Empirical functional models for the maximum and minimum detectable deformation gradient of PALSAR interferometry were established based on coherence and discrete look numbers. Then, a least square regression method wa...Empirical functional models for the maximum and minimum detectable deformation gradient of PALSAR interferometry were established based on coherence and discrete look numbers. Then, a least square regression method was used to fit the model coefficients and thus obtain the generalized functional models for both coherence and look numbers. The experimental results with ALOS PALSAR data of Wenchuan earthquake of China show that the new model works well for judging whether the deformation gradient can be detected by the D-InSAR technology or not. The results can help researchers to choose PALSAR data and to configure processing parameters, and also benefit the interpretation of the measured surface deformation.展开更多
The Auto-Transformer Rectifier Unit(ATRU) is one preferred solution for high-power AC/DC power conversion in aircraft. This is mainly due to its simple structure, high reliability and reduced k VA ratings. Indeed, t...The Auto-Transformer Rectifier Unit(ATRU) is one preferred solution for high-power AC/DC power conversion in aircraft. This is mainly due to its simple structure, high reliability and reduced k VA ratings. Indeed, the ATRU has become a preferred AC/DC solution to supply power to the electric environment control system on-board future aircraft. In this paper, a general modelling method for ATRUs is introduced. The developed model is based on the fact that the DC voltage and current are strongly related to the voltage and current vectors at the AC terminals of ATRUs. In this paper, we carry on our research in modelling symmetric 18-pulse ATRUs and develop a generic modelling technique. The developed generic model can study not only symmetric but also asymmetric ATRUs. An 18-pulse asymmetric ATRU is used to demonstrate the accuracy and efficiency of the developed model by comparing with corresponding detailed switching SABER models provided by our industrial partner. The functional models also allow accelerated and accurate simulations and thus enable whole-scale more-electric aircraft electrical power system studies in the future.展开更多
The cochlea is one of the most complex organs in the human body,exhibiting a complex interplay of characteristics in acoustic,mechanical,electrical,and biological functions.Functional cochlea models are an essential p...The cochlea is one of the most complex organs in the human body,exhibiting a complex interplay of characteristics in acoustic,mechanical,electrical,and biological functions.Functional cochlea models are an essential platform for studying hearing mechanics and are crucial for developing next-generation auditory prostheses and artificial hearing systems for sensorineural hearing restoration.Recent advances in additive manufacturing,organ-on-a-chip models,drug delivery platforms,and artificial intelligence have provided valuable insights into how to manufacture artificial cochlea models that more accurately replicate the complex anatomy and physiology of the inner ear.This paper reviews recent advancements in the applications of advanced manufacturing techniques in reproducing the physical,biological,and intelligent functions of the cochlea.It also outlines the current challenges to developing mechanically,electrically,and anatomically accurate functional models of the inner ear.Finally,this review identifies the major requirements and outlook for impactful research in this field going forward.Through interdisciplinary collaboration and innovation,these functional cochlea models are poised to drive significant advancements in hearing treatments,and ultimately enhance the quality of life for individuals with hearing loss.展开更多
This paper proposed a new systematic approach-functional evidential reasoning model(FERM) for exploring hazardous chemical operational accidents under uncertainty. First, FERM was introduced to identify various causal...This paper proposed a new systematic approach-functional evidential reasoning model(FERM) for exploring hazardous chemical operational accidents under uncertainty. First, FERM was introduced to identify various causal factors and their performance changes in hazardous chemical operational accidents, along with determining the functional failure link relationships. Subsequently, FERM was employed to elucidate both qualitative and quantitative operational accident information within a unified framework, which could be regarded as the input of information fusion to obtain the fuzzy belief distribution of each cause factor. Finally, the derived risk values of the causal factors were ranked while constructing multi-level accident causation chains to unveil the weak links in system functionality and the primary roots of operational accidents. Using the specific case of the “1·15” major explosion and fire accident at Liaoning Panjin Haoye Chemical Co., Ltd., seven causal factors and their corresponding performance changes were identified. Additionally, five accident causation chains were uncovered based on the fuzzy joint distribution of the functional assessment level(FAL) and reliability distribution(RD),revealing an overall increase in risk along the accident evolution path. The research findings demonstrated that FERM enabled the effective characterization, rational quantification and accurate analysis of the inherent uncertainties in hazardous chemical operational accident risks from a systemic perspective.展开更多
From the process of sedimentation the mathematical relationships among deposition Volume and powder properties as well as sedimentation parameters were deduced. Based on the formula a mathematical model was set up and...From the process of sedimentation the mathematical relationships among deposition Volume and powder properties as well as sedimentation parameters were deduced. Based on the formula a mathematical model was set up and simulated through the computer. At last the validity of mathematical model was supported by the representative experiment on Ti-Mo system FGM prepared by co-sedimentation.展开更多
This paper presents a hybrid graded element model for the transient heat conduction problem in functionally graded materials (FGMs). First, a Laplace transform approach is used to handle the time variable. Then, a f...This paper presents a hybrid graded element model for the transient heat conduction problem in functionally graded materials (FGMs). First, a Laplace transform approach is used to handle the time variable. Then, a fundamental solution in Laplace space for FGMs is constructed. Next, a hybrid graded element is formulated based on the obtained fundamental solution and a frame field. As a result, the graded properties of FGMs are naturally reflected by using the fundamental solution to interpolate the intra-element field. Further, Stefest's algorithm is employed to convert the results in Laplace space back into the time-space domain. Finally, the performance of the proposed method is assessed by several benchmark examples. The results demonstrate well the efficiency and accuracy of the proposed method.展开更多
High performance electromechanical equipment is widely used in various fields, such as national defense, industry and so on [ 1]. In addition, the technical level of high performance electromechanical equipment is the...High performance electromechanical equipment is widely used in various fields, such as national defense, industry and so on [ 1]. In addition, the technical level of high performance electromechanical equipment is the embodiment of the national level of science and technology.展开更多
Quantifying the post-earthquake functional recovery of railway stations presents significant challenges.This paper first establishes a post-earthquake function calculation method for railway stations,encompassing the ...Quantifying the post-earthquake functional recovery of railway stations presents significant challenges.This paper first establishes a post-earthquake function calculation method for railway stations,encompassing the establishment of relationships between the station’s function and the damage state,function loss,and failure probability of components and professional equipment in each layer.Also,the“4 stages-6 sequences”post-earthquake repair method is present,taking into account the functional and structural characteristics of railway stations.Additionally,a novel piecewise function for the post-earthquake functional dynamic recovery of railway stations is developed.A case study is conducted on a typical railway station to demonstrate the analysis procedure.Results indicate that under fortification,rare,and extremely rare earthquake scenarios,the interlayer drift ratio(IDR)of the railway station were 1/276,1/143,and 1/52,respectively,and corresponding peak floor acceleration(PFA)were 6.31 m/s^(2),7.82 m/s^(2),and 8.57 m/s^(2),respectively.The post-earthquake function of the railway station was 93.21%,82.33%,and 64.16%of its initial function.The repair times were 6.66 days,18.65 days,and 37.42 days.The displacement-sensitive,non-structural components were identified as the most vulnerable to damage.And the first repair stage(R_(1))which was mainly used to repair structural components and non-structural transport components,accounted for the highest proportion of total repair time.展开更多
To obtain higher accurate position estimates, the stochastic model is estimated by using residual of observations, hence, the stochastic model describes the noise and bias in measurements more realistically. By using ...To obtain higher accurate position estimates, the stochastic model is estimated by using residual of observations, hence, the stochastic model describes the noise and bias in measurements more realistically. By using GPS data and broadcast ephemeris, the numerical results indicating the accurate position estimates at sub-meter level are obtainable.展开更多
Biological inspirations are good design mimicry resources. This paper proposes a function based approach for modeling and transformation of bio-inspiration design knowledge. A general functional modeling method for bi...Biological inspirations are good design mimicry resources. This paper proposes a function based approach for modeling and transformation of bio-inspiration design knowledge. A general functional modeling method for biological domain and engineering domain design knowledge is introduced. Functional similarity based bio-inspiration transformation between biological domain and engineering domain is proposed. The biological function topology transfer and analog solution recomposition are also discussed in this paper.展开更多
Cancer cell lines have been used widely in cancer biology, and as biological or functional cell systems in many biomedical research fields. These cells are usually defective for many normal activities or functions due...Cancer cell lines have been used widely in cancer biology, and as biological or functional cell systems in many biomedical research fields. These cells are usually defective for many normal activities or functions due to significant genetic and epigenetic changes. Normal primary cell yields and viability from any original tissue specimens are usually relatively low or highly variable. These normal cells cease after a few passages or population doublings due to very limited proliferative capacity. Animal models(ferret, mouse, etc.) are often used to study virus-host interaction. However, viruses usually need to be adapted to the animals by several passages due to tropism restrictions including viral receptors and intracellular restrictions. Here we summarize applications of conditionally reprogrammed cells(CRCs), long-term cultures of normal airway epithelial cells from human nose to lung generated by conditional cell reprogramming(CR) technology, as an ex vivo model in studies of emerging viruses. CR allows to robustly propagate cells from non-invasive or minimally invasive specimens, for example, nasal or endobronchial brushing. This process is rapid(2 days) and conditional. The CRCs maintain their differentiation potential and lineage functions, and have been used for studies of adenovirus, rhinovirus, respiratory syncytial virus, influenza viruses, parvovirus, and SARS-CoV. The CRCs can be easily used for airliquid interface(ALI) polarized 3 D cultures, and these coupled CRC/ALI cultures mimic physiological conditions and are suitable for studies of viral entry including receptor binding and internalization, innate immune responses, viral replications, and drug discovery as an ex vivo model for emerging viruses.展开更多
Two mono iron complexes Fe(CO)2PR3(NN) (R = Cy (3), Ph (4), NN = o-phenylenediamine dianion ligand, N2H2Ph2-) derived from the ligand substitution of Fe(CO)3hPR3 by the NN ligand were isolated and structur...Two mono iron complexes Fe(CO)2PR3(NN) (R = Cy (3), Ph (4), NN = o-phenylenediamine dianion ligand, N2H2Ph2-) derived from the ligand substitution of Fe(CO)3hPR3 by the NN ligand were isolated and structurally characterized by single crystal X-ray diffraction. They have a similar first coordination sphere and oxidation state of the iron center as the [Fe]-hydrogenase active site, and can be a model of it IR demonstrated that the effect of the NN ligand on the coordinated CO stretch- ing frequencies was due to its excellent electron donating ability. The reversible protonation/deprotonation of the NN ligand was identified by infrared spectroscopy and density functional theory computation. The NN ligand is an effective proton acceptor as the internal base of the cysteine thiolate ligand in [Fe]-hydrogenase. The electrochemical properties of complexes 3, 4 were investigated by cyclic voltammograms. Complex 3 catalyzed the transfer hydrogenation of benzoquinone to hydroquinone effectively under mild conditions.展开更多
In the face offierce competition in the social environment,mental health problems gradually get the attention of the public,in order to achieve accurate mental health data analysis,the construction of music education ...In the face offierce competition in the social environment,mental health problems gradually get the attention of the public,in order to achieve accurate mental health data analysis,the construction of music education is based on emotional tendency analysis of psychological adjustment function model.Design emotional tendency analysis of music education psychological adjustment function architecture,music teaching goal as psychological adjust-ment function architecture building orientation,music teaching content as a foundation for psychological adjust-ment function architecture and music teaching process as a psychological adjustment function architecture building,music teaching evaluation as the key of building key regulating function architecture,Establish a core literacy oriented evaluation system.Different evaluation methods were used to obtain the evaluation results.Four levels of psychological adjustment function model of music education are designed,and the psychological adjust-ment function of music education is put forward,thus completing the construction of psychological adjustment function model of music education.The experimental results show that the absolute value of the data acquisition error of the designed model is minimum,which is not more than 0.2.It is less affected by a bad coefficient and has good performance.It can quickly converge to the best state in the actual prediction process and has a strong con-vergence ability.展开更多
The general function of allusions is often thought to add clarity and significance to ideas and descriptions.However,it would be difficult to establish an exhaustive list of mutually exclusive category
This paper presents an overview of the history, modifications, characteristics, and applications of two well known dielectric function models ——the Forouhi-Bloomer model and the Tauc-Lorentz model——which have been...This paper presents an overview of the history, modifications, characteristics, and applications of two well known dielectric function models ——the Forouhi-Bloomer model and the Tauc-Lorentz model——which have been widely used for the extraction and parameterization of optical constants in semiconductors and dielectrics. Based on analysis of their inherent characteristics and comparison via demonstrative examples, deeper and wider usage of the two models is predicted.展开更多
The interstand tension control is one of the most important ways to meet tight tolerances for strip product quality during tandem cold rolling process. Using coordinate analysis and parabolic approximation for the mas...The interstand tension control is one of the most important ways to meet tight tolerances for strip product quality during tandem cold rolling process. Using coordinate analysis and parabolic approximation for the mass flow balance principle, the strip velocities eliminating the use of forward slips and backward slips were calculated. In order to reduce the effect of roll eccentricity on the tension measurement, a filter based on bilinear transformation was de- signed. Applying a first-order Taylor series approximation, the transfer function matrix model of interstand tension stress was derived. The actual measurements on-site and the final calculation results showed that the established model had high calculation accuracy and was beneficial for interstand tension control of random cold rolling process.展开更多
In this paper,a new micro-creep model of salt rock is proposed based on a linear parallel bonded model(LPBM)using the two-dimensional particle flow code(PFC2D).The power function weakening form is assumed to describe ...In this paper,a new micro-creep model of salt rock is proposed based on a linear parallel bonded model(LPBM)using the two-dimensional particle flow code(PFC2D).The power function weakening form is assumed to describe the variation of the parallel bonded diameter(PBD)over time.By comparing with the parallel-bonded stress corrosion(PSC)model,a smaller stress fluctuation and smoother creep strain−time curves can be obtained by this power function model at the same stress level.The validity and adaptability of the model to simulate creep deformation of salt rock are verified through comparing the laboratory creep test curves and the Burgers model fitting result.The numerical results reveal that this model can be capable of capturing the creep deformation and damage behavior from the laboratory observations.展开更多
Using the density functional B3P86/cc-PV5Z method, the geometric structure of BH molecule under different external electric fields is optimized, and the bond lengths, dipole moments, vibration frequencies, and other p...Using the density functional B3P86/cc-PV5Z method, the geometric structure of BH molecule under different external electric fields is optimized, and the bond lengths, dipole moments, vibration frequencies, and other physical properties parameters are obtained. On the basis of setting appropriate parameters, scanning single point energies are obtained by the same method and the potential energy curves under different external fields are also obtained. These results show that the physical property parameters and potential energy curves may change with external electric field, especially in the case of reverse direction electric field. The potential energy function without external electric field is fitted by Morse potential, and the fitting parameters are obtained which are in good agreement with experimental values. In order to obtain the critical dissociation electric parameter, the dipole approximation is adopted to construct a potential model fitting the corresponding potential energy curve of the external electric field. It is found that the fitted critical dissociation electric parameter is consistent with numerical calculation, so that the constructed model is reliable and accurate. These results will provide important theoretical and experimental reference for further studying the molecular spectrum, dynamics, and molecular cooling with Stark effect.展开更多
The surface subsidence is a common environmental hazard in mined-out area. Based on careful analysis of the regularity of surface subsidence in mined-out area, we proposed a new time function based on Harris curve mod...The surface subsidence is a common environmental hazard in mined-out area. Based on careful analysis of the regularity of surface subsidence in mined-out area, we proposed a new time function based on Harris curve model in consideration of the shortage of current surface subsidence time functions. By analyzing the characteristics of the new time function, we found that it could meet the dynamic process, the velocity change process and the acceleration change process during surface subsidence. Then its rationality had been verified through project cases. The results show that the proposed time function model can give a good reflection of the regularity of surface subsidence in mined-out area and can accurately predict surface subsidence. And the prediction data of the model are a little greater than measured data on condition of proper measured data quantity, which is safety in the engineering. This model provides a new method for the analysis of surface subsidence in mined-out area and reference for future prediction, and it is valuable to engineering application.展开更多
Two pairs of approximation operators, which are the scale lower and upper approximations as well as the real line lower and upper approximations, are defined. Their properties and antithesis characteristics are analyz...Two pairs of approximation operators, which are the scale lower and upper approximations as well as the real line lower and upper approximations, are defined. Their properties and antithesis characteristics are analyzed. The rough function model is generalized based on rough set theory, and the scheme of rough function theory is made more distinct and complete. Therefore, the transformation of the real function analysis from real line to scale is achieved. A series of basic concepts in rough function model including rough numbers, rough intervals, and rough membership functions are defined in the new scheme of the rough function model. Operating properties of rough intervals similar to rough sets are obtained. The relationship of rough inclusion and rough equality of rough intervals is defined by two kinds of tools, known as the lower (upper) approximation operator in real numbers domain and rough membership functions. Their relative properties are analyzed and proved strictly, which provides necessary theoretical foundation and technical support for the further discussion of properties and practical application of the rough function model.展开更多
基金Projects(41222227,U1231105)supported by the National Natural Science Foundation of ChinaProject(13JJ1006)supported by the Natural Science Foundation of Hunan Province,China
文摘Empirical functional models for the maximum and minimum detectable deformation gradient of PALSAR interferometry were established based on coherence and discrete look numbers. Then, a least square regression method was used to fit the model coefficients and thus obtain the generalized functional models for both coherence and look numbers. The experimental results with ALOS PALSAR data of Wenchuan earthquake of China show that the new model works well for judging whether the deformation gradient can be detected by the D-InSAR technology or not. The results can help researchers to choose PALSAR data and to configure processing parameters, and also benefit the interpretation of the measured surface deformation.
文摘The Auto-Transformer Rectifier Unit(ATRU) is one preferred solution for high-power AC/DC power conversion in aircraft. This is mainly due to its simple structure, high reliability and reduced k VA ratings. Indeed, the ATRU has become a preferred AC/DC solution to supply power to the electric environment control system on-board future aircraft. In this paper, a general modelling method for ATRUs is introduced. The developed model is based on the fact that the DC voltage and current are strongly related to the voltage and current vectors at the AC terminals of ATRUs. In this paper, we carry on our research in modelling symmetric 18-pulse ATRUs and develop a generic modelling technique. The developed generic model can study not only symmetric but also asymmetric ATRUs. An 18-pulse asymmetric ATRU is used to demonstrate the accuracy and efficiency of the developed model by comparing with corresponding detailed switching SABER models provided by our industrial partner. The functional models also allow accelerated and accurate simulations and thus enable whole-scale more-electric aircraft electrical power system studies in the future.
基金support from the UCL GRS/ORS scholarshipUCL Fellowship Incubator Award+9 种基金supported by the NIHR Cambridge Biomedical Research Centre(NIHR203312)funded by the Royal National Institute for Deaf People(RNID,G100138)funded by the Rosetrees Trust Enterprise Fellowship(EF2020100099)RNID Flexigrant(F112)Wellcome Trust Developing Concept Fund(RG93172/BANCE/40181)by the Evelyn Trustfunded by the Woolf Fisher Trust,New Zealandthe Cambridge Commonwealth,European,&International Trustby Trinity CollegeUniversity of Cambridge。
文摘The cochlea is one of the most complex organs in the human body,exhibiting a complex interplay of characteristics in acoustic,mechanical,electrical,and biological functions.Functional cochlea models are an essential platform for studying hearing mechanics and are crucial for developing next-generation auditory prostheses and artificial hearing systems for sensorineural hearing restoration.Recent advances in additive manufacturing,organ-on-a-chip models,drug delivery platforms,and artificial intelligence have provided valuable insights into how to manufacture artificial cochlea models that more accurately replicate the complex anatomy and physiology of the inner ear.This paper reviews recent advancements in the applications of advanced manufacturing techniques in reproducing the physical,biological,and intelligent functions of the cochlea.It also outlines the current challenges to developing mechanically,electrically,and anatomically accurate functional models of the inner ear.Finally,this review identifies the major requirements and outlook for impactful research in this field going forward.Through interdisciplinary collaboration and innovation,these functional cochlea models are poised to drive significant advancements in hearing treatments,and ultimately enhance the quality of life for individuals with hearing loss.
基金supported by the National Key Research&Development Program of China(2021YFB3301100)the National Natural Science Foundation of China(52004014)the Fundamental Research Funds for the Central Universities(ZY2406).
文摘This paper proposed a new systematic approach-functional evidential reasoning model(FERM) for exploring hazardous chemical operational accidents under uncertainty. First, FERM was introduced to identify various causal factors and their performance changes in hazardous chemical operational accidents, along with determining the functional failure link relationships. Subsequently, FERM was employed to elucidate both qualitative and quantitative operational accident information within a unified framework, which could be regarded as the input of information fusion to obtain the fuzzy belief distribution of each cause factor. Finally, the derived risk values of the causal factors were ranked while constructing multi-level accident causation chains to unveil the weak links in system functionality and the primary roots of operational accidents. Using the specific case of the “1·15” major explosion and fire accident at Liaoning Panjin Haoye Chemical Co., Ltd., seven causal factors and their corresponding performance changes were identified. Additionally, five accident causation chains were uncovered based on the fuzzy joint distribution of the functional assessment level(FAL) and reliability distribution(RD),revealing an overall increase in risk along the accident evolution path. The research findings demonstrated that FERM enabled the effective characterization, rational quantification and accurate analysis of the inherent uncertainties in hazardous chemical operational accident risks from a systemic perspective.
文摘From the process of sedimentation the mathematical relationships among deposition Volume and powder properties as well as sedimentation parameters were deduced. Based on the formula a mathematical model was set up and simulated through the computer. At last the validity of mathematical model was supported by the representative experiment on Ti-Mo system FGM prepared by co-sedimentation.
文摘This paper presents a hybrid graded element model for the transient heat conduction problem in functionally graded materials (FGMs). First, a Laplace transform approach is used to handle the time variable. Then, a fundamental solution in Laplace space for FGMs is constructed. Next, a hybrid graded element is formulated based on the obtained fundamental solution and a frame field. As a result, the graded properties of FGMs are naturally reflected by using the fundamental solution to interpolate the intra-element field. Further, Stefest's algorithm is employed to convert the results in Laplace space back into the time-space domain. Finally, the performance of the proposed method is assessed by several benchmark examples. The results demonstrate well the efficiency and accuracy of the proposed method.
文摘High performance electromechanical equipment is widely used in various fields, such as national defense, industry and so on [ 1]. In addition, the technical level of high performance electromechanical equipment is the embodiment of the national level of science and technology.
基金National Natural Science Foundation of China under Grant No.52278534the Sichuan Provincial Natural Science Foundation of China under Grant No.2022NSFSC0423。
文摘Quantifying the post-earthquake functional recovery of railway stations presents significant challenges.This paper first establishes a post-earthquake function calculation method for railway stations,encompassing the establishment of relationships between the station’s function and the damage state,function loss,and failure probability of components and professional equipment in each layer.Also,the“4 stages-6 sequences”post-earthquake repair method is present,taking into account the functional and structural characteristics of railway stations.Additionally,a novel piecewise function for the post-earthquake functional dynamic recovery of railway stations is developed.A case study is conducted on a typical railway station to demonstrate the analysis procedure.Results indicate that under fortification,rare,and extremely rare earthquake scenarios,the interlayer drift ratio(IDR)of the railway station were 1/276,1/143,and 1/52,respectively,and corresponding peak floor acceleration(PFA)were 6.31 m/s^(2),7.82 m/s^(2),and 8.57 m/s^(2),respectively.The post-earthquake function of the railway station was 93.21%,82.33%,and 64.16%of its initial function.The repair times were 6.66 days,18.65 days,and 37.42 days.The displacement-sensitive,non-structural components were identified as the most vulnerable to damage.And the first repair stage(R_(1))which was mainly used to repair structural components and non-structural transport components,accounted for the highest proportion of total repair time.
基金Supported by the National 863 Program of China (No.2006AA12Z325) and the National Natural Science Foundation of China (No.40274005).
文摘To obtain higher accurate position estimates, the stochastic model is estimated by using residual of observations, hence, the stochastic model describes the noise and bias in measurements more realistically. By using GPS data and broadcast ephemeris, the numerical results indicating the accurate position estimates at sub-meter level are obtainable.
基金the National Basic Research Program(973)of China(Nos.2011CB707503 and2011CB013305)the National Natural Science Foundation of China(Nos.51075262,51305260,51275293,51121063,50575142 and 51005148)+4 种基金the"ShuGuang"Project of Shanghai Municipal Education Commissionand Shanghai Education Development Foundation(No.12SG14)the Project of Shanghai Committee of Science and Technology(Nos.11JC1406100,13111102800 and 11BA1405300)the National KeyScientific Instruments and Equipment Development Program of China(Nos.2013YQ03065105 and2011YQ030114)the Program for New Century Excellent Talents in University(No.NCET-08-0361)the National High Technology Research and DevelopmentProgram(863)of China(No.2008AA04Z113)
文摘Biological inspirations are good design mimicry resources. This paper proposes a function based approach for modeling and transformation of bio-inspiration design knowledge. A general functional modeling method for biological domain and engineering domain design knowledge is introduced. Functional similarity based bio-inspiration transformation between biological domain and engineering domain is proposed. The biological function topology transfer and analog solution recomposition are also discussed in this paper.
基金part support by a GUMC COVID-19 grant (to XL)the support from Center for Cell Reprogramming,GUMC。
文摘Cancer cell lines have been used widely in cancer biology, and as biological or functional cell systems in many biomedical research fields. These cells are usually defective for many normal activities or functions due to significant genetic and epigenetic changes. Normal primary cell yields and viability from any original tissue specimens are usually relatively low or highly variable. These normal cells cease after a few passages or population doublings due to very limited proliferative capacity. Animal models(ferret, mouse, etc.) are often used to study virus-host interaction. However, viruses usually need to be adapted to the animals by several passages due to tropism restrictions including viral receptors and intracellular restrictions. Here we summarize applications of conditionally reprogrammed cells(CRCs), long-term cultures of normal airway epithelial cells from human nose to lung generated by conditional cell reprogramming(CR) technology, as an ex vivo model in studies of emerging viruses. CR allows to robustly propagate cells from non-invasive or minimally invasive specimens, for example, nasal or endobronchial brushing. This process is rapid(2 days) and conditional. The CRCs maintain their differentiation potential and lineage functions, and have been used for studies of adenovirus, rhinovirus, respiratory syncytial virus, influenza viruses, parvovirus, and SARS-CoV. The CRCs can be easily used for airliquid interface(ALI) polarized 3 D cultures, and these coupled CRC/ALI cultures mimic physiological conditions and are suitable for studies of viral entry including receptor binding and internalization, innate immune responses, viral replications, and drug discovery as an ex vivo model for emerging viruses.
基金supported by the National Natural Science Foundation of China(21103121,21276187)Tianjin Municipal Natural Science Foundation(13JCQNJC05800)the Specialized Research Fund for the Doctoral Program of Higher Education(20121317110009)~~
文摘Two mono iron complexes Fe(CO)2PR3(NN) (R = Cy (3), Ph (4), NN = o-phenylenediamine dianion ligand, N2H2Ph2-) derived from the ligand substitution of Fe(CO)3hPR3 by the NN ligand were isolated and structurally characterized by single crystal X-ray diffraction. They have a similar first coordination sphere and oxidation state of the iron center as the [Fe]-hydrogenase active site, and can be a model of it IR demonstrated that the effect of the NN ligand on the coordinated CO stretch- ing frequencies was due to its excellent electron donating ability. The reversible protonation/deprotonation of the NN ligand was identified by infrared spectroscopy and density functional theory computation. The NN ligand is an effective proton acceptor as the internal base of the cysteine thiolate ligand in [Fe]-hydrogenase. The electrochemical properties of complexes 3, 4 were investigated by cyclic voltammograms. Complex 3 catalyzed the transfer hydrogenation of benzoquinone to hydroquinone effectively under mild conditions.
基金supported by Shandong Provincial Social Science Planning Research Project“Research on Inheritance and Innovation of Shandong Wooden Clappers Culture”(20CCXJ26).
文摘In the face offierce competition in the social environment,mental health problems gradually get the attention of the public,in order to achieve accurate mental health data analysis,the construction of music education is based on emotional tendency analysis of psychological adjustment function model.Design emotional tendency analysis of music education psychological adjustment function architecture,music teaching goal as psychological adjust-ment function architecture building orientation,music teaching content as a foundation for psychological adjust-ment function architecture and music teaching process as a psychological adjustment function architecture building,music teaching evaluation as the key of building key regulating function architecture,Establish a core literacy oriented evaluation system.Different evaluation methods were used to obtain the evaluation results.Four levels of psychological adjustment function model of music education are designed,and the psychological adjust-ment function of music education is put forward,thus completing the construction of psychological adjustment function model of music education.The experimental results show that the absolute value of the data acquisition error of the designed model is minimum,which is not more than 0.2.It is less affected by a bad coefficient and has good performance.It can quickly converge to the best state in the actual prediction process and has a strong con-vergence ability.
文摘The general function of allusions is often thought to add clarity and significance to ideas and descriptions.However,it would be difficult to establish an exhaustive list of mutually exclusive category
文摘This paper presents an overview of the history, modifications, characteristics, and applications of two well known dielectric function models ——the Forouhi-Bloomer model and the Tauc-Lorentz model——which have been widely used for the extraction and parameterization of optical constants in semiconductors and dielectrics. Based on analysis of their inherent characteristics and comparison via demonstrative examples, deeper and wider usage of the two models is predicted.
基金Item Sponsored by Fundamental Research Funds for the Central Universities of China(N110307001)
文摘The interstand tension control is one of the most important ways to meet tight tolerances for strip product quality during tandem cold rolling process. Using coordinate analysis and parabolic approximation for the mass flow balance principle, the strip velocities eliminating the use of forward slips and backward slips were calculated. In order to reduce the effect of roll eccentricity on the tension measurement, a filter based on bilinear transformation was de- signed. Applying a first-order Taylor series approximation, the transfer function matrix model of interstand tension stress was derived. The actual measurements on-site and the final calculation results showed that the established model had high calculation accuracy and was beneficial for interstand tension control of random cold rolling process.
基金Projects(51621006,51874274)supported by the National Natural Science Foundation of ChinaProject(2018YFC0808401)supported by the National Key Research and Development Program of China
文摘In this paper,a new micro-creep model of salt rock is proposed based on a linear parallel bonded model(LPBM)using the two-dimensional particle flow code(PFC2D).The power function weakening form is assumed to describe the variation of the parallel bonded diameter(PBD)over time.By comparing with the parallel-bonded stress corrosion(PSC)model,a smaller stress fluctuation and smoother creep strain−time curves can be obtained by this power function model at the same stress level.The validity and adaptability of the model to simulate creep deformation of salt rock are verified through comparing the laboratory creep test curves and the Burgers model fitting result.The numerical results reveal that this model can be capable of capturing the creep deformation and damage behavior from the laboratory observations.
基金Project supported by the National Natural Science Foundation of China(Grand Nos.11147158 and 11264020)the Natural Science Foundation of Jiangxi Province,China(Grand No.2010GQW0031)the Scientific Research Program of the Education Bureau of Jiangxi Province,China(Grand No.GJJ12483)
文摘Using the density functional B3P86/cc-PV5Z method, the geometric structure of BH molecule under different external electric fields is optimized, and the bond lengths, dipole moments, vibration frequencies, and other physical properties parameters are obtained. On the basis of setting appropriate parameters, scanning single point energies are obtained by the same method and the potential energy curves under different external fields are also obtained. These results show that the physical property parameters and potential energy curves may change with external electric field, especially in the case of reverse direction electric field. The potential energy function without external electric field is fitted by Morse potential, and the fitting parameters are obtained which are in good agreement with experimental values. In order to obtain the critical dissociation electric parameter, the dipole approximation is adopted to construct a potential model fitting the corresponding potential energy curve of the external electric field. It is found that the fitted critical dissociation electric parameter is consistent with numerical calculation, so that the constructed model is reliable and accurate. These results will provide important theoretical and experimental reference for further studying the molecular spectrum, dynamics, and molecular cooling with Stark effect.
基金supported by the Key Program of the National Natural Science Foundation of China (No. 50334060)
文摘The surface subsidence is a common environmental hazard in mined-out area. Based on careful analysis of the regularity of surface subsidence in mined-out area, we proposed a new time function based on Harris curve model in consideration of the shortage of current surface subsidence time functions. By analyzing the characteristics of the new time function, we found that it could meet the dynamic process, the velocity change process and the acceleration change process during surface subsidence. Then its rationality had been verified through project cases. The results show that the proposed time function model can give a good reflection of the regularity of surface subsidence in mined-out area and can accurately predict surface subsidence. And the prediction data of the model are a little greater than measured data on condition of proper measured data quantity, which is safety in the engineering. This model provides a new method for the analysis of surface subsidence in mined-out area and reference for future prediction, and it is valuable to engineering application.
基金the Scientific Research and Development Project of Shandong Provincial Education Department(J06P01)the Science and Technology Fundation of University of Jinan (XKY0703).
文摘Two pairs of approximation operators, which are the scale lower and upper approximations as well as the real line lower and upper approximations, are defined. Their properties and antithesis characteristics are analyzed. The rough function model is generalized based on rough set theory, and the scheme of rough function theory is made more distinct and complete. Therefore, the transformation of the real function analysis from real line to scale is achieved. A series of basic concepts in rough function model including rough numbers, rough intervals, and rough membership functions are defined in the new scheme of the rough function model. Operating properties of rough intervals similar to rough sets are obtained. The relationship of rough inclusion and rough equality of rough intervals is defined by two kinds of tools, known as the lower (upper) approximation operator in real numbers domain and rough membership functions. Their relative properties are analyzed and proved strictly, which provides necessary theoretical foundation and technical support for the further discussion of properties and practical application of the rough function model.