期刊文献+
共找到73篇文章
< 1 2 4 >
每页显示 20 50 100
Stable carbon isotope composition and intrinsic water use efficiency of different functional plants on the western slope of Wuyi Mountains,China
1
作者 HUANG Kangxiang CHEN Huimin +7 位作者 REN Jiusheng XU Fangfang ZHOU Wei YUAN Bosen ZHANG Yuan WU Ting XIAO Shengsheng SHI Fuxi 《Journal of Mountain Science》 2025年第7期2512-2526,共15页
Stable carbon isotopes(δ^(13)C)are extensively utilized to study intrinsic water use efficiency(iWUE)at the leaf-scale in terrestrial ecosystems,serving as a crucial metric for assessing plant adaptation to climate c... Stable carbon isotopes(δ^(13)C)are extensively utilized to study intrinsic water use efficiency(iWUE)at the leaf-scale in terrestrial ecosystems,serving as a crucial metric for assessing plant adaptation to climate change.However,there is currently a lack of consensus regarding the leaf-scale iWUE variation characteristics among different functional types.In this study,we measured theδ^(13)Cleaf and iWUE values of different functional plants(i.e.,life forms,leaf types,and mycorrhizal types)from 120 species across distinct habitat types(i.e.,hillside,nearpeak,and peak)in a subtropical forest on the western slope of Wuyi Mountains,southern China.The results showed that theδ^(13)Cleaf values of plants on the western slope of Wuyi Mountains ranged from-34.63‰to-30.04‰,and iWUE ranged from 5.93μmol mol^(-1)to 57.34μmol mol^(-1).Theδ^(13)Cleaf and iWUE values differed significantly among plant life forms,following the order of herbs>vine plants>shrubs>trees.Theδ^(13)Cleaf and iWUE values of ectomycorrhizal(ECM)species were greater than those of arbuscular mycorrhizal(AM)species despite there being no significant difference between plants with different leaf types(Simple leaves(SL)vs.Compound leaves(CL)).From the hillside to the peak,both at the community level and at the species level,theδ^(13)C values of leaves and iWUE values of plants exhibited an upward trend.The regression analysis revealed that leaf-scale iWUE was significantly negatively correlated with soil water content and significantly positively correlated with leaf phosphorus content.The findings indicated that leaf carbon isotope fractionation and corresponding iWUE can be influenced by life form,mycorrhizal type,and soil water availability.These insights provide a deeper understanding of the coupling mechanisms of carbon,water,and nutrients among different functional plant types in subtropical forests,and offer insights into predicting plant adaptability under climate change. 展开更多
关键词 Stable carbon isotope Water use efficiency Plant functional groups Subtropical forest
原文传递
Trait-based representation of hydrological functional properties of plants in weather and ecosystem models 被引量:2
2
作者 Ashley M. Matheny Golnazalsadat Mirfenderesgi Gil Bohrer 《Plant Diversity》 SCIE CAS CSCD 北大核心 2017年第1期1-12,共12页
Land surface models and dynamic global vegetation models typically represent vegetation through coarse plant functional type groupings based on leaf form, phenology, and bioclimatic limits. Although these groupings we... Land surface models and dynamic global vegetation models typically represent vegetation through coarse plant functional type groupings based on leaf form, phenology, and bioclimatic limits. Although these groupings were both feasible and functional for early model generations, in light of the pace at which our knowledge of functional ecology, ecosystem demographics, and vegetation-climate feedbacks has advanced and the ever growing demand for enhanced model performance, these groupings have become antiquated and are identified as a key source of model uncertainty. The newest wave of model development is centered on shifting the vegetation paradigm away from plant functional types(PFTs)and towards flexible trait-based representations. These models seek to improve errors in ecosystem fluxes that result from information loss due to over-aggregation of dissimilar species into the same functional class. We advocate the importance of the inclusion of plant hydraulic trait representation within the new paradigm through a framework of the whole-plant hydraulic strategy. Plant hydraulic strategy is known to play a critical role in the regulation of stomatal conductance and thus transpiration and latent heat flux. It is typical that coexisting plants employ opposing hydraulic strategies, and therefore have disparate patterns of water acquisition and use. Hydraulic traits are deterministic of drought resilience, response to disturbance, and other demographic processes. The addition of plant hydraulic properties in models may not only improve the simulation of carbon and water fluxes but also vegetation population distributions. 展开更多
关键词 Hydraulic traits Land-surface modeling Whole-plant hydraulic strategy Trait-based models Demographic models Plant functional type
在线阅读 下载PDF
Environment-driven intraspecific variation shows coordination of functional traits of deciduous oaks among and within different biological levels
3
作者 Yutong Lin Yuan Lai +6 位作者 Songbo Tang Jeannine Cavender-Bares Josep Peñuelas Jordi Sardans Jianfeng Liu Lingling Zhang Yuanwen Kuang 《Journal of Forestry Research》 SCIE EI CAS CSCD 2024年第6期95-109,共15页
Deciduous oaks(Quercus spp.)are distributed from subalpine to tropical regions in the northern hemi-sphere and have important roles as carbon sinks and in climate change mitigation.Determining variations in plant func... Deciduous oaks(Quercus spp.)are distributed from subalpine to tropical regions in the northern hemi-sphere and have important roles as carbon sinks and in climate change mitigation.Determining variations in plant functional traits at multiple biological levels and linking them to environmental variables across geographical ranges is important for forecasting range-shifts of broadly-distrib-uted species under climate change.We sampled leaves of five deciduous Quercus spp.covering approximately 20°of latitude(~21°N-41°N)and 20 longitude(~99°E-119°E)across China and measured 12 plant functional traits at different biological levels.The traits varied distinctively,either within each biological level or among different levels driven by climatic and edaphic variables.Traits at the organ level were significantly correlated with those at the cellular and tissue levels,while traits at the whole-plant level only correlated with those at the tissue level.The Quercus species responded to changing environments by regulating stomatal size,leaf thickness and the palisade mesophyll thickness to leaf thickness ratios with contrasting degree of effect to adjust the whole-plant functioning,i.e.,intrinsic water use efficiency(iWUE),carbon supply and nitrogen availability.The results suggest that these deciduous Quercus spp.will maintain vigour by increasing iWUE when subjected to large temperature changes and insufficient moisture,and by accu-mulating leaf non-structural carbohydrates under drought conditions.The findings provide new insights into the inher-ent variation and trait coordination of widely distributed tree species in the context of climate change. 展开更多
关键词 Climate gradient Intraspecific variation Plant functional traits Deciduous Quercus species Whole-plant function
在线阅读 下载PDF
Disparities in tree mortality among plant functional types(PFTs)in a temperate forest:Insights into size-dependent and PFT-specific patterns
4
作者 Man Hu Hang Shi +6 位作者 Rui He Bingbin Wen Haikun Liu Kerong Zhang Xiao Shu Haishan Dang Quanfa Zhang 《Forest Ecosystems》 SCIE CSCD 2024年第4期480-490,共11页
Tree mortality significantly influences forest structure and function,yet our understanding of its dynamic patterns among a range of tree sizes and among different plant functional types(PFTs)remains incomplete.This s... Tree mortality significantly influences forest structure and function,yet our understanding of its dynamic patterns among a range of tree sizes and among different plant functional types(PFTs)remains incomplete.This study analysed size-dependent tree mortality in a temperate forest,encompassing 46 tree species and 32,565 individuals across different PFTs(i.e.,evergreen conifer vs.deciduous broadleaf species,shade-tolerant vs.shade-intolerant species).By employing all-subset regression procedures and logistic generalized linear mixed-effects models,we identified distinct mortality patterns influenced by biotic and abiotic factors.Our results showed a stable mortality patte rn in eve rgreen conifer species,contrasted by a declining pattern in deciduous broadleaf and shadetolerant,as well as shade-intolerant species,across size classes.The contribution to tree mortality of evergreen conifer species shifted from abiotic to biotic factors with increasing size,while the mortality of deciduous broadleaf species was mainly influenced by biotic factors,such as initial diameter at breast height(DBH)and conspecific negative density.For shade-tolerant species,the mortality of small individuals was mainly determined by initial DBH and conspecific negative density dependence,whereas the mortality of large individuals was subjected to the combined effect of biotic(competition from neighbours)and abiotic factors(i.e.,convexity and pH).As for shade-intolerant species,competition from neighbours was found to be the main driver of tree mortality throughout their growth stages.Thus,these insights enhance our understanding of forest dynamics by revealing the size-dependent and PFT-specific tree mortality patterns,which may inform strategies for maintaining forest diversity and resilience in temperate forest ecosystems. 展开更多
关键词 Size-dependent tree mortality Plant functional type Neighbourhood competition Topography variables Soil properties
在线阅读 下载PDF
Generation of a collection of MYB mutant lines via pooled CRISPR-Cas9 in grape
5
作者 Xuena Yu Yang Hu +5 位作者 Jiasi Han Liang Zhao Zhuoshuai Jin Xiangnan Xu Jiayue Feng Yingqiang Wen 《Journal of Integrative Agriculture》 2025年第8期3287-3290,共4页
CRISPR-Cas9 has emerged as a powerful tool for gene editing,and it has been widely used in plant functional genomics research and crop genetic breeding(Chen et al.2019).The target specificity of CRISPR-Cas9 relies on ... CRISPR-Cas9 has emerged as a powerful tool for gene editing,and it has been widely used in plant functional genomics research and crop genetic breeding(Chen et al.2019).The target specificity of CRISPR-Cas9 relies on the 20-base-pair single guide RNA(sgRNA),which makes creating plant-specific mutant libraries through large-scale synthesis of sgRNAs targeting multiple genes or even the whole genome relatively quick and straightforward. 展开更多
关键词 plant functional genomics research GRAPE myb mutant lines plant functional genomics CRISPR Cas crop genetic breeding gene editingand gene editing
在线阅读 下载PDF
Impact of nitrogen addition and precipitation on net ecosystem exchange in the Urat desert steppe, China
6
作者 ZHANG Xiaoxue YUE Ping +4 位作者 SONG Zhaobin ZUO Xiaoan ZHANG Rui WANG Zhengjiaoyi QIAO Jingjuan 《Journal of Arid Land》 2025年第3期337-349,共13页
Amid global climate change, rising levels of nitrogen(N) deposition have attracted considerable attention for their potential effects on the carbon cycle of terrestrial ecosystems. The desert steppes are a crucial yet... Amid global climate change, rising levels of nitrogen(N) deposition have attracted considerable attention for their potential effects on the carbon cycle of terrestrial ecosystems. The desert steppes are a crucial yet vulnerable ecosystem in arid areas, but their response to the combination of N addition and precipitation(a crucial factor in arid areas) remains underexplored. This study systematically explored the impact of N addition and precipitation on net ecosystem exchange(NEE) in a desert steppe in northern China. Specifically, we conducted a 2-a experiment from 2022 to 2023 with eight N addition treatments in the Urat desert steppe of Inner Mongolia Autonomous Region, China, to examine changes in NEE and explore its driving factors. The structural equation model(SEM) and multiple regression model were applied to determine the relationship of NEE with plant community characteristics and soil physical-chemical properties. Statistical results showed that N addition has no significant effect on NEE.However, it has a significant impact on the functional traits of desert steppe plant communities. SEM results further revealed that N addition has no significant effect on NEE in the desert steppe, whereas annual precipitation can influence NEE variations. The multiple regression model analysis indicated that plant functional traits play an important role in explaining the changes in NEE, accounting for 62.15% of the variation in NEE. In addition, plant height, as an important plant functional trait indicator, shows stronger reliability in predicting the changes in NEE and becomes a more promising predictor. These findings provide valuable insights into the complex ecological mechanisms governing plant community responses to precipitation and nutrient availability in the arid desert steppes, contributing to the improved monitoring and prediction of desert steppe ecosystem responses to global climate change. 展开更多
关键词 nitrogen addition net ecosystem exchange plant functional traits structural equation model(SEM) multiple regression model Urat desert steppe
在线阅读 下载PDF
Uptake and Recovery of Soil Nitrogen by Bryophytes and Vascular Plants in an Alpine Meadow 被引量:8
7
作者 WANG Jin-niu SHI Fu-sun +3 位作者 XU Bo WANG Qian WU Yan WU Ning 《Journal of Mountain Science》 SCIE CSCD 2014年第2期475-484,共10页
Due to their particular physiology and life history traits, bryophytes are critical in regulating biogeochemical cycles and functions in alpine ecosystem. Hence, it is crucial to investigate their nutrient utilization... Due to their particular physiology and life history traits, bryophytes are critical in regulating biogeochemical cycles and functions in alpine ecosystem. Hence, it is crucial to investigate their nutrient utilization strategies in comparison with vascular plants and understand their responses to the variation of growing season caused by climate change. Firstly, this study testified whether or not bryophytes can absorb nitrogen(N) directly from soil through spiking three chemical forms of 15N stable isotope tracer. Secondly, with stronger ability of carbohydrates assimilation and photosynthesis, it is supposed that N utilization efficiency of vascular plants is significantly higher than that of bryophytes. However, the recovery of soil N by bryophytes can still compete with vascular plants due to their greater phytomass. Thirdly, resource acquisition may be varied from the change of growing season, during which N pulse can be manipulated with 15N tracer addition at different time. Both of bryophytes and vascular plants contain more N in a longer growing season, and prefer inorganic over organic N. Bryophytes assimilate more NH4+ than NO3– and amino acid, which can be indicated from the greater shoot excess 15N of bryophytes. However, vascular plants prefer to absorb NO3– for their developed root systems and vascular tissue. Concerning the uptake of three forms N by bryophytes, there is significant difference between two manipulated lengths of growing season. Furthermore, the capacity of bryophytes to tolerate N-pollution may be lower than currently appreciated, which indicates the effect of climate change on asynchronous variation of soil N pools with plant requirements. 展开更多
关键词 Plant functional groups N pulse Alpine meadow N uptake N recovery
原文传递
Legacy effects of historical woodland changes on contemporary plant functional composition 被引量:2
8
作者 Ji-Zhong Wan Chun-Jing Wang 《Forest Ecosystems》 SCIE CSCD 2023年第5期569-578,共10页
Considering the legacy of plant functional composition can help assess ecosystem functions and ecosystem services across different spatial scales under land cover changes.Woody plants likely respond to natural and ant... Considering the legacy of plant functional composition can help assess ecosystem functions and ecosystem services across different spatial scales under land cover changes.Woody plants likely respond to natural and anthropogenic perturbations due to historical events(e.g.,agricultural development),thus contemporary plant functional composition may be explained by historical woodland change,a type of land cover change.We propose that historical woodland changes may have legacy effects on contemporary plant functional composition.Here,we used partial least squares regression and linear mixed model analyses to test this assumption by coupling data on community weighted means(CWM)and community weighted variance(CWV)of vegetation plots and calculating the time of woodland existence across different periods from AD 0 to 2017.We found that the legacy effects of historical land cover changes on CWM and CWV during the existence time of woodland,particularly from AD 0 to 900,were drivers of contemporary plant functional composition at large spatial scales.Furthermore,historical woodland changes can affect contemporary plant functional composition,depending on the biome type.Particularly,the CWM of plant height,seed mass,and seed length showed the strongest correlations with woodland changes from AD 1910 to 2010 in tropics with year-round rain,and the CWM of leaf traits correlated with woodland changes from AD 0 to 1700 in tropics with summer rain.Our study provides the effective evidence on the legacy of historical woodland changes and the effects on contemporary plant functional composition,which is crucial with respect to effective management of plant diversity and assessing ecosystem functions and services from local to global scales over time. 展开更多
关键词 BIOME Community weighted means Global scale Historical woodland Land cover Plant functional trait
在线阅读 下载PDF
Classification of plant functional types based on the nutrition traits: a case study on alpine meadow community in the Zoigê Plateau 被引量:6
9
作者 SHEN Song-tao ZHANG Shu-jie +1 位作者 FAN Min WANG Qing 《Journal of Mountain Science》 SCIE CSCD 2017年第10期2003-2012,共10页
The ecological concept of Plant Functional Types(PFTs), which refers to the assemblage of plants with certain functional traits, has been introduced for the study of plant responses to the environment change and hum... The ecological concept of Plant Functional Types(PFTs), which refers to the assemblage of plants with certain functional traits, has been introduced for the study of plant responses to the environment change and human disturbance. Taking the alpine meadow community in the Zoigê Plateau as a study case, this paper classified PFTs in terms of plant nutrition traits. The sequential results are as follows.(1) The main herbages in the Zoigê Plateau included 16 species in 5 families. Among the five families, Cyperaceae vegetation accounted for 81.37%of herbage area in total, while the remaining 4families occupied less than 20%. As for the species,Kobresia setchwanensis Hand.-Maizz. was dominant,accounting for 48.74% of the total area; while the remaining 51.26% was comprised of Polygonum viviparum L., Anaphalis fiavescens Hand.-Mazz.,Stipa aliena Keng and other species.(2) By using the Principal Component Analysis(PCA), the assessment of herbages nutrition was carried out based on the comprehensive multi-index evaluation model.Polygonum viviparum L. had the highest nutritional value score(1.43), and Stipa aliena Keng had the lowest(-1.40). Nutritional value of herbage species had a significantly positive correlation with altitude(P&lt;0.01) in the Zoigê Plateau.(3) Based on the nutritional values, herbages in the Zoigê Plateau could be grouped into 3 nutrition PFTs(high, medium and low) by using the Natural Breaks(Jenks) method. 展开更多
关键词 Plant functional types Nutritional value Forage resource management the Zoigê Plateau
原文传递
Do aeolian deposits and sand encroachment intensity shape patterns of vegetation diversity and plant functional traits in desert pavements? 被引量:1
10
作者 M'hammed BOUALLALA Souad NEFFAR +1 位作者 Lyès BRADAI Haroun CHENCHOUNI 《Journal of Arid Land》 SCIE CSCD 2023年第6期667-694,共28页
The effects of sand encroachment on composition,diversity,and functional patterns of vegetation in drylands are rarely studied,and yet addressing these aspects is important to deepen our understanding of the biodivers... The effects of sand encroachment on composition,diversity,and functional patterns of vegetation in drylands are rarely studied,and yet addressing these aspects is important to deepen our understanding of the biodiversity conservation.This study aimed to investigate the effect of sand encroachment on plant functional biodiversity of desert pavements(gravel deserts)in the Sahara Desert of Algeria.Plants were sampled and analyzed in three desert pavements with different levels of sand encroachment(LSE)and quantity of aeolian deposits(low,LLSE;medium,MLSE;and high,HLSE).Within the sample-plot area(100 m^(2)),density of every plant species was identified and total vegetation cover was determined.Plant taxonomic and functional diversity were analyzed and compared between LSE.Result showed that 19 plant species in desert pavements were classified into 18 genera and 13 families.Asteraceae and Poaceae were the most important families.The species Anabasis articulata(Forssk)Moq.characterized LLSE desert pavements with 11 species,whereas Thymelaea microphylla Coss.&Durieu ex Meisn.and Calobota saharae(C&D)Boatwr.&van Wyk were dominant species of desert pavements with MLSE(14 species)and HLSE(10 species),respectively.The highest values of species richness and biodiversity were recorded in desert pavements with MLSE,while low values of these ecological parameters were obtained in desert pavements with HLSE.Desert pavements with LLSE were characterized with the highest values of species abundances.Plant communities were dominated by chamaephytes,anemochorous,arido-active,and competitive stress-tolerant plants.The increase in LSE along the gradient from LLSE to HLSE induced significant changes in plant community variables including decreases in plant density,plant rarity,lifeform composition,morphological type,and aridity adaptation.Desert pavements with HLSE favor the degradation of vegetation and trigger biodiversity erosion. 展开更多
关键词 desert pavements hot and arid rangeland plant diversity land degradation sand encroachment plant functional trait Sahara Desert
在线阅读 下载PDF
Species-area relationship within and across functional groups at alpine grasslands on the northern Tibetan Plateau,China 被引量:1
11
作者 ZHOU Nan WU Jian-shuang +2 位作者 SHEN Zhen-xi ZHANG Xian-zhou YANG Peng-wan 《Journal of Mountain Science》 SCIE CSCD 2016年第2期265-275,共11页
The species-area relationship (SAR) is one of the most fundamental concepts in community ecology and is helpful for biodiversity conservation. However, few studies have systematically addressed this topic for differ... The species-area relationship (SAR) is one of the most fundamental concepts in community ecology and is helpful for biodiversity conservation. However, few studies have systematically addressed this topic for different alpine grassland types on the Tibetan Plateau, China. We explored whether the plant composition of different functional groups affects the manner in which species richness inereases with increasing area at scales ≤ 1.0 m^2. We also compared species richness (S) within and across forbs, legumes, sedges and grasses, with sampling subplot area (A) increasing from 0.0625 m^2 to 1.0 m^2 between alpine meadow and steppe communities. We applied a logarithmic function (S = b0 + b1 ln A) to determine the slope and intercept of SAR curves within and across functional groups. The results showed that the logarithmic relationship holds true between species richness and sampling area at these small scales. Both the intercept and slope of the logarithmic forbs-area curves are significantly higher than those for the three other functional groups (P 〈 0.05). Forb accounts for about 91.9 % of the variation in the intercept and 75.0% of the variation in the slope of the SAR curve when all functional groups' data were pooled together. Our results indicated that the different SAR patterns should be linked with species dispersal capabilities, environmental filtering, and life form composition within alpine grassland communities. Further studies on the relationship between species diversity and ecosystem functions should specify the differential responses of different functional groups to variations in climate and anthropogenic disturbances. 展开更多
关键词 Changtang Nature Reserve Complementary response Plant functional groups Plant life forms Species coexistence
原文传递
Unit 1 of Ling’ao Nuclear Power Plant phase II underwent hot functional test successfully
12
作者 Liu Chunsheng 《Electricity》 2010年第2期8-,共1页
On February 25, the Unit 1 of Ling’ao Nuclear Power Plant phase II underwent a 41-day-long hot functional test successfully with its major systems satisfying the requirements for
关键词 II TEST ao Nuclear Power Plant phase II underwent hot functional test successfully Unit 1 of Ling
在线阅读 下载PDF
The unimodal latitudinal pattern of K,Ca and Mg concentration and its potential drivers in forest foliage in eastern China
13
作者 Zhijuan Shi Sining Liu +2 位作者 Yahan Chen Dongdong Ding Wenxuan Han 《Forest Ecosystems》 SCIE CSCD 2024年第3期318-328,共11页
Potassium(K),calcium(Ca),and magnesium(Mg)are essential elements with important physiological functions in plants.Previous studies showed that leaf K,Ca,and Mg concentrations generally increase with increasing latitud... Potassium(K),calcium(Ca),and magnesium(Mg)are essential elements with important physiological functions in plants.Previous studies showed that leaf K,Ca,and Mg concentrations generally increase with increasing latitudes.However,recent meta-analyses suggested the possibility of a unimodal pattern in the concentrations of these elements along latitudinal gradients.The authenticity of this unimodal latitudinal pattern,however,requires validation through large-scale field experimental data,and exploration of the underlying mechanisms if the pattern is confirmed.Here,we collected leaves of common species of woody plants from 19 montane forests in the north-south transect of eastern China,including 322 species from 160 genera,67 families;and then determined leaf K,Ca,and Mg concentrations to explore their latitudinal patterns and driving mechanisms.Our results support unimodal latitudinal patterns for all three elements in woody plants across eastern China,with peak values at latitude 36.5±1.0°N.The shift of plant-functional-type compositions from evergreen broadleaves to deciduous broadleaves and to conifers along this latitudinal span was the key factor contributing to these patterns.Climatic factors,mainly temperature,and to a lesser extent solar radiation and precipitation,were the main environmental drivers.These factors,by altering the composition of plant communities and regulating plant physiological activities,influence the latitudinal patterns of plant nutrient concentrations.Our findings also suggest that high leaf K,Ca,and Mg concentrations may represent an adaptive strategy for plants to withstand water stress,which might be used to predict plant nutrient responses to climate changes at large scales,and broaden the understanding of biogeochemical cycling of K,Ca,and Mg. 展开更多
关键词 POTASSIUM Calcium Magnesium Mid-latitudes Latitudinal pattern Plant functional type Water stress Woody plant
在线阅读 下载PDF
Parameterization of Tree and Shrub Stem Wood Density Adaptions to Multiple Climate and Soil Factor Gradients
14
作者 Xiang SONG Jinxu LI Xiaodong ZENG 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第12期2419-2431,共13页
Wood density(WD)is an important quality and functional trait of wood.However,despite the relationships between WD and abiotic factors being important to model or predict spatial distributions of functional traits,as w... Wood density(WD)is an important quality and functional trait of wood.However,despite the relationships between WD and abiotic factors being important to model or predict spatial distributions of functional traits,as well as responses of vegetation to climate changes,in current Earth system models or dynamic global vegetation models(ESMs/DGVMs),WD is often oversimplified,being defined as a globally uniform constant either for all plant functional types(PFTs)or for each individual PFT.Such oversimplifications may lead to simulation biases in the morphology of woody PFTs,as well as ecosystem transition and vegetation-atmosphere interactions.Moreover,existing conclusions about the relationships between WD and abiotic factors drawn from field observations remain mixed,making model parameterization improvements difficult.This study systematically investigated the influences of climate and soil factors on WD across various PFTs.Optimal fitting models for predicting WD within each PFT were then constructed by utilizing our collated global database of 138604 observations.For WDs of tree PFTs,climate emerges as a more influential factor than soil characteristics,whereas for shrub PFTs the effects of climate and soil are of equivalent significance.Across all six PFTs,correlation coefficients between predictions by fitting models and observed WD range from 0.49 to 0.93.The predicted and observed WD exhibit good agreement across climate space.It is expected that the incorporation of our research findings into DGVMs will improve the simulation of tree height and forest fractional coverage,particularly in the central forest areas and forest transition zones. 展开更多
关键词 wood density abiotic factors fitting models plant functional type vegetation model
在线阅读 下载PDF
Thriving green havens in baking deserts:Plant diversity and species composition of urban plantations in the Sahara Desert
15
作者 Mohammed SOUDDI Haroun CHENCHOUNI M'hammed BOUALLALA 《Journal of Arid Land》 SCIE CSCD 2024年第9期1270-1287,共18页
Hot arid zones represent vital reservoirs of unique species and ecosystems,holding significant importance for biodiversity.This study aimed to explore the plant diversity associated with tree plantations in urban ecos... Hot arid zones represent vital reservoirs of unique species and ecosystems,holding significant importance for biodiversity.This study aimed to explore the plant diversity associated with tree plantations in urban ecosystems under hyper-arid climatic conditions in the Sahara Desert of Algeria.In May 2022,30 quadrats measuring 1 m^(2) each were established at the base of Phoenix dactylifera,Leucaena leucocephala,and Tamarix aphylla,corresponding to the dominant tree species in each of three plantations.In each quadrat,the plant quantitative inventory was conducted to measure plant diversity and similarity among the studied plantations.Based on this,we assessed the plant functional traits and rarity/abundance status of the flora.The findings revealed a diverse flora associated with the studied plantations,comprising 29 plant species grouped into 27 genera and 12 families.Notably,Poaceae(accounting for 30.8% of the flora),Asteraceae(25.0%),and Zygophyllaceae(21.6%)were well-represented.With an overall density of approximately 555 individuals/m^(2),Zygophyllum album(120 individuals/m^(2))and Polypogon monspeliensis(87 individuals/m^(2))emerged as the most abundant species.Functional trait analysis underscored the pivotal role of therophytes(constituting over 50.0% of the flora)and anemochorous species(33.0%-62.5%).Phytogeographic analysis emphasized the prevalence of the Saharo-Arabic element(constituting over 31.0% of the flora)and the Mediterranean Saharo-Arabic element(9.5%-21.5%).The Cosmopolitan element thrived under disturbance factors,recording percentages from 13.0% to 20.0% of the plant community.The rarity/abundance status of the flora emphasized the significance of rare,common,and very common species in the studied plantations.These findings could provide fundamental data for the effective control and management of biodiversity in hot hyper-arid urban ecosystems. 展开更多
关键词 urban plantations plant diversity plant functional traits rarity/abundance status Sahara Desert Algeria
在线阅读 下载PDF
Leaf nitrogen and phosphorus are more sensitive to environmental factors in dicots than in monocots,globally
16
作者 Miao Liu Tiancai Zhou Quansheng Fu 《Plant Diversity》 SCIE CAS CSCD 2024年第6期804-811,共8页
Leaf nitrogen(N)and phosphorus(P)levels provide critical strategies for plant adaptions to changing environments.However,it is unclear whether leaf N and P levels of different plant functional groups(e.g.,monocots and... Leaf nitrogen(N)and phosphorus(P)levels provide critical strategies for plant adaptions to changing environments.However,it is unclear whether leaf N and P levels of different plant functional groups(e.g.,monocots and dicots)respond to environmental gradients in a generalizable pattern.Here,we used a global database of leaf N and P to determine whether monocots and dicots might have evolved contrasting strategies to balance N and P in response to changes in climate and soil nutrient availability.Specifically,we characterized global patterns of leaf N,P and N/P ratio in monocots and dicots,and explored the sensitivity of stoichiometry to environment factors in these plants.Our results indicate that leaf N and P levels responded to environmental factors differently in monocots than in dicots.In dicots,variations of leaf N,P and N/P ratio were significantly correlated to temperature and precipitation.In monocots,leaf N/P ratio was not significantly affected by temperature or precipitation.This indicates that leaf N,P and N/P ratio are less sensitive to environmental dynamics in monocots.We also found that in both monocots and dicots N/P ratios are associated with the availability of soil total P rather than soil total N,indicating that P limitation on plant growth is pervasive globally.In addition,there were significant phylogenetic signals for leaf N(λ=0.65),P(λ=0.57)and N/P ratio(λ=0.46)in dicots,however,only significant phylogenetic signals for leaf P in monocots.Taken together,our findings indicate that monocots exhibit a“conservative”strategy(high stoichiometric homeostasis and weak phylogenetic signals in stoichiometry)to maintain their growth in stressful conditions with lower water and soil nutrients.In contrast,dicots exhibit lower stoichiometric homeostasis in changing environments because of their wide climate-soil niches and significant phylogenetic signals in stoichiometry. 展开更多
关键词 Adaptation and evolution Ecological stoichiometry Environmental gradients Global scale Niche hypervolume Plant functional groups
在线阅读 下载PDF
Host plant traits play a crucial role in shaping the composition of epiphytic microbiota in the arid desert,Northwest China
17
作者 ZHANG Jun ZHANG Yuanming ZHANG Qi 《Journal of Arid Land》 SCIE CSCD 2024年第5期699-724,共26页
Phyllosphere microorganisms are a crucial component of environmental microorganisms,highly influenced by host characteristics,and play a significant role in plant health and productivity.Nonetheless,the impact of host... Phyllosphere microorganisms are a crucial component of environmental microorganisms,highly influenced by host characteristics,and play a significant role in plant health and productivity.Nonetheless,the impact of host characteristics on shaping phyllosphere microbial communities of plants with different life forms remains ambiguous.Utilizing high-throughput sequencing technology,this study analyzed the diversity and community composition of phyllosphere epiphytic microorganisms(e.g.,bacteria and fungi)of various plant life forms in the hinterland of the Gurbantunggut Desert,Northwest China.Functional annotation of prokaryotic taxa(FAPROTAX)and fungi function guild(FUNGuild)were employed to assess the ecological functions of microorganisms and to investigate the role of stochastic and deterministic processes in shaping phyllosphere microbial communities.Result showed a diverse array of phyllosphere epiphytic microorganisms in the desert plants,with Proteobacteria,Cyanobacteria,and Actinobacteriota dominating bacterial community,while Ascomycota and Basidiomycota were prevalent in fungal community.Comparison across different plant life forms highlighted distinct microbial communities,indicating strong filtering effects by plant characteristics.FAPROTAX prediction identified intracellular parasites(accounting for 27.44%of bacterial community abundance),chemoheterotrophy(10.12%),and phototrophy(17.41%)as the main functions of epiphytic bacteria on leaves of different life form plants.FUNGuild prediction indicated that phyllosphere epiphytic fungi primarily served as Saprotrophs(81.77%),Pathotrophs(17.41%),and Symbiotrophs(0.82%).Co-occurrence network analysis demonstrated a predominance of positive correlations among different microbial taxa.Raup-Crick dissimilarity index analysis revealed that deterministic processes predominantly influenced phyllosphere bacterial and fungal community assembly.Variance partitioning analysis and random forest modeling suggested that plant leaf functional traits significantly impacted both bacterial and fungal community composition,with fungal community composition showing a closer association with leaf nutrients and physiology compared with bacterial community composition.The distinct responses of bacterial and fungal communities to plant traits were attributed to the differing properties of bacteria and fungi,such as bacteria having higher potential dispersal rates and broader ecological niches than fungi.Overall,the results indicate that phyllosphere bacterial and fungal communities undergo similar community assembly processes,with fungi being more influenced by plant characteristics than bacteria.These findings offer novel insights into the ecology of phyllosphere microbial communities of desert plants. 展开更多
关键词 phyllosphere epiphytic bacteria phyllosphere epiphytic fungi community structure community diversity functional diversity plant life form plant functional traits
在线阅读 下载PDF
Species prefer to shifting niche positions rather than expanding niche breadth to adapt to the heterogeneous karst forests
18
作者 Shiren Chen Zeyu Yang +11 位作者 Yuhang Wu Yong Li Longchenxi Meng Luyao Chen Yingqun Chen Xuerong Shao Mingzhen Sui Guangqi Zhang Danmei Chen Yuejun He Lipeng Zang Qingfu Liu 《Forest Ecosystems》 CSCD 2024年第6期940-950,共11页
The interspecific variations of plant functional traits can characterize the niche positions of species within communities,while the intraspecific variations can accurately display the species’niche breadth.Revealing... The interspecific variations of plant functional traits can characterize the niche positions of species within communities,while the intraspecific variations can accurately display the species’niche breadth.Revealing relative contributions of intra-and interspecific variations to plant functional community structure is crucial in understanding how the species coexist together,especially in species-diverse ecosystems.To explore how the intra-and interspecific variations of plant functional traits change along the successional pathway in heterogeneous conditions,we established a series of plots and measured main plant functional traits along the natural regeneration in karst forest ecosystems.By quantifying the intra-and interspecific variations of plant functional traits,we found that the changes in intraspecific variations were relatively lower compared to changes in interspecific variations throughout the natural regeneration.Further analysis showed that the community spatial structure contributed more to the intraspecific variations of plant functional traits,while the soil physicochemical properties contributed more to interspecific variations.Our study suggested that tree species might tend to narrow their niche and change the positions to release the niche overlap when faced with heterogeneous habitat conditions. 展开更多
关键词 Plant functional traits Intraspecific variation Natural regeneration Community spatial structure
在线阅读 下载PDF
Global patterns and driving factors of non-leaf litter carbon quality across plant functional types and environments
19
作者 Yuxin Huang Fuzhong Wu +7 位作者 Qiqian Wu Ji Yuan Petr Heděnec Qiao Yang Qiumeng Yi Kai Yue Nannan An Yan Peng 《Journal of Plant Ecology》 2025年第5期67-81,共15页
Carbon (C) quality of non-leaf litter is closely related to decomposition rate and plays a vital role in terrestrial ecosystem C sequestration.However,to date,the global patterns and influencing factors of non-leaf li... Carbon (C) quality of non-leaf litter is closely related to decomposition rate and plays a vital role in terrestrial ecosystem C sequestration.However,to date,the global patterns and influencing factors of non-leaf litter C quality remain unclear.Here,using meta-analysis method,we quantified the characteristics and driving factors of the initial C quality of non-leaf litter (bark,branch,flower,fruit,root,stem,and wood) with 996 observations collected from 279 independent publications,including the concentrations of total C,lignin,cellulose,and hemicellulose.Results showed that (1) only total C and cellulose concentrations significantly varied among different types of non-leaf litter;(2) C quality is higher (i.e.,lower concentration) in bark,branch,root,stem and wood litter from angiosperms than gymnosperms,from herbaceous than woody plants,from broadleaved than coniferous trees,and from arbuscular mycorrhizal (AM) than ectomycorrhizal (ECM) plants (except for hemicellulose concentration);and (3) the impacts of different geographic features on C quality of non-leaf litter differed among different litter types,while soil properties generally exhibited strong impacts.Overall,our results clearly show the global patterns of C quality and associated influencing factors for different types of non-leaf litter,which would be helpful for a better understanding of role of non-leaf litter in terrestrial ecosystem C cycling and for the improvement of C cycling models. 展开更多
关键词 total carbon LIGNOCELLULOSE plant functional type geographical feature CLIMATE soil properties DECOMPOSITION
原文传递
Integrating morphological,anatomical,and physiological traits to explain elevational distributions in Himalayan steppe and alpine plants
20
作者 Jan Binter Martin Macek Jiri Dolezal 《Journal of Integrative Plant Biology》 2025年第10期2643-2657,共15页
Understanding plant adaptive strategies that determine species distributions and ecological optima is crucial for predicting responses to global change drivers.While functional traits provide mechanistic insights into... Understanding plant adaptive strategies that determine species distributions and ecological optima is crucial for predicting responses to global change drivers.While functional traits provide mechanistic insights into distribution patterns,the specific trait syndromes that best predict elevational optima,particularly in less-studied regions such as the Himalayas,remain unclear.This study employs a novel hierarchical framework integrating morphological,anatomical,and physiological traits to explain elevational distributions among 310 plant species across a 3,500-m gradient(2,650–6,150 m).We analyzed 95,000 floristic records collected from4,062 localities spanning 80,000 km^(2) in Ladakh,NW Himalayas,India,to define elevational optima and link them with 17 functional traits from over 7,800individuals.We assessed the roles of moisture and cold limitations on trait–optima relationships by comparing two contrasting habitats(dry steppe and wetter,colder alpine).The predictive power of functional traits was more pronounced in the alpine species facing more extreme abiotic stress than the steppe species.Our results indicate that conservative life history strategies strongly predict elevational optima in alpine areas,while drought avoidance and competitive dominance are key in steppe habitats.Trait syndromes combining short stature,compact growth forms,enhanced storage tissues,and features promoting water-use efficiency(δ13C),freezing resistance(fructan levels),and nutrient retention(high root nitrogen and leaf phosphorus) explained 61% of the variation in alpine species' optima.Conversely,lifespan and clonal propagation determined the optima of steppe species at lower elevations.The study emphasizes the importance of functional trait combinations in determining elevational optima,highlighting that alpine species prioritize resource conservation and stress tolerance,while steppe species focus on competitive growth strategies.This multi-trait approach contrasts with previous research focusing on single trait–elevation relationships,providing novel insights into the diverse mechanisms shaping elevational distributions and offering valuable predictive power for assessing vegetation responses to future climate change. 展开更多
关键词 alpine plants climate change elevational gradient mountain ecosystems plant functional traits species distribution
原文传递
上一页 1 2 4 下一页 到第
使用帮助 返回顶部