The cochlea is one of the most complex organs in the human body,exhibiting a complex interplay of characteristics in acoustic,mechanical,electrical,and biological functions.Functional cochlea models are an essential p...The cochlea is one of the most complex organs in the human body,exhibiting a complex interplay of characteristics in acoustic,mechanical,electrical,and biological functions.Functional cochlea models are an essential platform for studying hearing mechanics and are crucial for developing next-generation auditory prostheses and artificial hearing systems for sensorineural hearing restoration.Recent advances in additive manufacturing,organ-on-a-chip models,drug delivery platforms,and artificial intelligence have provided valuable insights into how to manufacture artificial cochlea models that more accurately replicate the complex anatomy and physiology of the inner ear.This paper reviews recent advancements in the applications of advanced manufacturing techniques in reproducing the physical,biological,and intelligent functions of the cochlea.It also outlines the current challenges to developing mechanically,electrically,and anatomically accurate functional models of the inner ear.Finally,this review identifies the major requirements and outlook for impactful research in this field going forward.Through interdisciplinary collaboration and innovation,these functional cochlea models are poised to drive significant advancements in hearing treatments,and ultimately enhance the quality of life for individuals with hearing loss.展开更多
Quantifying the post-earthquake functional recovery of railway stations presents significant challenges.This paper first establishes a post-earthquake function calculation method for railway stations,encompassing the ...Quantifying the post-earthquake functional recovery of railway stations presents significant challenges.This paper first establishes a post-earthquake function calculation method for railway stations,encompassing the establishment of relationships between the station’s function and the damage state,function loss,and failure probability of components and professional equipment in each layer.Also,the“4 stages-6 sequences”post-earthquake repair method is present,taking into account the functional and structural characteristics of railway stations.Additionally,a novel piecewise function for the post-earthquake functional dynamic recovery of railway stations is developed.A case study is conducted on a typical railway station to demonstrate the analysis procedure.Results indicate that under fortification,rare,and extremely rare earthquake scenarios,the interlayer drift ratio(IDR)of the railway station were 1/276,1/143,and 1/52,respectively,and corresponding peak floor acceleration(PFA)were 6.31 m/s^(2),7.82 m/s^(2),and 8.57 m/s^(2),respectively.The post-earthquake function of the railway station was 93.21%,82.33%,and 64.16%of its initial function.The repair times were 6.66 days,18.65 days,and 37.42 days.The displacement-sensitive,non-structural components were identified as the most vulnerable to damage.And the first repair stage(R_(1))which was mainly used to repair structural components and non-structural transport components,accounted for the highest proportion of total repair time.展开更多
This paper proposed a new systematic approach-functional evidential reasoning model(FERM) for exploring hazardous chemical operational accidents under uncertainty. First, FERM was introduced to identify various causal...This paper proposed a new systematic approach-functional evidential reasoning model(FERM) for exploring hazardous chemical operational accidents under uncertainty. First, FERM was introduced to identify various causal factors and their performance changes in hazardous chemical operational accidents, along with determining the functional failure link relationships. Subsequently, FERM was employed to elucidate both qualitative and quantitative operational accident information within a unified framework, which could be regarded as the input of information fusion to obtain the fuzzy belief distribution of each cause factor. Finally, the derived risk values of the causal factors were ranked while constructing multi-level accident causation chains to unveil the weak links in system functionality and the primary roots of operational accidents. Using the specific case of the “1·15” major explosion and fire accident at Liaoning Panjin Haoye Chemical Co., Ltd., seven causal factors and their corresponding performance changes were identified. Additionally, five accident causation chains were uncovered based on the fuzzy joint distribution of the functional assessment level(FAL) and reliability distribution(RD),revealing an overall increase in risk along the accident evolution path. The research findings demonstrated that FERM enabled the effective characterization, rational quantification and accurate analysis of the inherent uncertainties in hazardous chemical operational accident risks from a systemic perspective.展开更多
High performance electromechanical equipment is widely used in various fields, such as national defense, industry and so on [ 1]. In addition, the technical level of high performance electromechanical equipment is the...High performance electromechanical equipment is widely used in various fields, such as national defense, industry and so on [ 1]. In addition, the technical level of high performance electromechanical equipment is the embodiment of the national level of science and technology.展开更多
Empirical functional models for the maximum and minimum detectable deformation gradient of PALSAR interferometry were established based on coherence and discrete look numbers. Then, a least square regression method wa...Empirical functional models for the maximum and minimum detectable deformation gradient of PALSAR interferometry were established based on coherence and discrete look numbers. Then, a least square regression method was used to fit the model coefficients and thus obtain the generalized functional models for both coherence and look numbers. The experimental results with ALOS PALSAR data of Wenchuan earthquake of China show that the new model works well for judging whether the deformation gradient can be detected by the D-InSAR technology or not. The results can help researchers to choose PALSAR data and to configure processing parameters, and also benefit the interpretation of the measured surface deformation.展开更多
Biological inspirations are good design mimicry resources. This paper proposes a function based approach for modeling and transformation of bio-inspiration design knowledge. A general functional modeling method for bi...Biological inspirations are good design mimicry resources. This paper proposes a function based approach for modeling and transformation of bio-inspiration design knowledge. A general functional modeling method for biological domain and engineering domain design knowledge is introduced. Functional similarity based bio-inspiration transformation between biological domain and engineering domain is proposed. The biological function topology transfer and analog solution recomposition are also discussed in this paper.展开更多
The successful launch of the Cyclone Global Navigation Satellite System(CYGNSS)has opened an unprecedented opportunity for rapid observation of Wind Speed(WS)across vast oceanic regions.However,considerable debate per...The successful launch of the Cyclone Global Navigation Satellite System(CYGNSS)has opened an unprecedented opportunity for rapid observation of Wind Speed(WS)across vast oceanic regions.However,considerable debate persists over the choice of input feature parameters for WS retrieval models based on CYGNSS data,and enhancing the accuracy of WS retrieval is a focal point of current research.To address the aforementioned problems,this study establishes a comprehensive CYGNSS wind speed retrieval feature parameter set through an in-depth analysis of CYGNSS data,thereby providing a reference and basis for selecting input features for WS retrieval models.Through this analysis,we identified three crucial observational features:the normalized bistatic radar cross section,leading edge slope,and signal-to-noise ratio.Using these features,we developed a WS retrieval model based on the geophysical model function for CYGNSS data.Furthermore,acknowledging the intrinsic interconnection between wind and wave dynamics,we incorporate significant wave height into the WS retrieval model to further improve the WS retrieval accuracy.Comparative assessments with datasets from the European Centre for Medium-Range Weather Forecasts,the Chinese-French Oceanography Satellite Scatterometer,and buoy WS data underscore the high accuracy of our model,demonstrating its utility as a valuable tool for research in ocean dynamics and marine environmental prediction.展开更多
The interstand tension control is one of the most important ways to meet tight tolerances for strip product quality during tandem cold rolling process. Using coordinate analysis and parabolic approximation for the mas...The interstand tension control is one of the most important ways to meet tight tolerances for strip product quality during tandem cold rolling process. Using coordinate analysis and parabolic approximation for the mass flow balance principle, the strip velocities eliminating the use of forward slips and backward slips were calculated. In order to reduce the effect of roll eccentricity on the tension measurement, a filter based on bilinear transformation was de- signed. Applying a first-order Taylor series approximation, the transfer function matrix model of interstand tension stress was derived. The actual measurements on-site and the final calculation results showed that the established model had high calculation accuracy and was beneficial for interstand tension control of random cold rolling process.展开更多
From the process of sedimentation the mathematical relationships among deposition Volume and powder properties as well as sedimentation parameters were deduced. Based on the formula a mathematical model was set up and...From the process of sedimentation the mathematical relationships among deposition Volume and powder properties as well as sedimentation parameters were deduced. Based on the formula a mathematical model was set up and simulated through the computer. At last the validity of mathematical model was supported by the representative experiment on Ti-Mo system FGM prepared by co-sedimentation.展开更多
The Auto-Transformer Rectifier Unit(ATRU) is one preferred solution for high-power AC/DC power conversion in aircraft. This is mainly due to its simple structure, high reliability and reduced k VA ratings. Indeed, t...The Auto-Transformer Rectifier Unit(ATRU) is one preferred solution for high-power AC/DC power conversion in aircraft. This is mainly due to its simple structure, high reliability and reduced k VA ratings. Indeed, the ATRU has become a preferred AC/DC solution to supply power to the electric environment control system on-board future aircraft. In this paper, a general modelling method for ATRUs is introduced. The developed model is based on the fact that the DC voltage and current are strongly related to the voltage and current vectors at the AC terminals of ATRUs. In this paper, we carry on our research in modelling symmetric 18-pulse ATRUs and develop a generic modelling technique. The developed generic model can study not only symmetric but also asymmetric ATRUs. An 18-pulse asymmetric ATRU is used to demonstrate the accuracy and efficiency of the developed model by comparing with corresponding detailed switching SABER models provided by our industrial partner. The functional models also allow accelerated and accurate simulations and thus enable whole-scale more-electric aircraft electrical power system studies in the future.展开更多
Plant capacity for water storage leads to time lags between basal stem sap flow and transpiration in various woody plants. Internal water storage depends on the sizes of woody plants. However, the changes and its infl...Plant capacity for water storage leads to time lags between basal stem sap flow and transpiration in various woody plants. Internal water storage depends on the sizes of woody plants. However, the changes and its influencing factors in time lags of basal stem flow during the development of herbaceous plants including crops remain unclear. A field experiment was conducted in an arid region of Northwest China to examine the time lag characteristics of sap flow in seed-maize and to calibrate the transpiration modeling. Cross-correlation analysis was used to estimate the time lags between stem sap flow and meteorological driving factors including solar radiation(R_s) and vapor pressure deficit of the air(VPD_(air)). Results indicate that the changes in seed-maize stem sap flow consistently lagged behind the changes in R_s and preceded the changes in VPD_(air) both on hourly and daily scales, suggesting that light-mediated stomatal closures drove sap flow responses. The time lag in the maize's sap flow differed significantly during different growth stages and the difference was potentially due to developmental changes in capacitance tissue and/or xylem during ontogenesis. The time lags between stem sap flow and R_s in both female plants and male plants corresponded to plant use of stored water and were independent of total plant water use. Time lags of sap flow were always longer in male plants than in female plants. Theoretically, dry soil may decrease the speed by which sap flow adjusts ahead of shifts in VPD_(air) in comparison with wet soil and also increase the speed by which sap flow adjusts to R_s. However, sap flow lags that were associated with R_s before irrigation and after irrigation in female plants did not shift. Time series analysis method provided better results for simulating seed-maize sap flow with advantages of allowing for fewer variables to be included. This approach would be helpful in improving the accuracy of estimation for canopy transpiration and conductance using meteorological measurements.展开更多
This paper presents a hybrid graded element model for the transient heat conduction problem in functionally graded materials (FGMs). First, a Laplace transform approach is used to handle the time variable. Then, a f...This paper presents a hybrid graded element model for the transient heat conduction problem in functionally graded materials (FGMs). First, a Laplace transform approach is used to handle the time variable. Then, a fundamental solution in Laplace space for FGMs is constructed. Next, a hybrid graded element is formulated based on the obtained fundamental solution and a frame field. As a result, the graded properties of FGMs are naturally reflected by using the fundamental solution to interpolate the intra-element field. Further, Stefest's algorithm is employed to convert the results in Laplace space back into the time-space domain. Finally, the performance of the proposed method is assessed by several benchmark examples. The results demonstrate well the efficiency and accuracy of the proposed method.展开更多
Turbulent gas-particle flows are studied by a kinetic description using a prob- ability density function (PDF). Unlike other investigators deriving the particle Reynolds stress equations using the PDF equations, the...Turbulent gas-particle flows are studied by a kinetic description using a prob- ability density function (PDF). Unlike other investigators deriving the particle Reynolds stress equations using the PDF equations, the particle PDF transport equations are di- rectly solved either using a finite-difference method for two-dimensional (2D) problems or using a Monte-Carlo (MC) method for three-dimensional (3D) problems. The proposed differential stress model together with the PDF (DSM-PDF) is used to simulate turbulent swirling gas-particle flows. The simulation results are compared with the experimental results and the second-order moment (SOM) two-phase modeling results. All of these simulation results are in agreement with the experimental results, implying that the PDF approach validates the SOM two-phase turbulence modeling. The PDF model with the SOM-MC method is used to simulate evaporating gas-droplet flows, and the simulation results are in good agreement with the experimental results.展开更多
Aiming at the problem of abstract and polytype information modeling in product conceptual design, a method of conceptual modeling based on logical expression and evolvement is presented. Based on the logic expressions...Aiming at the problem of abstract and polytype information modeling in product conceptual design, a method of conceptual modeling based on logical expression and evolvement is presented. Based on the logic expressions of the product conceptual design information, a fimction/logic/strucmre mapping model is set up. First, the fimction semantics is transformed into logical expressions through fimction/logic mapping. Second, the methods of logical evolvement are utilized to describe the fimction analysis, fimction/strucmre mapping and structure combination. Last, the logical structure scheme is transformed into geometrical sketch through logic/structure mapping. The conceptual design information and modeling process are described uniformly with logical methods in the model, and an effective method for computer aided conceptual design based on the model is implemented.展开更多
The thermal conditions like the temperature distribution and the heat fluxes during metal cutting have a major influence on the machinability, the tool lifetime, the metallurgical structure and thus the functionality ...The thermal conditions like the temperature distribution and the heat fluxes during metal cutting have a major influence on the machinability, the tool lifetime, the metallurgical structure and thus the functionality of the work piece. This in particular applies for manufacturing processes like milling, drilling and turning for high-value turbomachinery components like impellers, combustion engines and compressors of the aerospace and automotive industry as well as energy generation, which play a major role in modern societies. However, numerous analytical and experimental efforts have been conducted in order to understand the thermal conditions in metal cutting, yet many questions still prevail. Most models are based on a stationary point of view and do not include time dependent effects like in intensity and distribution varying heat sources, varying engagement conditions and progressive tool wear. In order to cover such transient physics an analytical approach based on Green's functions for the solution of the partial differential equations of unsteady heat conduction in solids is used to model entire transient temperature fields. The validation of the model is carried out in orthogonal cutting experiments not only punctually but also for entire temperature fields. For these experiments an integrated measurement of prevailing cutting force and temperature fields in the tool and the chip by means of high-speed thermography were applied. The thermal images were analyzed with regard to thermodynamic energy balancing in order to derive the heat partition between tool, chips and workpiece. The thus calculated heat flow into the tool was subsequently used in order to analytically model the transient volumetric temperature fields in the tool. The described methodology enables the modeling of the transient thermal state in the cutting zone and particular in the tool, which is directly linked to phenomena like tool wear and workpiece surface modifications.展开更多
As an extension of linear regression in functional data analysis, functional linear regression has been studied by many researchers and applied in various fields. However, in many cases, data is collected sequentially...As an extension of linear regression in functional data analysis, functional linear regression has been studied by many researchers and applied in various fields. However, in many cases, data is collected sequentially over time, for example the financial series, so it is necessary to consider the autocorrelated structure of errors in functional regression background. To this end, this paper considers a multiple functional linear model with autoregressive errors. Based on the functional principal component analysis, we apply the least square procedure to estimate the functional coefficients and autoregression coefficients. Under some regular conditions, we establish the asymptotic properties of the proposed estimators. A simulation study is conducted to investigate the finite sample performance of our estimators. A real example on China's weather data is applied to illustrate the validity of our model.展开更多
Non-line-of-sight(NLOS)imaging has emerged as a prominent technique for reconstructing obscured objects from images that undergo multiple diffuse reflections.This imaging method has garnered significant attention in d...Non-line-of-sight(NLOS)imaging has emerged as a prominent technique for reconstructing obscured objects from images that undergo multiple diffuse reflections.This imaging method has garnered significant attention in diverse domains,including remote sensing,rescue operations,and intelligent driving,due to its wide-ranging potential applications.Nevertheless,accurately modeling the incident light direction,which carries energy and is captured by the detector amidst random diffuse reflection directions,poses a considerable challenge.This challenge hinders the acquisition of precise forward and inverse physical models for NLOS imaging,which are crucial for achieving high-quality reconstructions.In this study,we propose a point spread function(PSF)model for the NLOS imaging system utilizing ray tracing with random angles.Furthermore,we introduce a reconstruction method,termed the physics-constrained inverse network(PCIN),which establishes an accurate PSF model and inverse physical model by leveraging the interplay between PSF constraints and the optimization of a convolutional neural network.The PCIN approach initializes the parameters randomly,guided by the constraints of the forward PSF model,thereby obviating the need for extensive training data sets,as required by traditional deep-learning methods.Through alternating iteration and gradient descent algorithms,we iteratively optimize the diffuse reflection angles in the PSF model and the neural network parameters.The results demonstrate that PCIN achieves efficient data utilization by not necessitating a large number of actual ground data groups.Moreover,the experimental findings confirm that the proposed method effectively restores the hidden object features with high accuracy.展开更多
This work highlights the unparalleled efficiency of the “n<sup>th</sup>-Order Function/ Feature Adjoint Sensitivity Analysis Methodology for Nonlinear Systems” (n<sup>th</sup>-FASAM-N) by con...This work highlights the unparalleled efficiency of the “n<sup>th</sup>-Order Function/ Feature Adjoint Sensitivity Analysis Methodology for Nonlinear Systems” (n<sup>th</sup>-FASAM-N) by considering the well-known Nordheim-Fuchs reactor dynamics/safety model. This model describes a short-time self-limiting power excursion in a nuclear reactor system having a negative temperature coefficient in which a large amount of reactivity is suddenly inserted, either intentionally or by accident. This nonlinear paradigm model is sufficiently complex to model realistically self-limiting power excursions for short times yet admits closed-form exact expressions for the time-dependent neutron flux, temperature distribution and energy released during the transient power burst. The n<sup>th</sup>-FASAM-N methodology is compared to the extant “n<sup>th</sup>-Order Comprehensive Adjoint Sensitivity Analysis Methodology for Nonlinear Systems” (n<sup>th</sup>-CASAM-N) showing that: (i) the 1<sup>st</sup>-FASAM-N and the 1<sup>st</sup>-CASAM-N methodologies are equally efficient for computing the first-order sensitivities;each methodology requires a single large-scale computation for solving the “First-Level Adjoint Sensitivity System” (1<sup>st</sup>-LASS);(ii) the 2<sup>nd</sup>-FASAM-N methodology is considerably more efficient than the 2<sup>nd</sup>-CASAM-N methodology for computing the second-order sensitivities since the number of feature-functions is much smaller than the number of primary parameters;specifically for the Nordheim-Fuchs model, the 2<sup>nd</sup>-FASAM-N methodology requires 2 large-scale computations to obtain all of the exact expressions of the 28 distinct second-order response sensitivities with respect to the model parameters while the 2<sup>nd</sup>-CASAM-N methodology requires 7 large-scale computations for obtaining these 28 second-order sensitivities;(iii) the 3<sup>rd</sup>-FASAM-N methodology is even more efficient than the 3<sup>rd</sup>-CASAM-N methodology: only 2 large-scale computations are needed to obtain the exact expressions of the 84 distinct third-order response sensitivities with respect to the Nordheim-Fuchs model’s parameters when applying the 3<sup>rd</sup>-FASAM-N methodology, while the application of the 3<sup>rd</sup>-CASAM-N methodology requires at least 22 large-scale computations for computing the same 84 distinct third-order sensitivities. Together, the n<sup>th</sup>-FASAM-N and the n<sup>th</sup>-CASAM-N methodologies are the most practical methodologies for computing response sensitivities of any order comprehensively and accurately, overcoming the curse of dimensionality in sensitivity analysis.展开更多
In the context of global change,ensuring national food security and achieving sustainable development of agricultural production systems have become major challenges worldwide.To address these issues,regional-scale cr...In the context of global change,ensuring national food security and achieving sustainable development of agricultural production systems have become major challenges worldwide.To address these issues,regional-scale crop growth and associated process(CROP-AP)models,with their robust simulation and predictive capabilities,have emerged as important tools for studying a wide range of issues relating to agricultural production at river basin,national,and even global scales.Here,we provide a systematic review of the advances of regional-scale CROP-AP models.First,regional-scale CROP-AP models are categorized based on model characteristics:statistical models,crop growth models,hydrology-crop coupling models,and ecosystem models.The origin,development,principle,structure,and application of each model type are introduced.Then,the main functions of regional-scale CROP-AP models are critically reviewed from five aspects:crop yield prediction,crop water consumption,agricultural non-point source pollution,greenhouse gas emissions,and climate change impact and responses.Finally,the future development trends and research priorities of regional-scale CROP-AP models are explored from six key perspectives:model validation and calibration,the ability to simulate the coupling of crop physiology and human activities,enhancing model scalability,multi-model ensembles,data and code sharing,and the integration of artificial intelligence.This review aims to provide comprehensive references and insights for the further development and application of large-scale,high-precision CROP-AP models.展开更多
Two mono iron complexes Fe(CO)2PR3(NN) (R = Cy (3), Ph (4), NN = o-phenylenediamine dianion ligand, N2H2Ph2-) derived from the ligand substitution of Fe(CO)3hPR3 by the NN ligand were isolated and structur...Two mono iron complexes Fe(CO)2PR3(NN) (R = Cy (3), Ph (4), NN = o-phenylenediamine dianion ligand, N2H2Ph2-) derived from the ligand substitution of Fe(CO)3hPR3 by the NN ligand were isolated and structurally characterized by single crystal X-ray diffraction. They have a similar first coordination sphere and oxidation state of the iron center as the [Fe]-hydrogenase active site, and can be a model of it IR demonstrated that the effect of the NN ligand on the coordinated CO stretch- ing frequencies was due to its excellent electron donating ability. The reversible protonation/deprotonation of the NN ligand was identified by infrared spectroscopy and density functional theory computation. The NN ligand is an effective proton acceptor as the internal base of the cysteine thiolate ligand in [Fe]-hydrogenase. The electrochemical properties of complexes 3, 4 were investigated by cyclic voltammograms. Complex 3 catalyzed the transfer hydrogenation of benzoquinone to hydroquinone effectively under mild conditions.展开更多
基金support from the UCL GRS/ORS scholarshipUCL Fellowship Incubator Award+9 种基金supported by the NIHR Cambridge Biomedical Research Centre(NIHR203312)funded by the Royal National Institute for Deaf People(RNID,G100138)funded by the Rosetrees Trust Enterprise Fellowship(EF2020100099)RNID Flexigrant(F112)Wellcome Trust Developing Concept Fund(RG93172/BANCE/40181)by the Evelyn Trustfunded by the Woolf Fisher Trust,New Zealandthe Cambridge Commonwealth,European,&International Trustby Trinity CollegeUniversity of Cambridge。
文摘The cochlea is one of the most complex organs in the human body,exhibiting a complex interplay of characteristics in acoustic,mechanical,electrical,and biological functions.Functional cochlea models are an essential platform for studying hearing mechanics and are crucial for developing next-generation auditory prostheses and artificial hearing systems for sensorineural hearing restoration.Recent advances in additive manufacturing,organ-on-a-chip models,drug delivery platforms,and artificial intelligence have provided valuable insights into how to manufacture artificial cochlea models that more accurately replicate the complex anatomy and physiology of the inner ear.This paper reviews recent advancements in the applications of advanced manufacturing techniques in reproducing the physical,biological,and intelligent functions of the cochlea.It also outlines the current challenges to developing mechanically,electrically,and anatomically accurate functional models of the inner ear.Finally,this review identifies the major requirements and outlook for impactful research in this field going forward.Through interdisciplinary collaboration and innovation,these functional cochlea models are poised to drive significant advancements in hearing treatments,and ultimately enhance the quality of life for individuals with hearing loss.
基金National Natural Science Foundation of China under Grant No.52278534the Sichuan Provincial Natural Science Foundation of China under Grant No.2022NSFSC0423。
文摘Quantifying the post-earthquake functional recovery of railway stations presents significant challenges.This paper first establishes a post-earthquake function calculation method for railway stations,encompassing the establishment of relationships between the station’s function and the damage state,function loss,and failure probability of components and professional equipment in each layer.Also,the“4 stages-6 sequences”post-earthquake repair method is present,taking into account the functional and structural characteristics of railway stations.Additionally,a novel piecewise function for the post-earthquake functional dynamic recovery of railway stations is developed.A case study is conducted on a typical railway station to demonstrate the analysis procedure.Results indicate that under fortification,rare,and extremely rare earthquake scenarios,the interlayer drift ratio(IDR)of the railway station were 1/276,1/143,and 1/52,respectively,and corresponding peak floor acceleration(PFA)were 6.31 m/s^(2),7.82 m/s^(2),and 8.57 m/s^(2),respectively.The post-earthquake function of the railway station was 93.21%,82.33%,and 64.16%of its initial function.The repair times were 6.66 days,18.65 days,and 37.42 days.The displacement-sensitive,non-structural components were identified as the most vulnerable to damage.And the first repair stage(R_(1))which was mainly used to repair structural components and non-structural transport components,accounted for the highest proportion of total repair time.
基金supported by the National Key Research&Development Program of China(2021YFB3301100)the National Natural Science Foundation of China(52004014)the Fundamental Research Funds for the Central Universities(ZY2406).
文摘This paper proposed a new systematic approach-functional evidential reasoning model(FERM) for exploring hazardous chemical operational accidents under uncertainty. First, FERM was introduced to identify various causal factors and their performance changes in hazardous chemical operational accidents, along with determining the functional failure link relationships. Subsequently, FERM was employed to elucidate both qualitative and quantitative operational accident information within a unified framework, which could be regarded as the input of information fusion to obtain the fuzzy belief distribution of each cause factor. Finally, the derived risk values of the causal factors were ranked while constructing multi-level accident causation chains to unveil the weak links in system functionality and the primary roots of operational accidents. Using the specific case of the “1·15” major explosion and fire accident at Liaoning Panjin Haoye Chemical Co., Ltd., seven causal factors and their corresponding performance changes were identified. Additionally, five accident causation chains were uncovered based on the fuzzy joint distribution of the functional assessment level(FAL) and reliability distribution(RD),revealing an overall increase in risk along the accident evolution path. The research findings demonstrated that FERM enabled the effective characterization, rational quantification and accurate analysis of the inherent uncertainties in hazardous chemical operational accident risks from a systemic perspective.
文摘High performance electromechanical equipment is widely used in various fields, such as national defense, industry and so on [ 1]. In addition, the technical level of high performance electromechanical equipment is the embodiment of the national level of science and technology.
基金Projects(41222227,U1231105)supported by the National Natural Science Foundation of ChinaProject(13JJ1006)supported by the Natural Science Foundation of Hunan Province,China
文摘Empirical functional models for the maximum and minimum detectable deformation gradient of PALSAR interferometry were established based on coherence and discrete look numbers. Then, a least square regression method was used to fit the model coefficients and thus obtain the generalized functional models for both coherence and look numbers. The experimental results with ALOS PALSAR data of Wenchuan earthquake of China show that the new model works well for judging whether the deformation gradient can be detected by the D-InSAR technology or not. The results can help researchers to choose PALSAR data and to configure processing parameters, and also benefit the interpretation of the measured surface deformation.
基金the National Basic Research Program(973)of China(Nos.2011CB707503 and2011CB013305)the National Natural Science Foundation of China(Nos.51075262,51305260,51275293,51121063,50575142 and 51005148)+4 种基金the"ShuGuang"Project of Shanghai Municipal Education Commissionand Shanghai Education Development Foundation(No.12SG14)the Project of Shanghai Committee of Science and Technology(Nos.11JC1406100,13111102800 and 11BA1405300)the National KeyScientific Instruments and Equipment Development Program of China(Nos.2013YQ03065105 and2011YQ030114)the Program for New Century Excellent Talents in University(No.NCET-08-0361)the National High Technology Research and DevelopmentProgram(863)of China(No.2008AA04Z113)
文摘Biological inspirations are good design mimicry resources. This paper proposes a function based approach for modeling and transformation of bio-inspiration design knowledge. A general functional modeling method for biological domain and engineering domain design knowledge is introduced. Functional similarity based bio-inspiration transformation between biological domain and engineering domain is proposed. The biological function topology transfer and analog solution recomposition are also discussed in this paper.
基金The Fund of Key Laboratory of Space Ocean Remote Sensing and Application,Ministry of Natural Resources under contract No.2023CFO016the National Natural Science Foundation of China under contract No.61931025the Key Program of Joint Fund of the National Natural Science Foundation of China and Shandong Province under contract No.U22A20586.
文摘The successful launch of the Cyclone Global Navigation Satellite System(CYGNSS)has opened an unprecedented opportunity for rapid observation of Wind Speed(WS)across vast oceanic regions.However,considerable debate persists over the choice of input feature parameters for WS retrieval models based on CYGNSS data,and enhancing the accuracy of WS retrieval is a focal point of current research.To address the aforementioned problems,this study establishes a comprehensive CYGNSS wind speed retrieval feature parameter set through an in-depth analysis of CYGNSS data,thereby providing a reference and basis for selecting input features for WS retrieval models.Through this analysis,we identified three crucial observational features:the normalized bistatic radar cross section,leading edge slope,and signal-to-noise ratio.Using these features,we developed a WS retrieval model based on the geophysical model function for CYGNSS data.Furthermore,acknowledging the intrinsic interconnection between wind and wave dynamics,we incorporate significant wave height into the WS retrieval model to further improve the WS retrieval accuracy.Comparative assessments with datasets from the European Centre for Medium-Range Weather Forecasts,the Chinese-French Oceanography Satellite Scatterometer,and buoy WS data underscore the high accuracy of our model,demonstrating its utility as a valuable tool for research in ocean dynamics and marine environmental prediction.
基金Item Sponsored by Fundamental Research Funds for the Central Universities of China(N110307001)
文摘The interstand tension control is one of the most important ways to meet tight tolerances for strip product quality during tandem cold rolling process. Using coordinate analysis and parabolic approximation for the mass flow balance principle, the strip velocities eliminating the use of forward slips and backward slips were calculated. In order to reduce the effect of roll eccentricity on the tension measurement, a filter based on bilinear transformation was de- signed. Applying a first-order Taylor series approximation, the transfer function matrix model of interstand tension stress was derived. The actual measurements on-site and the final calculation results showed that the established model had high calculation accuracy and was beneficial for interstand tension control of random cold rolling process.
文摘From the process of sedimentation the mathematical relationships among deposition Volume and powder properties as well as sedimentation parameters were deduced. Based on the formula a mathematical model was set up and simulated through the computer. At last the validity of mathematical model was supported by the representative experiment on Ti-Mo system FGM prepared by co-sedimentation.
文摘The Auto-Transformer Rectifier Unit(ATRU) is one preferred solution for high-power AC/DC power conversion in aircraft. This is mainly due to its simple structure, high reliability and reduced k VA ratings. Indeed, the ATRU has become a preferred AC/DC solution to supply power to the electric environment control system on-board future aircraft. In this paper, a general modelling method for ATRUs is introduced. The developed model is based on the fact that the DC voltage and current are strongly related to the voltage and current vectors at the AC terminals of ATRUs. In this paper, we carry on our research in modelling symmetric 18-pulse ATRUs and develop a generic modelling technique. The developed generic model can study not only symmetric but also asymmetric ATRUs. An 18-pulse asymmetric ATRU is used to demonstrate the accuracy and efficiency of the developed model by comparing with corresponding detailed switching SABER models provided by our industrial partner. The functional models also allow accelerated and accurate simulations and thus enable whole-scale more-electric aircraft electrical power system studies in the future.
基金support from the National Key Basic Research Program of China (2016YFC0400207)the National Natural Science Foundation of China (51439006, 91425302)the 111 Program of Introducing Talents of Discipline to Universities (B14002)
文摘Plant capacity for water storage leads to time lags between basal stem sap flow and transpiration in various woody plants. Internal water storage depends on the sizes of woody plants. However, the changes and its influencing factors in time lags of basal stem flow during the development of herbaceous plants including crops remain unclear. A field experiment was conducted in an arid region of Northwest China to examine the time lag characteristics of sap flow in seed-maize and to calibrate the transpiration modeling. Cross-correlation analysis was used to estimate the time lags between stem sap flow and meteorological driving factors including solar radiation(R_s) and vapor pressure deficit of the air(VPD_(air)). Results indicate that the changes in seed-maize stem sap flow consistently lagged behind the changes in R_s and preceded the changes in VPD_(air) both on hourly and daily scales, suggesting that light-mediated stomatal closures drove sap flow responses. The time lag in the maize's sap flow differed significantly during different growth stages and the difference was potentially due to developmental changes in capacitance tissue and/or xylem during ontogenesis. The time lags between stem sap flow and R_s in both female plants and male plants corresponded to plant use of stored water and were independent of total plant water use. Time lags of sap flow were always longer in male plants than in female plants. Theoretically, dry soil may decrease the speed by which sap flow adjusts ahead of shifts in VPD_(air) in comparison with wet soil and also increase the speed by which sap flow adjusts to R_s. However, sap flow lags that were associated with R_s before irrigation and after irrigation in female plants did not shift. Time series analysis method provided better results for simulating seed-maize sap flow with advantages of allowing for fewer variables to be included. This approach would be helpful in improving the accuracy of estimation for canopy transpiration and conductance using meteorological measurements.
文摘This paper presents a hybrid graded element model for the transient heat conduction problem in functionally graded materials (FGMs). First, a Laplace transform approach is used to handle the time variable. Then, a fundamental solution in Laplace space for FGMs is constructed. Next, a hybrid graded element is formulated based on the obtained fundamental solution and a frame field. As a result, the graded properties of FGMs are naturally reflected by using the fundamental solution to interpolate the intra-element field. Further, Stefest's algorithm is employed to convert the results in Laplace space back into the time-space domain. Finally, the performance of the proposed method is assessed by several benchmark examples. The results demonstrate well the efficiency and accuracy of the proposed method.
基金supported by the National Natural Science Foundation of China(No.51390493)
文摘Turbulent gas-particle flows are studied by a kinetic description using a prob- ability density function (PDF). Unlike other investigators deriving the particle Reynolds stress equations using the PDF equations, the particle PDF transport equations are di- rectly solved either using a finite-difference method for two-dimensional (2D) problems or using a Monte-Carlo (MC) method for three-dimensional (3D) problems. The proposed differential stress model together with the PDF (DSM-PDF) is used to simulate turbulent swirling gas-particle flows. The simulation results are compared with the experimental results and the second-order moment (SOM) two-phase modeling results. All of these simulation results are in agreement with the experimental results, implying that the PDF approach validates the SOM two-phase turbulence modeling. The PDF model with the SOM-MC method is used to simulate evaporating gas-droplet flows, and the simulation results are in good agreement with the experimental results.
基金This project is supported by National Natural Science Foundation of China (No. 50405037)Provincial Natural Science Foundation of Zhejiang, China (No. Y105256)Specialized Research Fund for the Doctoral Program of Higher Education, China (No. 20040335060)
文摘Aiming at the problem of abstract and polytype information modeling in product conceptual design, a method of conceptual modeling based on logical expression and evolvement is presented. Based on the logic expressions of the product conceptual design information, a fimction/logic/strucmre mapping model is set up. First, the fimction semantics is transformed into logical expressions through fimction/logic mapping. Second, the methods of logical evolvement are utilized to describe the fimction analysis, fimction/strucmre mapping and structure combination. Last, the logical structure scheme is transformed into geometrical sketch through logic/structure mapping. The conceptual design information and modeling process are described uniformly with logical methods in the model, and an effective method for computer aided conceptual design based on the model is implemented.
文摘The thermal conditions like the temperature distribution and the heat fluxes during metal cutting have a major influence on the machinability, the tool lifetime, the metallurgical structure and thus the functionality of the work piece. This in particular applies for manufacturing processes like milling, drilling and turning for high-value turbomachinery components like impellers, combustion engines and compressors of the aerospace and automotive industry as well as energy generation, which play a major role in modern societies. However, numerous analytical and experimental efforts have been conducted in order to understand the thermal conditions in metal cutting, yet many questions still prevail. Most models are based on a stationary point of view and do not include time dependent effects like in intensity and distribution varying heat sources, varying engagement conditions and progressive tool wear. In order to cover such transient physics an analytical approach based on Green's functions for the solution of the partial differential equations of unsteady heat conduction in solids is used to model entire transient temperature fields. The validation of the model is carried out in orthogonal cutting experiments not only punctually but also for entire temperature fields. For these experiments an integrated measurement of prevailing cutting force and temperature fields in the tool and the chip by means of high-speed thermography were applied. The thermal images were analyzed with regard to thermodynamic energy balancing in order to derive the heat partition between tool, chips and workpiece. The thus calculated heat flow into the tool was subsequently used in order to analytically model the transient volumetric temperature fields in the tool. The described methodology enables the modeling of the transient thermal state in the cutting zone and particular in the tool, which is directly linked to phenomena like tool wear and workpiece surface modifications.
基金supported by National Nature Science Foundation of China(No.11861074,No.11371354 and N0.11301464)Key Laboratory of Random Complex Structures and Data Science,Chinese Academy of Sciences,Beijing 100190,China(No.2008DP173182)Applied Basic Research Project of Yunnan Province(No.2019FB138).
文摘As an extension of linear regression in functional data analysis, functional linear regression has been studied by many researchers and applied in various fields. However, in many cases, data is collected sequentially over time, for example the financial series, so it is necessary to consider the autocorrelated structure of errors in functional regression background. To this end, this paper considers a multiple functional linear model with autoregressive errors. Based on the functional principal component analysis, we apply the least square procedure to estimate the functional coefficients and autoregression coefficients. Under some regular conditions, we establish the asymptotic properties of the proposed estimators. A simulation study is conducted to investigate the finite sample performance of our estimators. A real example on China's weather data is applied to illustrate the validity of our model.
基金supported by the Instrument Developing Project of the Chinese Academy of Sciences (Grant No.YJKYYQ20190044)the National Key Research and Development Program of China (Grant No.2022YFB3903100)+1 种基金the High-level introduction of talent research start-up fund of Hefei Normal University in 2020 (Grant No.2020rcjj34)the HFIPS Director’s Fund (Grant No.YZJJ2022QN12).
文摘Non-line-of-sight(NLOS)imaging has emerged as a prominent technique for reconstructing obscured objects from images that undergo multiple diffuse reflections.This imaging method has garnered significant attention in diverse domains,including remote sensing,rescue operations,and intelligent driving,due to its wide-ranging potential applications.Nevertheless,accurately modeling the incident light direction,which carries energy and is captured by the detector amidst random diffuse reflection directions,poses a considerable challenge.This challenge hinders the acquisition of precise forward and inverse physical models for NLOS imaging,which are crucial for achieving high-quality reconstructions.In this study,we propose a point spread function(PSF)model for the NLOS imaging system utilizing ray tracing with random angles.Furthermore,we introduce a reconstruction method,termed the physics-constrained inverse network(PCIN),which establishes an accurate PSF model and inverse physical model by leveraging the interplay between PSF constraints and the optimization of a convolutional neural network.The PCIN approach initializes the parameters randomly,guided by the constraints of the forward PSF model,thereby obviating the need for extensive training data sets,as required by traditional deep-learning methods.Through alternating iteration and gradient descent algorithms,we iteratively optimize the diffuse reflection angles in the PSF model and the neural network parameters.The results demonstrate that PCIN achieves efficient data utilization by not necessitating a large number of actual ground data groups.Moreover,the experimental findings confirm that the proposed method effectively restores the hidden object features with high accuracy.
文摘This work highlights the unparalleled efficiency of the “n<sup>th</sup>-Order Function/ Feature Adjoint Sensitivity Analysis Methodology for Nonlinear Systems” (n<sup>th</sup>-FASAM-N) by considering the well-known Nordheim-Fuchs reactor dynamics/safety model. This model describes a short-time self-limiting power excursion in a nuclear reactor system having a negative temperature coefficient in which a large amount of reactivity is suddenly inserted, either intentionally or by accident. This nonlinear paradigm model is sufficiently complex to model realistically self-limiting power excursions for short times yet admits closed-form exact expressions for the time-dependent neutron flux, temperature distribution and energy released during the transient power burst. The n<sup>th</sup>-FASAM-N methodology is compared to the extant “n<sup>th</sup>-Order Comprehensive Adjoint Sensitivity Analysis Methodology for Nonlinear Systems” (n<sup>th</sup>-CASAM-N) showing that: (i) the 1<sup>st</sup>-FASAM-N and the 1<sup>st</sup>-CASAM-N methodologies are equally efficient for computing the first-order sensitivities;each methodology requires a single large-scale computation for solving the “First-Level Adjoint Sensitivity System” (1<sup>st</sup>-LASS);(ii) the 2<sup>nd</sup>-FASAM-N methodology is considerably more efficient than the 2<sup>nd</sup>-CASAM-N methodology for computing the second-order sensitivities since the number of feature-functions is much smaller than the number of primary parameters;specifically for the Nordheim-Fuchs model, the 2<sup>nd</sup>-FASAM-N methodology requires 2 large-scale computations to obtain all of the exact expressions of the 28 distinct second-order response sensitivities with respect to the model parameters while the 2<sup>nd</sup>-CASAM-N methodology requires 7 large-scale computations for obtaining these 28 second-order sensitivities;(iii) the 3<sup>rd</sup>-FASAM-N methodology is even more efficient than the 3<sup>rd</sup>-CASAM-N methodology: only 2 large-scale computations are needed to obtain the exact expressions of the 84 distinct third-order response sensitivities with respect to the Nordheim-Fuchs model’s parameters when applying the 3<sup>rd</sup>-FASAM-N methodology, while the application of the 3<sup>rd</sup>-CASAM-N methodology requires at least 22 large-scale computations for computing the same 84 distinct third-order sensitivities. Together, the n<sup>th</sup>-FASAM-N and the n<sup>th</sup>-CASAM-N methodologies are the most practical methodologies for computing response sensitivities of any order comprehensively and accurately, overcoming the curse of dimensionality in sensitivity analysis.
基金supported by the National Natural Science Foundation of China(Grant Nos.52239002,52109071,32361143871,52411540183&52209072)the Pinduoduo-China Agricultural University Research Fund(Grant No.PC2023A02002)。
文摘In the context of global change,ensuring national food security and achieving sustainable development of agricultural production systems have become major challenges worldwide.To address these issues,regional-scale crop growth and associated process(CROP-AP)models,with their robust simulation and predictive capabilities,have emerged as important tools for studying a wide range of issues relating to agricultural production at river basin,national,and even global scales.Here,we provide a systematic review of the advances of regional-scale CROP-AP models.First,regional-scale CROP-AP models are categorized based on model characteristics:statistical models,crop growth models,hydrology-crop coupling models,and ecosystem models.The origin,development,principle,structure,and application of each model type are introduced.Then,the main functions of regional-scale CROP-AP models are critically reviewed from five aspects:crop yield prediction,crop water consumption,agricultural non-point source pollution,greenhouse gas emissions,and climate change impact and responses.Finally,the future development trends and research priorities of regional-scale CROP-AP models are explored from six key perspectives:model validation and calibration,the ability to simulate the coupling of crop physiology and human activities,enhancing model scalability,multi-model ensembles,data and code sharing,and the integration of artificial intelligence.This review aims to provide comprehensive references and insights for the further development and application of large-scale,high-precision CROP-AP models.
基金supported by the National Natural Science Foundation of China(21103121,21276187)Tianjin Municipal Natural Science Foundation(13JCQNJC05800)the Specialized Research Fund for the Doctoral Program of Higher Education(20121317110009)~~
文摘Two mono iron complexes Fe(CO)2PR3(NN) (R = Cy (3), Ph (4), NN = o-phenylenediamine dianion ligand, N2H2Ph2-) derived from the ligand substitution of Fe(CO)3hPR3 by the NN ligand were isolated and structurally characterized by single crystal X-ray diffraction. They have a similar first coordination sphere and oxidation state of the iron center as the [Fe]-hydrogenase active site, and can be a model of it IR demonstrated that the effect of the NN ligand on the coordinated CO stretch- ing frequencies was due to its excellent electron donating ability. The reversible protonation/deprotonation of the NN ligand was identified by infrared spectroscopy and density functional theory computation. The NN ligand is an effective proton acceptor as the internal base of the cysteine thiolate ligand in [Fe]-hydrogenase. The electrochemical properties of complexes 3, 4 were investigated by cyclic voltammograms. Complex 3 catalyzed the transfer hydrogenation of benzoquinone to hydroquinone effectively under mild conditions.