期刊文献+
共找到251篇文章
< 1 2 13 >
每页显示 20 50 100
MART(Splitting-Merging Assisted Reliable)Independent Component Analysis for Extracting Accurate Brain Functional Networks 被引量:1
1
作者 Xingyu He Vince D.Calhoun Yuhui Du 《Neuroscience Bulletin》 SCIE CAS CSCD 2024年第7期905-920,共16页
Functional networks(FNs)hold significant promise in understanding brain function.Independent component analysis(ICA)has been applied in estimating FNs from functional magnetic resonance imaging(fMRI).However,determini... Functional networks(FNs)hold significant promise in understanding brain function.Independent component analysis(ICA)has been applied in estimating FNs from functional magnetic resonance imaging(fMRI).However,determining an optimal model order for ICA remains challenging,leading to criticism about the reliability of FN estimation.Here,we propose a SMART(splitting-merging assisted reliable)ICA method that automatically extracts reliable FNs by clustering independent components(ICs)obtained from multi-model-order ICA using a simplified graph while providing linkages among FNs deduced from different-model orders.We extend SMART ICA to multi-subject fMRI analysis,validating its effectiveness using simulated and real fMRI data.Based on simulated data,the method accurately estimates both group-common and group-unique components and demonstrates robustness to parameters.Using two age-matched cohorts of resting fMRI data comprising 1,950 healthy subjects,the resulting reliable group-level FNs are greatly similar between the two cohorts,and interestingly the subject-specific FNs show progressive changes while age increases.Furthermore,both small-scale and large-scale brain FN templates are provided as benchmarks for future studies.Taken together,SMART ICA can automatically obtain reliable FNs in analyzing multi-subject fMRI data,while also providing linkages between different FNs. 展开更多
关键词 Independent component analysis functional magnetic resonance imaging-Brain functional networks Clustering Multi-model-order
原文传递
Assessing target optical camouflage effects using brain functional networks:A feasibility study
2
作者 Zhou Yu Li Xue +4 位作者 Weidong Xu Jun Liu Qi Jia Jianghua Hu Jidong Wu 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第4期69-77,共9页
Brain functional networks model the brain's ability to exchange information across different regions,aiding in the understanding of the cognitive process of human visual attention during target searching,thereby c... Brain functional networks model the brain's ability to exchange information across different regions,aiding in the understanding of the cognitive process of human visual attention during target searching,thereby contributing to the advancement of camouflage evaluation.In this study,images with various camouflage effects were presented to observers to generate electroencephalography(EEG)signals,which were then used to construct a brain functional network.The topological parameters of the network were subsequently extracted and input into a machine learning model for training.The results indicate that most of the classifiers achieved accuracy rates exceeding 70%.Specifically,the Logistic algorithm achieved an accuracy of 81.67%.Therefore,it is possible to predict target camouflage effectiveness with high accuracy without the need to calculate discovery probability.The proposed method fully considers the aspects of human visual and cognitive processes,overcomes the subjectivity of human interpretation,and achieves stable and reliable accuracy. 展开更多
关键词 Camouflage effect evaluation Electroencephalography(EEG) Brain functional networks Machine learning
在线阅读 下载PDF
Prediction of the residual strength of clay using functional networks 被引量:6
3
作者 S.Z.Khan Shakti Suman +1 位作者 M.Pavani S.K.Das 《Geoscience Frontiers》 SCIE CAS CSCD 2016年第1期67-74,共8页
Landslides are common natural hazards occurring in most parts of the world and have considerable adverse economic effects. Residual shear strength of clay is one of the most important factors in the determination of s... Landslides are common natural hazards occurring in most parts of the world and have considerable adverse economic effects. Residual shear strength of clay is one of the most important factors in the determination of stability of slopes or landslides. This effect is more pronounced in sensitive clays which show large changes in shear strength from peak to residual states. This study analyses the prediction of the residual strength of clay based on a new prediction model, functional networks(FN) using data available in the literature. The performance of FN was compared with support vector machine(SVM) and artificial neural network(ANN) based on statistical parameters like correlation coefficient(R), Nash–Sutcliff coefficient of efficiency(E), absolute average error(AAE), maximum average error(MAE) and root mean square error(RMSE). Based on R and E parameters, FN is found to be a better prediction tool than ANN for the given data. However, the R and E values for FN are less than SVM. A prediction equation is presented that can be used by practicing geotechnical engineers. A sensitivity analysis is carried out to ascertain the importance of various inputs in the prediction of the output. 展开更多
关键词 LANDSLIDES Residual strength Index properties Prediction model functional networks
在线阅读 下载PDF
Brain Functional Networks with Dynamic Hypergraph Manifold Regularization for Classification of End-Stage Renal Disease Associated with Mild Cognitive Impairment
4
作者 Zhengtao Xi Chaofan Song +2 位作者 Jiahui Zheng Haifeng Shi Zhuqing Jiao 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第6期2243-2266,共24页
The structure and function of brain networks have been altered in patients with end-stage renal disease(ESRD).Manifold regularization(MR)only considers the pairing relationship between two brain regions and cannot rep... The structure and function of brain networks have been altered in patients with end-stage renal disease(ESRD).Manifold regularization(MR)only considers the pairing relationship between two brain regions and cannot represent functional interactions or higher-order relationships between multiple brain regions.To solve this issue,we developed a method to construct a dynamic brain functional network(DBFN)based on dynamic hypergraph MR(DHMR)and applied it to the classification of ESRD associated with mild cognitive impairment(ESRDaMCI).The construction of DBFN with Pearson’s correlation(PC)was transformed into an optimization model.Node convolution and hyperedge convolution superposition were adopted to dynamically modify the hypergraph structure,and then got the dynamic hypergraph to form the manifold regular terms of the dynamic hypergraph.The DHMR and L_(1) norm regularization were introduced into the PC-based optimization model to obtain the final DHMR-based DBFN(DDBFN).Experiment results demonstrated the validity of the DDBFN method by comparing the classification results with several related brain functional network construction methods.Our work not only improves better classification performance but also reveals the discriminative regions of ESRDaMCI,providing a reference for clinical research and auxiliary diagnosis of concomitant cognitive impairments. 展开更多
关键词 End-stage renal disease mild cognitive impairment brain functional network dynamic hypergraph manifold regularization CLASSIFICATION
在线阅读 下载PDF
Studies in Brain Functional Networks Based on Complex Networks
5
作者 Bin Nie Jinchi Zhang +2 位作者 Lanhua Zhang Yujuan Li Shaowei Xue 《Journal of Control Science and Engineering》 2014年第1期28-34,共7页
The purpose of the paper is to provide a way to model the brain functional network based on the complex networks with brain anatomical architecture. We introduce the brain structural and functional researches, and del... The purpose of the paper is to provide a way to model the brain functional network based on the complex networks with brain anatomical architecture. We introduce the brain structural and functional researches, and delineate the brain anatomical and functional networks based on complex networks, then we discuss the brain functional complex network models; at last we put forward the brain functional networks modeling process and the data processing with fMRI (functional magnetic resonance imaging) in detailed. 展开更多
关键词 Complex network brain functional network NEURON modeling.
在线阅读 下载PDF
Resting-state brain network remodeling after different nerve reconstruction surgeries:a functional magnetic resonance imaging study in brachial plexus injury rats
6
作者 Yunting Xiang Xiangxin Xing +6 位作者 Xuyun Hua Yuwen Zhang Xin Xue Jiajia Wu Mouxiong Zheng He Wang Jianguang Xu 《Neural Regeneration Research》 SCIE CAS 2025年第5期1495-1504,共10页
Distinct brain remodeling has been found after different nerve reconstruction strategies,including motor representation of the affected limb.However,differences among reconstruction strategies at the brain network lev... Distinct brain remodeling has been found after different nerve reconstruction strategies,including motor representation of the affected limb.However,differences among reconstruction strategies at the brain network level have not been elucidated.This study aimed to explore intranetwork changes related to altered peripheral neural pathways after different nerve reconstruction surgeries,including nerve repair,endto-end nerve transfer,and end-to-side nerve transfer.Sprague–Dawley rats underwent complete left brachial plexus transection and were divided into four equal groups of eight:no nerve repair,grafted nerve repair,phrenic nerve end-to-end transfer,and end-to-side transfer with a graft sutured to the anterior upper trunk.Resting-state brain functional magnetic resonance imaging was obtained 7 months after surgery.The independent component analysis algorithm was utilized to identify group-level network components of interest and extract resting-state functional connectivity values of each voxel within the component.Alterations in intra-network resting-state functional connectivity were compared among the groups.Target muscle reinnervation was assessed by behavioral observation(elbow flexion)and electromyography.The results showed that alterations in the sensorimotor and interoception networks were mostly related to changes in the peripheral neural pathway.Nerve repair was related to enhanced connectivity within the sensorimotor network,while end-to-side nerve transfer might be more beneficial for restoring control over the affected limb by the original motor representation.The thalamic-cortical pathway was enhanced within the interoception network after nerve repair and end-to-end nerve transfer.Brain areas related to cognition and emotion were enhanced after end-to-side nerve transfer.Our study revealed important brain networks related to different nerve reconstructions.These networks may be potential targets for enhancing motor recovery. 展开更多
关键词 brain functional networks end-to-end nerve transfer end-to-side nerve transfer independent component analysis nerve repair peripheral plexus injury resting-state functional connectivity
暂未订购
Functional Neural Networks in Human Brain Organoids
7
作者 Longjun Gu Hongwei Cai +3 位作者 Lei Chen Mingxia Gu Jason Tchieu Feng Guo 《Biomedical Engineering Frontiers》 2024年第1期89-98,共10页
Human brain organoids are 3-dimensional brain-like tissues derived from human pluripotent stem cells and hold promising potential for modeling neurological,psychiatric,and developmental disorders.While the molecular a... Human brain organoids are 3-dimensional brain-like tissues derived from human pluripotent stem cells and hold promising potential for modeling neurological,psychiatric,and developmental disorders.While the molecular and cellular aspects of human brain organoids have been intensively studied,their functional properties such as organoid neural networks(ONNs)are largely understudied.Here,we summarize recent research advances in understanding,characterization,and application of functional ONNs in human brain organoids.We first discuss the formation of ONNs and follow up with characterization strategies including microelectrode array(MEA)technology and calcium imaging.Moreover,we highlight recent studies utilizing ONNs to investigate neurological diseases such as Rett syndrome and Alzheimer’s disease.Finally,we provide our perspectives on the future challenges and opportunities for using ONNs in basic research and translational applications. 展开更多
关键词 functional neural networks calcium imaging human brain orga human brain organoids neurological diseases human pluripotent stem cells organoid neural networks onns microelectrode array technology
原文传递
Propofol-Induced Moderate-Deep Sedation Modulates Pediatric Neural Activity:A Functional Connectivity Study
8
作者 Qiang Zheng Yiyu Zhang +2 位作者 Lin Zhang Jian Wang Jungang Liu 《iRADIOLOGY》 2025年第1期61-71,共11页
Background:Previous studies have demonstrated the underlying neurophysiologic mechanism during general anesthesia in adults.However,the mechanism of propofol-induced moderate-deep sedation(PMDS)in modulating pediatric... Background:Previous studies have demonstrated the underlying neurophysiologic mechanism during general anesthesia in adults.However,the mechanism of propofol-induced moderate-deep sedation(PMDS)in modulating pediatric neural activity remains unknown,which therefore was investigated in the present study based on functional magnetic resonance imaging(fMRI).Methods:A total of 41 children(5.10�1.14 years,male/female 21/20)with fMRI were employed to construct the functional connectivity network(FCN).The network communication,graph-theoretic properties,and network hub identification were statistically analyzed(t test and Bonferroni correction)between sedation(21 children)and awake(20 children)groups.All involved analyses were established on the whole-brain FCN and seven sub-networks,which included the default mode network(DMN),dorsal attentional network(DAN),salience network(SAN),auditory network(AUD),visual network(VIS),subcortical network(SUB),and other networks(Other).Results:Under PMDS,significant decreases in network communication were observed between SUB-VIS,SUB-DAN,and VIS-DAN,and between brain regions from the temporal lobe,limbic system,and subcortical tissues.However,no significant decrease in thalamus-related communication was observed.Most graph-theoretic properties were significantly decreased in the sedation group,and all graphical features of the DMN showed significant group differences.The superior parietal cortex with different neurological functions was identified as a network hub that was not greatly affected.Conclusions:Although the children had a depressed level of neural activity under PMDS,the crucial thalamus-related communication was maintained,and the network hub superior parietal cortex stayed active,which highlighted clinical prac-tices that the human body under PMDS is still perceptible to external stimuli and can be awakened by sound or touch. 展开更多
关键词 functional connectivity network moderate-deep sedation neural activity PEDIATRIC PROPOFOL
暂未订购
Effective Edge-Cloud Interplay for NFV-Based Optical Metro-Access Networks Supporting IoT Services
9
作者 Jin Feiming Zhang Yukun +2 位作者 Li Hanxue Amr Tolba Zhang Tiantian 《China Communications》 2025年第4期117-128,共12页
In optical metro-access networks,Access Points(APs)and Data Centers(DCs)are located on the fiber ring.In the cloud-centric solution,a large number of Internet of Things(IoT)data pose an enormous burden on DCs,so the V... In optical metro-access networks,Access Points(APs)and Data Centers(DCs)are located on the fiber ring.In the cloud-centric solution,a large number of Internet of Things(IoT)data pose an enormous burden on DCs,so the Virtual Machines(VMs)cannot be successfully launched due to the server overload.In addition,transferring the data from the AP to the remote DC may cause an undesirable delivery delay.For this end,we propose a promising solution considering the interplay between the cloud DC and edge APs.More specifically,bringing the partial capability of computing in APs close to things can reduce the pressure of DCs while guaranteeing the expected Quality of Service(QoS).In this work,when the cloud DC resource becomes limited,especially for delay sensitive but not computing-dependent IoT applications,we degrade their VMs and migrate them to edge APs instead of the remote DC.To avoid excessive VM degradation and computing offloading,we derive appropriate VM degradation coefficients based on classic microeconomic theory.Simulation results demonstrate that our algorithms improve the service providers'utility with the ratio from 34%to 89%over traditional cloud-centric solutions. 展开更多
关键词 computing offloading edge-cloud interplay network function virtualization optical metroaccess network service degradability
在线阅读 下载PDF
Extracting Sub-Networks from Brain Functional Network Using Graph Regularized Nonnegative Matrix Factorization 被引量:1
10
作者 Zhuqing Jiao Yixin Ji +1 位作者 Tingxuan Jiao Shuihua Wang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2020年第5期845-871,共27页
Currently,functional connectomes constructed from neuroimaging data have emerged as a powerful tool in identifying brain disorders.If one brain disease just manifests as some cognitive dysfunction,it means that the di... Currently,functional connectomes constructed from neuroimaging data have emerged as a powerful tool in identifying brain disorders.If one brain disease just manifests as some cognitive dysfunction,it means that the disease may affect some local connectivity in the brain functional network.That is,there are functional abnormalities in the sub-network.Therefore,it is crucial to accurately identify them in pathological diagnosis.To solve these problems,we proposed a sub-network extraction method based on graph regularization nonnegative matrix factorization(GNMF).The dynamic functional networks of normal subjects and early mild cognitive impairment(eMCI)subjects were vectorized and the functional connection vectors(FCV)were assembled to aggregation matrices.Then GNMF was applied to factorize the aggregation matrix to get the base matrix,in which the column vectors were restored to a common sub-network and a distinctive sub-network,and visualization and statistical analysis were conducted on the two sub-networks,respectively.Experimental results demonstrated that,compared with other matrix factorization methods,the proposed method can more obviously reflect the similarity between the common subnetwork of eMCI subjects and normal subjects,as well as the difference between the distinctive sub-network of eMCI subjects and normal subjects,Therefore,the high-dimensional features in brain functional networks can be best represented locally in the lowdimensional space,which provides a new idea for studying brain functional connectomes. 展开更多
关键词 Brain functional network sub-network functional connectivity graph regularized nonnegative matrix factorization(GNMF) aggregation matrix
在线阅读 下载PDF
Altered functional connectivity networks of hippocampal subregions in remitted late-onset depression:a longitudinal resting-state study 被引量:4
11
作者 Zan Wang Yonggui Yuan +4 位作者 Feng Bai Hao Shu Jiayong You Lingjiang Li Zhijun Zhang 《Neuroscience Bulletin》 SCIE CAS CSCD 2015年第1期13-21,共9页
The regional specifi city of hippocampal abnormalities in late-life depression(LLD) has been demonstrated in previous studies. In this study,we sought to examine the functional connectivity(FC) patterns of hippoca... The regional specifi city of hippocampal abnormalities in late-life depression(LLD) has been demonstrated in previous studies. In this study,we sought to examine the functional connectivity(FC) patterns of hippocampal subregions in remitted late-onset depression(r LOD),a special subtype of LLD. Fourteen r LOD patients and 18 healthy controls underwent clinical and cognitive evaluations as well as resting-state functional magnetic resonance imaging scans at baseline and at ~21 months of follow-up. Each hippocampus was divided into three parts,the cornu ammonis(CA),the dentate gyrus,and the subicular complex,and then six seed-based hippocampal subregional networks were established.Longitudinal changes of the six networks over time were directly compared between the rL OD and control groups. From baseline to follow-up,the r LOD group showed a greater decline in connectivity of the left CA to the bilateral posterior cingulate cortex/precuneus(PCC/PCUN),but showed increased connectivity of the right hippocampal subregional networks with the frontal cortex(bilateral medial prefrontal cortex/anterior cingulate cortex and supplementary motor area). Further correlative analyses revealed thatthe longitudinal changes in FC between the left CA and PCC/PCUN were positively correlated with longitudinal changes in the Symbol Digit Modalities Test(r = 0.624,P = 0.017) and the Digit Span Test(r = 0.545,P = 0.044) scores in the r LOD group. These results may provide insights into the neurobiological mechanism underlying the cognitive dysfunction in r LOD patients. 展开更多
关键词 remitted late-onset depression hippocampal subregional network functional connectivity functional magnetic resonance imaging cognitive dysfunction
原文传递
Service Function Chain Migration in LEO Satellite Networks 被引量:1
12
作者 Geng Yuhui Wang Niwei +5 位作者 Chen Xi Xu Xiaofan Zhou Changsheng Yang Junyi Xiao Zhenyu Cao Xianbin 《China Communications》 SCIE CSCD 2024年第3期247-259,共13页
With the advancements of software defined network(SDN)and network function virtualization(NFV),service function chain(SFC)placement becomes a crucial enabler for flexible resource scheduling in low earth orbit(LEO)sat... With the advancements of software defined network(SDN)and network function virtualization(NFV),service function chain(SFC)placement becomes a crucial enabler for flexible resource scheduling in low earth orbit(LEO)satellite networks.While due to the scarcity of bandwidth resources and dynamic topology of LEO satellites,the static SFC placement schemes may cause performance degradation,resource waste and even service failure.In this paper,we consider migration and establish an online migration model,especially considering the dynamic topology.Given the scarcity of bandwidth resources,the model aims to maximize the total number of accepted SFCs while incurring as little bandwidth cost of SFC transmission and migration as possible.Due to its NP-hardness,we propose a heuristic minimized dynamic SFC migration(MDSM)algorithm that only triggers the migration procedure when new SFCs are rejected.Simulation results demonstrate that MDSM achieves a performance close to the upper bound with lower complexity. 展开更多
关键词 network function virtualization(NFV) resource allocation satellite networks service function chain(SFC) SFC migration SFC placement soft-ware defined network(SDN)
在线阅读 下载PDF
Consistent and Specific Multi-View Functional Brain Networks Fusion for Autism Spectrum Disorder Diagnosis
13
作者 Chaojun Zhang Chengcheng Wang +1 位作者 Limei Zhang Yunling Ma 《Journal of Applied Mathematics and Physics》 2023年第7期1914-1929,共16页
Functional brain networks (FBN) based on resting-state functional magnetic resonance imaging (rs-fMRI) have become an important tool for exploring underlying organization patterns in the brain, which can provide an ob... Functional brain networks (FBN) based on resting-state functional magnetic resonance imaging (rs-fMRI) have become an important tool for exploring underlying organization patterns in the brain, which can provide an objective basis for brain disorders such as autistic spectrum disorder (ASD). Due to its importance, researchers have proposed a number of FBN estimation methods. However, most existing methods only model a type of functional connection relationship between brain regions-of-interest (ROIs), such as partial correlation or full correlation, which is difficult to fully capture the subtle connections among ROIs since these connections are extremely complex. Motivated by the multi-view learning, in this study we propose a novel Consistent and Specific Multi-view FBNs Fusion (CSMF) approach. Concretely, we first construct multi-view FBNs (i.e., multiple types of FBNs modelling various relationships among ROIs), and then these FBNs are decomposed into a consistent representation matrix and their own specific matrices which capture their common and unique information, respectively. Lastly, to obtain a better brain representation, it is fusing the consistent and specific representation matrices in the latent representation spaces of FBNs, but not directly fusing the original FBNs. This potentially makes it more easily to find the comprehensively brain connections. The experimental results of ASD identification on the ABIDE datasets validate the effectiveness of our proposed method compared to several state-of-the-art methods. Our proposed CSMF method achieved 72.8% and 76.67% classification performance on the ABIDE dataset. 展开更多
关键词 functional Brain Network FUSION CONSISTENCY SPECIFICITY Autism Spectrum Disorder
在线阅读 下载PDF
Brain Functional Network Changes in Patients with Poststroke Cognitive Impairment Following Acupuncture Therapy
14
作者 Ran Wang Nian Liu +4 位作者 Hao Xu Peng Zhang Xiaohua Huang Lin Yang Xiaoming Zhang 《Health》 2024年第9期856-871,共16页
Background: The mechanisms by which acupuncture affects poststroke cognitive impairment (PSCI) remain unclear. Objective: To investigate brain functional network (BFN) changes in patients with PSCI after acupuncture t... Background: The mechanisms by which acupuncture affects poststroke cognitive impairment (PSCI) remain unclear. Objective: To investigate brain functional network (BFN) changes in patients with PSCI after acupuncture therapy. Methods: Twenty-two PSCI patients who underwent acupuncture therapy in our hospital were enrolled as research subjects. Another 14 people matched for age, sex, and education level were included in the normal control (HC) group. All the subjects underwent resting-state functional magnetic resonance imaging (rs-fMRI) scans;the PSCI patients underwent one scan before acupuncture therapy and another after. The network metric difference between PSCI patients and HCs was analyzed via the independent-sample t test, whereas the paired-sample t test was employed to analyze the network metric changes in PSCI patients before vs. after treatment. Results: Small-world network attributes were observed in both groups for sparsities between 0.1 and 0.28. Compared with the HC group, the PSCI group presented significantly lower values for the global topological properties (γ, Cp, and Eloc) of the brain;significantly greater values for the nodal attributes of betweenness centrality in the CUN. L and the HES. R, degree centrality in the SFGdor. L, PCG. L, IPL. L, and HES. R, and nodal local efficiency in the ORBsup. R, ORBsupmed. R, DCG. L, SMG. R, and TPOsup. L;and decreased degree centrality in the MFG. R, IFGoperc. R, and SOG. R. After treatment, PSCI patients presented increased degree centrality in the LING.L, LING.R, and IOG. L and nodal local efficiency in PHG. L, IOG. R, FFG. L, and the HES. L, and decreased betweenness centrality in the PCG. L and CUN. L, degree centrality in the ORBsupmed. R, and nodal local efficiency in ANG. R. Conclusion: Cognitive decline in PSCI patients may be related to BFN disorders;acupuncture therapy may modulate the topological properties of the BFNs of PSCI patients. 展开更多
关键词 Cognitive Decline Poststroke Cognitive Impairment functional Magnetic Resonance Imaging Brain functional Network Graph Theoretical Analysis
暂未订购
MOTOR CORTEX NETWORKS IN STROKE PATIENTS DURING RECOVERY WITH fMRI 被引量:3
15
作者 郝冬梅 秦文 +2 位作者 于春水 董会卿 刘楠 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2010年第1期55-61,共7页
To investigate changes of functional activation areas of the cerebral cortex and the connectivity of motor cortex networks (MCNs) in stroke patients during the recovery, five patients with the infarct in their left ... To investigate changes of functional activation areas of the cerebral cortex and the connectivity of motor cortex networks (MCNs) in stroke patients during the recovery, five patients with the infarct in their left hemispheres are recruited. Functional magnetic resonance imaging (fMRI) is performed in the second, fourth, eighth, and sixteenth weeks after the stroke. Images are analyzed using the professional software SPM5 to obtain the bilateral activation of the motor cortex in left and right handgrip tests. MCN data are extracted from the active areas, and the structural and functional characteristic parameters are computed to indicate the connectivity of the network. Results show that the ipsilesional hemisphere recruits more areas with less active extent during the handgrip test, compared with the contralesional hemisphere. MCN shows a higher overall degree of statistical independence and more statistical dependence among motor areas with the gradual recovery. It can help physicians understand the recovery mechanism. 展开更多
关键词 BRAIN RECOVERY STROKE motor cortex network functional magnetic resonance imaging (fMRI)
暂未订购
ADAPTIVE PREDICTIVE CONTROL OF NEAR-SPACE VEHICLE USING FUNCTIONAL LINK NETWORK 被引量:3
16
作者 都延丽 吴庆宪 姜长生 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2010年第2期148-154,共7页
A novel nonlinear adaptive control method is presented for a near-space hypersonic vehicle (NHV) in the presence of strong uncertainties and disturbances. The control law consists of the optimal generalized predicti... A novel nonlinear adaptive control method is presented for a near-space hypersonic vehicle (NHV) in the presence of strong uncertainties and disturbances. The control law consists of the optimal generalized predictive controller (OGPC) and the functional link network (FLN) direct adaptive law. OGPC is a continuous-time nonlinear predictive control law. The FLN adaptive law is used to offset the unknown uncertainties and disturbances in a flight through the online learning. The learning process does not need any offline training phase. The stability analyses of the NHV close-loop system are provided and it is proved that the system error and the weight learning error are uniformly ultimately hounded. Simulation results show the satisfactory performance of the con- troller for the attitude tracking. 展开更多
关键词 predictive control systems adaptive control systems UNCERTAINTY functional link network near-space vehicle
在线阅读 下载PDF
rTMS Improves Cognitive Function and Brain Network Connectivity in Patients With Alzheimer’s Disease
17
作者 XU Gui-Zhi LIU Lin +4 位作者 GUO Miao-Miao WANG Tian GAO Jiao-Jiao JI Yong WANG Pan 《生物化学与生物物理进展》 北大核心 2025年第8期2131-2145,共15页
Objective Repetitive transcranial magnetic stimulation(rTMS)has demonstrated efficacy in enhancing neurocognitive performance in Alzheimer’s disease(AD),but the neurobiological mechanisms linking synaptic pathology,n... Objective Repetitive transcranial magnetic stimulation(rTMS)has demonstrated efficacy in enhancing neurocognitive performance in Alzheimer’s disease(AD),but the neurobiological mechanisms linking synaptic pathology,neural oscillatory dynamics,and brain network reorganization remain unclear.This investigation seeks to systematically evaluate the therapeutic potential of rTMS as a non-invasive neuromodulatory intervention through a multimodal framework integrating clinical assessments,molecular profiling,and neurophysiological monitoring.Methods In this prospective double-blind trial,12 AD patients underwent a 14-day protocol of 20 Hz rTMS,with comprehensive multimodal assessments performed pre-and postintervention.Cognitive functioning was quantified using the mini-mental state examination(MMSE)and Montreal cognitive assessment(MOCA),while daily living capacities and neuropsychiatric profiles were respectively evaluated through the activities of daily living(ADL)scale and combined neuropsychiatric inventory(NPI)-Hamilton depression rating scale(HAMD).Peripheral blood biomarkers,specifically Aβ1-40 and phosphorylated tau(p-tau181),were analyzed to investigate the effects of rTMS on molecular metabolism.Spectral power analysis was employed to investigate rTMS-induced modulations of neural rhythms in AD patients,while brain network analyses incorporating topological properties were conducted to examine stimulus-driven network reorganization.Furthermore,systematic assessment of correlations between cognitive scale scores,blood biomarkers,and network characteristics was performed to elucidate cross-modal therapeutic associations.Results Clinically,MMSE and MOCA scores improved significantly(P<0.05).Biomarker showed that Aβ1-40 level increased(P<0.05),contrasting with p-tau181 reduction.Moreover,the levels of Aβ1-40 were positively correlated with MMSE and MOCA scores.Post-intervention analyses revealed significant modulations in oscillatory power,characterized by pronounced reductions in delta(P<0.05)and theta bands(P<0.05),while concurrent enhancements were observed in alpha,beta,and gamma band activities(all P<0.05).Network analysis revealed frequency-specific reorganization:clustering coefficients were significantly decreased in delta,theta,and alpha bands(P<0.05),while global efficiency improvement was exclusively detected in the delta band(P<0.05).The alpha band demonstrated concurrent increases in average nodal degree(P<0.05)and characteristic path length reduction(P<0.05).Further research findings indicate that the changes in the clinical scale HAMD scores before and after rTMS stimulation are negatively correlated with the changes in the blood biomarkers Aβ1-40 and p-tau181.Additionally,the changes in the clinical scales MMSE and MoCA scores were negatively correlated with the changes in the node degree of the alpha frequency band and negatively correlated with the clustering coefficient of the delta frequency band.However,the changes in MMSE scores are positively correlated with the changes in global efficiency of both the delta and alpha frequency bands.Conclusion 20 Hz rTMS targeting dorsolateral prefrontal cortex(DLPFC)significantly improves cognitive function and enhances the metabolic clearance ofβ-amyloid and tau proteins in AD patients.This neurotherapeutic effect is mechanistically associated with rTMS-mediated frequency-selective neuromodulation,which enhances the connectivity of oscillatory networks through improved neuronal synchronization and optimized topological organization of functional brain networks.These findings not only support the efficacy of rTMS as an adjunctive therapy for AD but also underscore the importance of employing multiple assessment methods—including clinical scales,blood biomarkers,and EEG——in understanding and monitoring the progression of AD.This research provides a significant theoretical foundation and empirical evidence for further exploration of rTMS applications in AD treatment. 展开更多
关键词 transcranial magnetic stimulation Alzheimer’s disease power spectral density ELECTROENCEPHALOGRAM brain functional network
原文传递
Prediction of coal ash fusion temperature using constructive-pruning hybrid method for RBF networks
18
作者 丁维明 吴小丽 魏海坤 《Journal of Southeast University(English Edition)》 EI CAS 2011年第2期159-163,共5页
A constructive-pruning hybrid method (CPHM) for radial basis function (RBF) networks is proposed to improve the prediction accuracy of ash fusion temperatures (AFT). The CPHM incorporates the advantages of the c... A constructive-pruning hybrid method (CPHM) for radial basis function (RBF) networks is proposed to improve the prediction accuracy of ash fusion temperatures (AFT). The CPHM incorporates the advantages of the construction algorithm and the pruning algorithm of neural networks, and the training process of the CPHM is divided into two stages: rough tuning and fine tuning. In rough tuning, new hidden units are added to the current network until some performance index is satisfied. In fine tuning, the network structure and the model parameters are further adjusted. And, based on components of coal ash, a model using the CPHM is established to predict the AFT. The results show that the CPHM prediction model is characterized by its high precision, compact network structure, as well as strong generalization ability and robustness. 展开更多
关键词 radial basis function (RBF) networks functionapproximation ash fusion temperature
在线阅读 下载PDF
Generalization Capabilities of Feedforward Neural Networks for Pattern Recognition
19
作者 黄德双 《Journal of Beijing Institute of Technology》 EI CAS 1996年第2期192+184-192,共10页
This paper studies the generalization capability of feedforward neural networks (FNN).The mechanism of FNNs for classification is investigated from the geometric and probabilistic viewpoints. It is pointed out that th... This paper studies the generalization capability of feedforward neural networks (FNN).The mechanism of FNNs for classification is investigated from the geometric and probabilistic viewpoints. It is pointed out that the outputs of the output layer in the FNNs for classification correspond to the estimates of posteriori probability of the input pattern samples with desired outputs 1 or 0. The theorem for the generalized kernel function in the radial basis function networks (RBFN) is given. For an 2-layer perceptron network (2-LPN). an idea of using extended samples to improve generalization capability is proposed. Finally. the experimental results of radar target classification are given to verify the generaliztion capability of the RBFNs. 展开更多
关键词 feedforward neural networks radial basis function networks multilayer perceptronnetworks generalization capability radar target classification
在线阅读 下载PDF
Mapping Brain-Wide Neural Activity of Murine Attentional Processing in the Five-Choice Serial Reaction Time Task
20
作者 Yin Yue Youming Tan +4 位作者 Pin Yang Shu Zhang Hongzhen Pan Yiran Lang Zengqiang Yuan 《Neuroscience Bulletin》 2025年第5期741-758,共18页
Attention is the cornerstone of effective functioning in a complex and information-rich world.While the neural activity of attention has been extensively studied in the cortex,the brain-wide neural activity patterns a... Attention is the cornerstone of effective functioning in a complex and information-rich world.While the neural activity of attention has been extensively studied in the cortex,the brain-wide neural activity patterns are largely unknown.In this study,we conducted a comprehensive analysis of neural activity across the mouse brain during attentional processing using EEG and c-Fos staining,utilizing hierarchical clustering and c-Fos-based functional network analysis to evaluate the c-Fos activation patterns.Our findings reveal that a wide range of brain regions are activated,notably in the high-order cortex,thalamus,and brain stem regions involved in advanced cognition and arousal regulation,with the central lateral nucleus of the thalamus as a strong hub,suggesting the crucial role of the thalamus in attention control.These results provide valuable insights into the neural network mechanisms underlying attention,offering a foundation for formulating functional hypotheses and conducting circuit-level testing. 展开更多
关键词 ATTENTION C-FOS 5-CSRTT EEG functional network
原文传递
上一页 1 2 13 下一页 到第
使用帮助 返回顶部