and have excellent biocompatibility.Furthermore,this scaffold possesses functional surface structures from nanometer to micron to millimeter,which can efficiently induce directional cell growth.Interestingly,this strategy can produce bionic human tissue with mechanical properties of 10 kPa-10 MPa by changing the type of salt,and many hydrogels,such as gelatin and silk,could be improved with PTC or PCT strategies.Animal experiments show that this scaffold can effectively promote the new generation of muscle fibers,blood vessels,and nerves within 4 weeks,prompting the rapid regeneration of large-volume muscle loss injuries.
基金Supported by The Natural Science Foundation of China,No.82374292the Plans for Major Provincial Science and Technology Projects of Anhui Province,No.202303a07020003the Innovation Team and Talents Cultivation Program of the National Administration of Traditional Chinese Medicine,No.ZYYCXTD-C-202401.
文摘Functional gastrointestinal disorders(FGIDs),including irritable bowel syndrome(IBS),functional dyspepsia(FD),and gastroesophageal reflux disease(GERD),present persistent diagnostic and therapeutic challenges due to symptom heterogeneity and the absence of reliable biomarkers.Artificial intelligence(AI)enables the integration of multimodal data to enhance FGID management through precision diagnostics and preventive healthcare.This minireview summarizes recent advancements in AI applications for FGIDs,highlighting progress in diagnostic accuracy,subtype classification,personalized interventions,and preventive strategies inspired by the traditional Chinese medicine concept of“treating the undiseased”.Machine learning and deep learning algorithms have demonstrated value in improving IBS diagnosis,refining FD neuro-gastrointestinal subtyping,and screening for GERD-related complications.Moreover,AI supports dietary,psychological,and integrative medicine-based interventions to improve patient adherence and quality of life.Nonetheless,key challenges remain,including data heterogeneity,limited model interpretability,and the need for robust clinical validation.Future directions emphasize interdisciplinary collaboration,the development of multimodal and explainable AI models,and the creation of patientcentered platforms to facilitate a shift from reactive treatment to proactive prevention.This review provides a systematic framework to guide the clinical application and theoretical innovation of AI in FGIDs.
文摘We investigated the structural evolution and elecfronic properties of ConC3-/0 and ConC4-/0 (n=1-4) clusters by using mass-selected photoelectron spectroscopy and density functional theory calculations. The adiabatic and vertical detachment energies of CO1-4C3- and COl-4C4- were obtained from their photoelectron spectra. By comparing the theoretical results with the experimental data, the global minimum structures were determined. The results indicate that the carbon atoms of ConC3-/0 and ConC4-/0 (n=1-4) are separated from each other gradually with increasing number of cobalt atoms but a C2 unit still remains at n=4. It is interesting that the Co2C3- and Co2C4- anions have planar structures whereas the neutral Co2C3 and Co2C4 have linear structures with the Co atoms at two ends. The Co3C3- anion has a planar structure with a Co2C2 four-membered ring and a Co3C four-membered ring sharing a Co-Co bond, while the neutral Co3C3 is a three-dimensional structure with a C2 unit and a C atom connecting to two faces of the Co3 triangle.
基金Supported by Suzhou Clinical Medical Center for Mood Disorders,No.Szlcyxzx202109Suzhou Key Laboratory,No.SZS2024016Multicenter Clinical Research on Major Diseases in Suzhou,No.DZXYJ202413.
文摘BACKGROUND Suicide constitutes the second leading cause of death among adolescents globally and represents a critical public health concern.The neural mechanisms underlying suicidal behavior in adolescents with major depressive disorder(MDD)remain poorly understood.Aberrant resting-state functional connectivity(rsFC)in the amygdala,a key region implicated in emotional regulation and threat detection,is strongly implicated in depression and suicidal behavior.AIM To investigate rsFC alterations between amygdala subregions and whole-brain networks in adolescent patients with depression and suicide attempts.METHODS Resting-state functional magnetic resonance imaging data were acquired from 32 adolescents with MDD and suicide attempts(sMDD)group,33 adolescents with MDD but without suicide attempts(nsMDD)group,and 34 demographically matched healthy control(HC)group,with the lateral and medial amygdala(MeA)defined as regions of interest.The rsFC patterns of amygdala subregions were compared across the three groups,and associations between aberrant rsFC values and clinical symptom severity scores were examined.RESULTS Compared with the nsMDD group,the sMDD group exhibited reduced rsFC between the right lateral amygdala(LA)and the right inferior occipital gyrus as well as the left middle occipital gyrus.Compared with the HC group,the abnormal brain regions of rsFC in the sMDD group and nsMDD group involve the parahippocampal gyrus(PHG)and fusiform gyrus.In the sMDD group,right MeA and right temporal pole:Superior temporal gyrus rsFC value negatively correlated with the Rosenberg Self-Esteem Scale scores(r=-0.409,P=0.025),while left LA and right PHG rsFC value positively correlated with the Adolescent Self-Rating Life Events Checklist interpersonal relationship scores(r=0.372,P=0.043).CONCLUSION Aberrant rsFC changes between amygdala subregions and these brain regions provide novel insights into the underlying neural mechanisms of suicide attempts in adolescents with MDD.
基金sponsored by the National Natural Science Foundation of China(Nos.5210125 and 52375422)the Science Research Project of Hebei Education Department(No.BJK2023058)the Natural Science Foundation of Hebei Province(Nos.E2020208069,B2020208083 and E202320801).
文摘The stability and electrocatalytic efficiency of transition metal oxides for water splitting is determined by geometric and electronic structure,especially under high current densities.Herein,a newly designed lamella-heterostructured nanoporous CoFe/CoFe_(2)O_(4) and CeO_(2−x),in situ grown on nickel foam(NF),holds great promise as a high-efficient bifunctional electrocatalyst(named R-CoFe/Ce/NF)for water splitting.Experimental characterization verifies surface reconstruction from CoFe alloy/oxide to highly active CoFeOOH during in situ electrochemical polarization.By virtues of three-dimensional nanoporous architecture and abundant electroactive CoFeOOH/CeO_(2−x) heterostructure interfaces,the R-CoFe/Ce/NF electrode achieves low overpotentials for oxygen evolution(η_(10)=227 mV;η_(500)=450 mV)and hydrogen evolution(η_(10)=35 mV;η_(408)=560 mV)reactions with high normalized electrochemical active surface areas,respectively.Additionally,the alkaline full water splitting electrolyzer of R-CoFe/Ce/NF||R-CoFe/Ce/NF achieves a current density of 50 mA·cm^(−2) only at 1.75 V;the decline of activity is satisfactory after 100-h durability test at 300 mA·cm^(−2).Density functional theory also demonstrates that the electron can transfer from CeO_(2−x) by virtue of O atom to CoFeOOH at CoFeOOH/CeO_(2−x) heterointerfaces and enhancing the adsorption of reactant,thus optimizing electronic structure and Gibbs free energies for the improvement of the activity for water splitting.
基金supported by the National Natural Science Foundation of China(52276196)the Foundation of State Key Laboratory of Coal Combustion(FSKLCCA2508)the High-level Talent Foundation of Anhui Agricultural University(rc412307).
文摘Flash Joule heating(FJH),as a high-efficiency and low-energy consumption technology for advanced materials synthesis,has shown significant potential in the synthesis of graphene and other functional carbon materials.Based on the Joule effect,the solid carbon sources can be rapidly heated to ultra-high temperatures(>3000 K)through instantaneous high-energy current pulses during FJH,thus driving the rapid rearrangement and graphitization of carbon atoms.This technology demonstrates numerous advantages,such as solvent-and catalyst-free features,high energy conversion efficiency,and a short process cycle.In this review,we have systematically summarized the technology principle and equipment design for FJH,as well as its raw materials selection and pretreatment strategies.The research progress in the FJH synthesis of flash graphene,carbon nanotubes,graphene fibers,and anode hard carbon,as well as its by-products,is also presented.FJH can precisely optimize the microstructures of carbon materials(e.g.,interlayer spacing of turbostratic graphene,defect concentration,and heteroatom doping)by regulating its operation parameters like flash voltage and flash time,thereby enhancing their performances in various applications,such as composite reinforcement,metal-ion battery electrodes,supercapacitors,and electrocatalysts.However,this technology is still challenged by low process yield,macroscopic material uniformity,and green power supply system construction.More research efforts are also required to promote the transition of FJH from laboratory to industrial-scale applications,thus providing innovative solutions for advanced carbon materials manufacturing and waste management toward carbon neutrality.
基金supported by the National Natural Science Foundation of China(Grant Nos.:21825201,52401244 and 52201227)Henan Province Key Research and Development and Promotion Program(Scientific and Technological Breakthrough Project:232102240088 and 252102230078)+3 种基金the Key Research&Development and Promotion of Special Project(Scientific Problem Tackling)of Henan Province(252102230078)Doctoral Research Startup Fund Project of Henan Open University(BSJH-2025-04)Zhejiang Provincial Natural Science Foundation of China(LQ24B020005,LQ23B030001)China Postdoctoral Science Foundation(2024M762442).
文摘Electrocatalytic nitrate-to-ammonia conversion offers dual environmental and sustainable synthesis benefits,but achieving high efficiency with low-cost catalysts remains a major challenge.This review focuses on cobalt-based electrocatalysts,emphasizing their structural engineering for enhanced the performance of electrocatalytic nitrate reduction reaction(NO3RR)through dimensional control,compositional tuning,and coordination microenvironment modulation.Notably,by critically analyzing metallic cobalt,cobalt alloys,cobalt compounds,cobalt single atom and molecular catalyst configurations,we firstly establish correlations between atomic-scale structural features and catalytic performance in a coordination environment perspective for NO3RR,including the dynamic reconstruction during operation and its impact on active site.Synergizing experimental breakthroughs with computational modeling,we decode mechanisms underlying competitive hydrogen evolution suppression,intermediate adsorption-energy optimization,and durability enhancement in complex aqueous environments.The development of cobalt-based catalysts was summarized and prospected,and the emerging opportunities of machine learning in accelerating the research and development of high-performance catalysts and the configuration of series reactors for scalable nitrate-to-ammonia systems were also introduced.Bridging surface science and applications,it outlines a framework for designing multifunctional electrocatalysts to restore nitrogen cycle balance sustainably.
基金Supported by the Korea Health Technology R&D Project through the Korea Health Industry Development Institute(KHIDI),funded by the Ministry of Health&Welfare,Republic of Korea(No.HR20C0026)the National Research Foundation of Korea(NRF)(No.RS-2023-00247504)the Patient-Centered Clinical Research Coordinating Center,funded by the Ministry of Health&Welfare,Republic of Korea(No.HC19C0276).
文摘AIM:To build a functional generalized estimating equation(GEE)model to detect glaucomatous visual field progression and compare the performance of the proposed method with that of commonly employed algorithms.METHODS:Totally 716 eyes of 716 patients with primary open angle glaucoma(POAG)with at least 5 reliable 24-2 test results and 2y of follow-up were selected.The functional GEE model was used to detect perimetric progression in the training dataset(501 eyes).In the testing dataset(215 eyes),progression was evaluated the functional GEE model,mean deviation(MD)and visual field index(VFI)rates of change,Advanced Glaucoma Intervention Study(AGIS)and Collaborative Initial Glaucoma Treatment Study(CIGTS)scores,and pointwise linear regression(PLR).RESULTS:The proposed method showed the highest proportion of eyes detected as progression(54.4%),followed by the VFI rate(34.4%),PLR(23.3%),and MD rate(21.4%).The CIGTS and AGIS scores had a lower proportion of eyes detected as progression(7.9%and 5.1%,respectively).The time to detection of progression was significantly shorter for the proposed method than that of other algorithms(adjusted P≤0.019).The VFI rate displayed moderate pairwise agreement with the proposed method(k=0.47).CONCLUSION:The functional GEE model shows the highest proportion of eyes detected as perimetric progression and the shortest time to detect perimetric progression in patients with POAG.
基金funded by the National Nature Science Foundation of China(62264006,62574102)“Thousand Talents Program”of Yunnan Province for Young Talents,Innovative Research Teams(in Science and Technology)in the University of Yunnan Province(IRTSTYN),XingDian Talent Support Program for Young Talents,and Frontier Research Team of Kunming University 2023,The Basic Research Project of Yunnan Province(Nos.202201AU070022)+2 种基金Kunming University Talent Introduction Fund(Nos.YJL20024)Yunnan Province Education Department Scientific Research Fund Project(Nos.2024Y759)Undergraduate Innovation and Entrepreneurship Training Program Project of Yunnan Provincial(202411393005)。
文摘Carbon-based air cathodes offer low cost,high electrical conductivity,and structural tunability.However,they suffer from limited catalytic activity and inefficient gas transport,and they typically rely on noble metal additives or complex multilayer configurations.To tackle these issues,this study devised a self-activated integrated carbon-based air cathode.By integrating in situ catalytic site construction with structural optimization,the strategy not only induces the formation of oxygen functional groups(─C─OH,─C═O,─COOH),hierarchical pores,and uniformly distributed active sites,but also establishes a favorable electronic and mass-transport environment.Furthermore,the roll-pressing-based integrated design streamlines electrode construction,reinforces interfacial bonding,and significantly enhances mechanical stability.Density functional theory(DFT)calculations show that oxygen functional groups initiate hydrogen bonding interaction and promote charge enrichment,which improves the activity of the cathode and facilitates intermediate adsorption/desorption in oxygen reduction and evolution reactions processes.As a result,the integrated air cathode-based rechargeable zinc-air batteries(RZABs)achieve a high specific capacity of 811 mAh g^(-1).It also performs well in quasi-solid-state RZABs and silicon-air batteries systems across a wide temperature range,demonstrating strong adaptability and application potential.This study provides a scalable and cost-effective design strategy for high-performance carbon-based air cathodes,offering new insights into advancing durable and practical metal-air energy systems.