This paper is concerned with event-triggered control of discrete-time systems with or without input saturation.First,an accumulative-error-based event-triggered scheme is devised for control updates.When the accumulat...This paper is concerned with event-triggered control of discrete-time systems with or without input saturation.First,an accumulative-error-based event-triggered scheme is devised for control updates.When the accumulated error between the current state and the latest control update exceeds a certain threshold,an event is triggered.Such a scheme can ensure the event-generator works at a relatively low rate rather than falls into hibernation especially after the system steps into its steady state.Second,the looped functional method for continuous-time systems is extended to discrete-time systems.By introducing an innovative looped functional that links the event-triggered scheme,some sufficient conditions for the co-design of control gain and event-triggered parameters are obtained in terms of linear matrix inequalities with a couple of tuning parameters.Then,the proposed method is applied to discrete-time systems with input saturation.As a result,both suitable control gains and event-triggered parameters are also co-designed to ensure the system trajectories converge to the region of attraction.Finally,an unstable reactor system and an inverted pendulum system are given to show the effectiveness of the proposed method.展开更多
Using density functional methods,some properties were studied such as the energies and compositions of frontier molecular orbitals and the atomic charges,which are related to the reactive behavior of thioureas contain...Using density functional methods,some properties were studied such as the energies and compositions of frontier molecular orbitals and the atomic charges,which are related to the reactive behavior of thioureas containing different N-substituent groupings.The calculation results indicate that the N-substituent groupings have significant effect on the flotation performance of thiourea collectors.The order of electron-donating ability is N-propyl-N'-benzyl-thiourea(PBZYTU)>N-propyl-N'-ethyl-thiourea (PETU)>N-propyl-N'-allyl-thiourea(PALTU)>>N-propyl-N'-acetyl-thiourea(PACTU)>N-propyl-N'-ethoxycarbonyl-thiourea (PECTU)>N-propyl-N'-benzoyl-thiourea(PBZOYTU),and the order of feedback-electron-accepting ability is PBZOYTU> PACTU>PECTU>>PALTU>PETU>PBZYTU.This implies that PBZOYTU,PACTU or PECTU can react with copper atoms having(t2g) 6 (eg) 3Cu(II)or t 6e 4Cu(I)configuration on the surfaces of copper sulfide minerals through normal covalent bond and back donation covalent bond,and exhibit excellently collecting performance for copper sulfide minerals.These are consistent with the experimental data reported in the literatures.展开更多
The electronic and physical properties of PtmPdn (m+n≤5) metal clusters and their interactions with dioxygen have been studied by using hybrid density functional B3LYP method. The total energies, atomization energ...The electronic and physical properties of PtmPdn (m+n≤5) metal clusters and their interactions with dioxygen have been studied by using hybrid density functional B3LYP method. The total energies, atomization energies, vibration frequencies, and charge distributions were reported. The Pt-Pt bridge site modified by Pd atoms was found to be the most active site for the dissociation of dioxygen, which was mainly due to the change of electronic structures of the Pt atoms in bimetallic Pt-Pd clusters.展开更多
A meshless numerical model is developed for analyzing transient heat conductions in three-dimensional (3D) axisymmetric continuously nonhomogeneous functionally graded materials (FGMs). Axial symmetry of geometry ...A meshless numerical model is developed for analyzing transient heat conductions in three-dimensional (3D) axisymmetric continuously nonhomogeneous functionally graded materials (FGMs). Axial symmetry of geometry and boundary conditions reduces the original 3D initial-boundary value problem into a two-dimensional (2D) problem. Local weak forms are derived for small polygonal sub-domains which surround nodal points distributed over the cross section. In order to simplify the treatment of the essential boundary conditions, spatial variations of the temperature and heat flux at discrete time instants are interpolated by the natural neighbor interpolation. Moreover, the using of three-node triangular finite element method (FEM) shape functions as test functions reduces the orders of integrands involved in domain integrals. The semi-discrete heat conduction equation is solved numerically with the traditional two-point difference technique in the time domain. Two numerical examples are investigated and excellent results are obtained, demonstrating the potential application of the proposed approach.展开更多
We have systematically investigated the geometrical structures, relative stabilities and electronic properties of small bimetallic AunBe (n = 1, 2, . .. 8) clusters using a density functional method at BP86 level. T...We have systematically investigated the geometrical structures, relative stabilities and electronic properties of small bimetallic AunBe (n = 1, 2, . .. 8) clusters using a density functional method at BP86 level. The optimized geometries reveal that the impurity beryllium atom dramatically affects the structures of the Aun clusters. The averaged binding energies, fragmentation energies, second-order difference of energies, the highest occupied-lowest unoccupied molecular orbital energy gaps and chemical hardness are investigated, All of them exhibit a pronounced odd-even alternation, manifesting that the clusters with even number of gold atoms possess relatively higher stabilities. Especially, the linear Au2Be cluster is magic cluster with the most stable chemical stability. According to the natural population analysis, it is found that charge-transferring direction between Au atom and Be atom changes at the size of n = 4.展开更多
The Ira (n=1-13) clusters are studied using the relativistic density functional method with generalized gradient approximation. A series of low-lying structures with different spin multiplicities have been considere...The Ira (n=1-13) clusters are studied using the relativistic density functional method with generalized gradient approximation. A series of low-lying structures with different spin multiplicities have been considered. It is found that all the lowest-energy Ira (n=4-13) geometries prefer non-compact structures rather than compact structure growth pattern. And the cube structure is a very stable cell for the lowest-energy Ira (n 〉 8) clusters. The second-order difference of energy, the vertical ionization potentials, the electron affinities and the atomic average magnetic moments for the lowest-energy Ira geometries all show odd even alternative behaviours.展开更多
This paper focuses on the robust stability for time-delay systems of neutral type. A new complete Lyapunov-Krasovskii function (LKF) is developed. Based on this function and discretization, stability conditions in ter...This paper focuses on the robust stability for time-delay systems of neutral type. A new complete Lyapunov-Krasovskii function (LKF) is developed. Based on this function and discretization, stability conditions in terms of linear matrix inequalities are obtained. A class of time-varying uncertainty of system matrices can be studied by the method.展开更多
Since entering the era of Industry 4.0,the concept of Healthcare 4.0 has also been put forward and explored by researchers.How to use Information Technology(IT)to better serve people’s healthcare is one of the most f...Since entering the era of Industry 4.0,the concept of Healthcare 4.0 has also been put forward and explored by researchers.How to use Information Technology(IT)to better serve people’s healthcare is one of the most featured emerging directions in the academic circle.An important field of Healthcare 4.0 research is the reliability engineering of healthcare service.Because healthcare systems often affect the health and even life of their users,developers must be very cautious in the design,development,and operation of these healthcare systems and services.The problems to be solved include the reliability of business process,system functions,and personal healthcare data.The Functional Resonance Analysis Method(FRAM)has been applied in reliability engineering for safety-critical systems in available studies,using both qualitative and quantitative approaches.However,the method has not been applied in the field of digital healthcare services development.Therefore,to narrow the gap,we present in this paper a semi-quantitative functional resonance analysis method to develop reliable healthcare services for diabetics.Moreover,this paper has tried to improve the reliability design of the service-oriented architecture(SOA)of traditional insulin pump therapy by system thinking.展开更多
The inverse problems of wave equation to recover unknown space-time dependent functions of wave speed and wave source are solved in this paper, without needing of initial conditions and no internal measurement of data...The inverse problems of wave equation to recover unknown space-time dependent functions of wave speed and wave source are solved in this paper, without needing of initial conditions and no internal measurement of data being required. After a homogenization technique, a sequence of spatial boundary functions at least the fourth-order polynomials are derived, which satisfy the homogeneous boundary conditions. The boundary functions and the zero element constitute a linear space, and then a new boundary functional is proved in the linear space, of which the energy is preserved for each dynamic energetic boundary function. The linear systems and iterative algorithms used to recover unknown wave speed and wave source functions with the dynamic energetic boundary functions as bases are developed, which converge fast at each time step. The input data are parsimonious, merely the measured boundary strains and the boundary values and slopes of unknown functions to be recovered. The accuracy and robustness of present methods are confirmed by comparing exact solutions with estimated results under large noises up to 20%.展开更多
In this paper, we present a large-update primal-dual interior-point method for symmetric cone optimization(SCO) based on a new kernel function, which determines both search directions and the proximity measure betwe...In this paper, we present a large-update primal-dual interior-point method for symmetric cone optimization(SCO) based on a new kernel function, which determines both search directions and the proximity measure between the iterate and the center path. The kernel function is neither a self-regular function nor the usual logarithmic kernel function. Besides, by using Euclidean Jordan algebraic techniques, we achieve the favorable iteration complexity O( √r(1/2)(log r)^2 log(r/ ε)), which is as good as the convex quadratic semi-definite optimization analogue.展开更多
The crack tip fields are investigated for a cracked functionally graded material (FGM) plate by Reissner's linear plate theory with the consideration of the transverse shear deformation generated by bending. The el...The crack tip fields are investigated for a cracked functionally graded material (FGM) plate by Reissner's linear plate theory with the consideration of the transverse shear deformation generated by bending. The elastic modulus and Poisson's ratio of the functionally graded plates are assumed to vary continuously through the coordinate y, according to a linear law and a constant, respectively. The governing equations, i.e., the 6th-order partial differential equations with variable coefficients, are derived in the polar coordinate system based on Reissner's plate theory. Furthermore, the generalized displacements are treated in a separation-of-variable form, and the higher-order crack tip fields of the cracked FGM plate are obtained by the eigen-expansion method. It is found that the analytic solutions degenerate to the corresponding fields of the isotropic homogeneous plate with Reissner's effect when the in-homogeneity parameter approaches zero.展开更多
Single-pulse chaos are studied for a functionally graded materials rectangular plate. By means of the global perturbation method, explicit conditions for the existence of a SiZnikov-type homoclinic orbit are obtained ...Single-pulse chaos are studied for a functionally graded materials rectangular plate. By means of the global perturbation method, explicit conditions for the existence of a SiZnikov-type homoclinic orbit are obtained for this sys- tem, which suggests that chaos are likely to take place. Then, numerical simulations are given to test the analytical predic- tions. And from our analysis, when the chaotic motion oc- curs, there are a quasi-period motion in a two-dimensional subspace and chaos in another two-dimensional supplemen- tary subspace.展开更多
This paper presents the design of an asymmetrically variable wingtip anhedral angles morphing aircraft,inspired by biomimetic mechanisms,to enhance lateral maneuver capability.Firstly,we establish a lateral dynamic mo...This paper presents the design of an asymmetrically variable wingtip anhedral angles morphing aircraft,inspired by biomimetic mechanisms,to enhance lateral maneuver capability.Firstly,we establish a lateral dynamic model considering additional forces and moments resulting during the morphing process,and convert it into a Multiple Input Multiple Output(MIMO)virtual control system by importing virtual inputs.Secondly,a classical dynamics inversion controller is designed for the outer-loop system.A new Global Fast Terminal Incremental Sliding Mode Controller(NDO-GFTISMC)is proposed for the inner-loop system,in which an adaptive law is implemented to weaken control surface chattering,and a Nonlinear Disturbance Observer(NDO)is integrated to compensate for unknown disturbances.The whole control system is proven semiglobally uniformly ultimately bounded based on the multi-Lyapunov function method.Furthermore,we consider tracking errors and self-characteristics of actuators,a quadratic programmingbased dynamic control allocation law is designed,which allocates virtual control inputs to the asymmetrically deformed wingtip and rudder.Actuator dynamic models are incorporated to ensure physical realizability of designed allocation law.Finally,comparative experimental results validate the effectiveness of the designed control system and control allocation law.The NDO-GFTISMC features faster convergence,stronger robustness,and 81.25%and 75.0%reduction in maximum state tracking error under uncertainty compared to the Incremental Nonlinear Dynamic Inversion Controller based on NDO(NDO-INDI)and Incremental Sliding Mode Controller based on NDO(NDO-ISMC),respectively.The design of the morphing aircraft significantly enhances lateral maneuver capability,maintaining a substantial control margin during lateral maneuvering,reducing the burden of the rudder surface,and effectively solving the actuator saturation problem of traditional aircraft during lateral maneuvering.展开更多
A novel parameter identification method for magnetic levitation bearing rotor systems is proposed,based on the modulation function method.The fundamental principle of the modulation function method for parameter ident...A novel parameter identification method for magnetic levitation bearing rotor systems is proposed,based on the modulation function method.The fundamental principle of the modulation function method for parameter identification is derived on the basis of the characteristics of the modulation function.The transformation of the differential equation model of a continuous system into a general algebraic equation model is effectively achieved,thereby avoiding the influence of errors introduced by the initial value and differential derivation of the system.Modulation function method parameter identification models have been established for single-degree-of-freedom and multi-degree-of-freedom magnetic levitation bearing rotor systems.The influence of different parameters of Hartley modulation function on the accuracy of system parameter identification has been investigated,thus providing a basis for the design of Hartley modulation function parameters.Simulation and experimental results demonstrate that the modulation function method can effectively identify system parameters despite the presence of system noise.展开更多
In this paper,a class of quaternion-valued cellular neural networks(QVCNNS)with time-varying delays are considered.Combining graph theory with the continuation theorem of Mawhin’s coincidence degree theory as well as...In this paper,a class of quaternion-valued cellular neural networks(QVCNNS)with time-varying delays are considered.Combining graph theory with the continuation theorem of Mawhin’s coincidence degree theory as well as Lyapunov functional method,we establish new criteria on the existence and exponential stability of periodic solutions for QVCNNS by removing the assumptions for the boundedness on the activation functions and the assumptions that the values of the activation functions are zero at origin.Hence,our results are less conservative and new.展开更多
A three-dimensional panel method is developed to investigate the seakeeping performance of two parallel ships advancing in head and oblique waves. In this method, the fluid domain is partitioned into two regions by in...A three-dimensional panel method is developed to investigate the seakeeping performance of two parallel ships advancing in head and oblique waves. In this method, the fluid domain is partitioned into two regions by introducing a virtual control surface. In the inner part, the Taylor expansion boundary element method is used, whose kernel function is the Rankine source;in the outer part, the free surface Green function with the forward speed effect considered is adopted. The velocity potentials and normal velocities on the virtual control surface are equal for the inner and outer domains. Moreover, the numerical estimation method for viscous roll damping recommended by the ITTC is included in the present method. This hybrid method is validated through the previously measured motions of two ship models, and the present numerical results are in good agreement with those of the experiments. Furthermore, the influences of longitudinal distances and wave heading angles on six-degree-of-freedom motions and the hydrodynamic interaction between the present two ship models are discussed in detail.展开更多
Since the plasticity of soil and the irregular shape of the excavation,the efficiency and stability of the traditional local radial basis function(RBF)collocation method(LRBFCM)are inadequate for analyzing three-dimen...Since the plasticity of soil and the irregular shape of the excavation,the efficiency and stability of the traditional local radial basis function(RBF)collocation method(LRBFCM)are inadequate for analyzing three-dimensional(3D)deformation of deep excavation.In this work,the technique known as the direct method,where the local influence nodes are collocated on a straight line,is introduced to optimize the LRBFCM.The direct method can improve the accuracy of the partial derivative,reduce the size effect caused by the large length-width ratio,and weaken the influence of the shape parameters on the LRBFCM.The mapping technique is adopted to transform the physical coordinates of a quadratic-type block to normalized coordinates,in which the deformation problem can easily be solved using the direct method.The stability of the LRBFCM is further modified by considering the irregular shape of 3D excavation,which is divided into several quadratic-type blocks.The soil’s plasticity is described by the Drucker-Prager(D-P)model.The improved LRBFCM is integrated with the incremental method to analyze the plasticity.Five different examples,including strip excavations and circular excavations,are presented to validate the proposed approach’s efficiency.展开更多
Dear Editor,This letter deals with the controller synthesis problem of networked Takagi-Sugeno(T-S)fuzzy systems.Due to the introduction of network communications,the same premise is no longer shared by fuzzy plants a...Dear Editor,This letter deals with the controller synthesis problem of networked Takagi-Sugeno(T-S)fuzzy systems.Due to the introduction of network communications,the same premise is no longer shared by fuzzy plants and fuzzy controllers.This makes the classic parallel distribution compensation(PDC)control infeasible.To overcome this situation,a novel method for reconstructing the membership functions'grades is proposed,which synchronizes the time scales.Then,the membership function dependent method is adopted to introduce asynchronous errors and detailed membership function information.For the event-triggered control strategy,a series of robust H∞stable conditions in LMI form are derived.Finally,a simulation of a practical system is used to demonstrate the method proposed in this letter can reduce conservatism.展开更多
In order to explore the effect mechanism of solvent on the synthesis of the metal organic framework materials, the microscopic interaction between solvent and framework and the effects of N,N-dimethyl-formamide(DMF) o...In order to explore the effect mechanism of solvent on the synthesis of the metal organic framework materials, the microscopic interaction between solvent and framework and the effects of N,N-dimethyl-formamide(DMF) or N-methyl- 2-pyrrolidone(NMP) on solvothermal synthesis of [Zn4O(BDC)3]8 were investigated through a combined DFT and experimental study. XRD and SEM showed that the absorbability of NMP in the pore of [Zn4O(BDC)3]8 was weaker than that of DMF. The thermal decomposition temperature of [Zn4O(BDC)3]8 synthesized in DMF was higher than that in NMP according to TG and FT-IR. In addition, the nitrogen sorption isotherms indicated that NMP improved gas sorption property of [Zn4O(BDC)3]8. The COSMO optimized calculations indicated that the total energy of Zn4O(BDC)3 in NMP was higher than that in DMF, and compared with non-solvent system, the charge of zinc atoms decreased and the charge value was the smallest in NMP. Furthermore, the interaction of DMF, NMP or DEF in [Zn4O(BDC)3]8 crystal model was calculated by DFT method. The results suggested that NMP should be easier to be removed from pore of materials than DMF from the point of view of energy state. It can be concluded that NMP was a favorable solvent to synthesize [Zn4O(BDC)3]8 and the microscopic mechanism was that the binding force between Zn4O(BDC)3 and NMP molecule was weaker than DMF.展开更多
Aim The general arbitrary cracked problem in an elastic plane was discussed. Methods For the purpose of acquiring the solution of the problem, a new formulation on the problem was proposed. Compared with the classic...Aim The general arbitrary cracked problem in an elastic plane was discussed. Methods For the purpose of acquiring the solution of the problem, a new formulation on the problem was proposed. Compared with the classical plane elastic crack model, only the known conditions were revised in the new formulation, which are greatly convenient to solve the problem, and no other new condition was given. Results and Conclusion The general exact analytic solution is given here based on the formulation though the problem is very complicated. Furthermore, the stress intensity factors K Ⅰ, K Ⅱ of the problem are also given.展开更多
基金supported in part by the National Natural Science Foundation of China(62473221)the Natural Science Foundation of Shandong Province,China(ZR2024MF006)Qingdao Natural Science Foundation(24-4-4-zrjj-165-jch)。
文摘This paper is concerned with event-triggered control of discrete-time systems with or without input saturation.First,an accumulative-error-based event-triggered scheme is devised for control updates.When the accumulated error between the current state and the latest control update exceeds a certain threshold,an event is triggered.Such a scheme can ensure the event-generator works at a relatively low rate rather than falls into hibernation especially after the system steps into its steady state.Second,the looped functional method for continuous-time systems is extended to discrete-time systems.By introducing an innovative looped functional that links the event-triggered scheme,some sufficient conditions for the co-design of control gain and event-triggered parameters are obtained in terms of linear matrix inequalities with a couple of tuning parameters.Then,the proposed method is applied to discrete-time systems with input saturation.As a result,both suitable control gains and event-triggered parameters are also co-designed to ensure the system trajectories converge to the region of attraction.Finally,an unstable reactor system and an inverted pendulum system are given to show the effectiveness of the proposed method.
基金Project(50604016)supported by the National Natural Science Foundation of ChinaProject(2007B52)supported by the Foundation for the Author of National Excellent Doctoral Dissertation of China+3 种基金Project(NCET-08-0568)supported by the Program for New Century Excellent Talents in Chinese UniversityProject(2007CB613602)supported by the National Basic Research Program of ChinaProject(2007AA06Z122)supported by the National High-tech Research and Development Program of ChinaProject(2007BAB22B01)supported by the National Science and Technology Support Project of China
文摘Using density functional methods,some properties were studied such as the energies and compositions of frontier molecular orbitals and the atomic charges,which are related to the reactive behavior of thioureas containing different N-substituent groupings.The calculation results indicate that the N-substituent groupings have significant effect on the flotation performance of thiourea collectors.The order of electron-donating ability is N-propyl-N'-benzyl-thiourea(PBZYTU)>N-propyl-N'-ethyl-thiourea (PETU)>N-propyl-N'-allyl-thiourea(PALTU)>>N-propyl-N'-acetyl-thiourea(PACTU)>N-propyl-N'-ethoxycarbonyl-thiourea (PECTU)>N-propyl-N'-benzoyl-thiourea(PBZOYTU),and the order of feedback-electron-accepting ability is PBZOYTU> PACTU>PECTU>>PALTU>PETU>PBZYTU.This implies that PBZOYTU,PACTU or PECTU can react with copper atoms having(t2g) 6 (eg) 3Cu(II)or t 6e 4Cu(I)configuration on the surfaces of copper sulfide minerals through normal covalent bond and back donation covalent bond,and exhibit excellently collecting performance for copper sulfide minerals.These are consistent with the experimental data reported in the literatures.
基金This work was partly supported by Innovation Foundation of the Chinese Academy of Sciences (K2003D2), National Natural Science Foundation of China (No. 20173060), Hi-tech Research and Development Program of China (2003AA517040) and Knowledge Innovation Program of the Chinese Academy of Sciences (KGCX2-SW-310)
文摘The electronic and physical properties of PtmPdn (m+n≤5) metal clusters and their interactions with dioxygen have been studied by using hybrid density functional B3LYP method. The total energies, atomization energies, vibration frequencies, and charge distributions were reported. The Pt-Pt bridge site modified by Pd atoms was found to be the most active site for the dissociation of dioxygen, which was mainly due to the change of electronic structures of the Pt atoms in bimetallic Pt-Pd clusters.
基金Project supported by the National Natural Science Foundation of China(Grant No.11002054)the Foundation of Hunan Educational Committee(Grant No.12C0059).
文摘A meshless numerical model is developed for analyzing transient heat conductions in three-dimensional (3D) axisymmetric continuously nonhomogeneous functionally graded materials (FGMs). Axial symmetry of geometry and boundary conditions reduces the original 3D initial-boundary value problem into a two-dimensional (2D) problem. Local weak forms are derived for small polygonal sub-domains which surround nodal points distributed over the cross section. In order to simplify the treatment of the essential boundary conditions, spatial variations of the temperature and heat flux at discrete time instants are interpolated by the natural neighbor interpolation. Moreover, the using of three-node triangular finite element method (FEM) shape functions as test functions reduces the orders of integrands involved in domain integrals. The semi-discrete heat conduction equation is solved numerically with the traditional two-point difference technique in the time domain. Two numerical examples are investigated and excellent results are obtained, demonstrating the potential application of the proposed approach.
基金Project supported by the National Natural Science Foundation of China (Grant No. 10974138)
文摘We have systematically investigated the geometrical structures, relative stabilities and electronic properties of small bimetallic AunBe (n = 1, 2, . .. 8) clusters using a density functional method at BP86 level. The optimized geometries reveal that the impurity beryllium atom dramatically affects the structures of the Aun clusters. The averaged binding energies, fragmentation energies, second-order difference of energies, the highest occupied-lowest unoccupied molecular orbital energy gaps and chemical hardness are investigated, All of them exhibit a pronounced odd-even alternation, manifesting that the clusters with even number of gold atoms possess relatively higher stabilities. Especially, the linear Au2Be cluster is magic cluster with the most stable chemical stability. According to the natural population analysis, it is found that charge-transferring direction between Au atom and Be atom changes at the size of n = 4.
基金Project supported by the National Natural Science Foundation of China for Young Scientists(Grant No.10904123)the National Natural Science Foundation of China(Grant Nos.10774118 and 10974152)the Special Item Foundation of Educational Committee of Shaanxi Province,China(Grant No.08JK471)
文摘The Ira (n=1-13) clusters are studied using the relativistic density functional method with generalized gradient approximation. A series of low-lying structures with different spin multiplicities have been considered. It is found that all the lowest-energy Ira (n=4-13) geometries prefer non-compact structures rather than compact structure growth pattern. And the cube structure is a very stable cell for the lowest-energy Ira (n 〉 8) clusters. The second-order difference of energy, the vertical ionization potentials, the electron affinities and the atomic average magnetic moments for the lowest-energy Ira geometries all show odd even alternative behaviours.
基金the National High Technology Research and Development Program (863) of China(No. 2006AA05Z148)
文摘This paper focuses on the robust stability for time-delay systems of neutral type. A new complete Lyapunov-Krasovskii function (LKF) is developed. Based on this function and discretization, stability conditions in terms of linear matrix inequalities are obtained. A class of time-varying uncertainty of system matrices can be studied by the method.
文摘Since entering the era of Industry 4.0,the concept of Healthcare 4.0 has also been put forward and explored by researchers.How to use Information Technology(IT)to better serve people’s healthcare is one of the most featured emerging directions in the academic circle.An important field of Healthcare 4.0 research is the reliability engineering of healthcare service.Because healthcare systems often affect the health and even life of their users,developers must be very cautious in the design,development,and operation of these healthcare systems and services.The problems to be solved include the reliability of business process,system functions,and personal healthcare data.The Functional Resonance Analysis Method(FRAM)has been applied in reliability engineering for safety-critical systems in available studies,using both qualitative and quantitative approaches.However,the method has not been applied in the field of digital healthcare services development.Therefore,to narrow the gap,we present in this paper a semi-quantitative functional resonance analysis method to develop reliable healthcare services for diabetics.Moreover,this paper has tried to improve the reliability design of the service-oriented architecture(SOA)of traditional insulin pump therapy by system thinking.
文摘The inverse problems of wave equation to recover unknown space-time dependent functions of wave speed and wave source are solved in this paper, without needing of initial conditions and no internal measurement of data being required. After a homogenization technique, a sequence of spatial boundary functions at least the fourth-order polynomials are derived, which satisfy the homogeneous boundary conditions. The boundary functions and the zero element constitute a linear space, and then a new boundary functional is proved in the linear space, of which the energy is preserved for each dynamic energetic boundary function. The linear systems and iterative algorithms used to recover unknown wave speed and wave source functions with the dynamic energetic boundary functions as bases are developed, which converge fast at each time step. The input data are parsimonious, merely the measured boundary strains and the boundary values and slopes of unknown functions to be recovered. The accuracy and robustness of present methods are confirmed by comparing exact solutions with estimated results under large noises up to 20%.
基金Supported by the Natural Science Foundation of Hubei Province(2008CDZD47)
文摘In this paper, we present a large-update primal-dual interior-point method for symmetric cone optimization(SCO) based on a new kernel function, which determines both search directions and the proximity measure between the iterate and the center path. The kernel function is neither a self-regular function nor the usual logarithmic kernel function. Besides, by using Euclidean Jordan algebraic techniques, we achieve the favorable iteration complexity O( √r(1/2)(log r)^2 log(r/ ε)), which is as good as the convex quadratic semi-definite optimization analogue.
基金supported by the National Natural Science Foundation of China(Nos.90305023 and 11172332)
文摘The crack tip fields are investigated for a cracked functionally graded material (FGM) plate by Reissner's linear plate theory with the consideration of the transverse shear deformation generated by bending. The elastic modulus and Poisson's ratio of the functionally graded plates are assumed to vary continuously through the coordinate y, according to a linear law and a constant, respectively. The governing equations, i.e., the 6th-order partial differential equations with variable coefficients, are derived in the polar coordinate system based on Reissner's plate theory. Furthermore, the generalized displacements are treated in a separation-of-variable form, and the higher-order crack tip fields of the cracked FGM plate are obtained by the eigen-expansion method. It is found that the analytic solutions degenerate to the corresponding fields of the isotropic homogeneous plate with Reissner's effect when the in-homogeneity parameter approaches zero.
基金supported by the National Natural Science Foundation of China(11172125,11202095 and 11201226)Natural Science Foundation of Henan,China(2009B110009,B2008-56 and 649106)
文摘Single-pulse chaos are studied for a functionally graded materials rectangular plate. By means of the global perturbation method, explicit conditions for the existence of a SiZnikov-type homoclinic orbit are obtained for this sys- tem, which suggests that chaos are likely to take place. Then, numerical simulations are given to test the analytical predic- tions. And from our analysis, when the chaotic motion oc- curs, there are a quasi-period motion in a two-dimensional subspace and chaos in another two-dimensional supplemen- tary subspace.
基金supported by the National Natural Science Foundation of China(Nos.62103052 and No.52175214)。
文摘This paper presents the design of an asymmetrically variable wingtip anhedral angles morphing aircraft,inspired by biomimetic mechanisms,to enhance lateral maneuver capability.Firstly,we establish a lateral dynamic model considering additional forces and moments resulting during the morphing process,and convert it into a Multiple Input Multiple Output(MIMO)virtual control system by importing virtual inputs.Secondly,a classical dynamics inversion controller is designed for the outer-loop system.A new Global Fast Terminal Incremental Sliding Mode Controller(NDO-GFTISMC)is proposed for the inner-loop system,in which an adaptive law is implemented to weaken control surface chattering,and a Nonlinear Disturbance Observer(NDO)is integrated to compensate for unknown disturbances.The whole control system is proven semiglobally uniformly ultimately bounded based on the multi-Lyapunov function method.Furthermore,we consider tracking errors and self-characteristics of actuators,a quadratic programmingbased dynamic control allocation law is designed,which allocates virtual control inputs to the asymmetrically deformed wingtip and rudder.Actuator dynamic models are incorporated to ensure physical realizability of designed allocation law.Finally,comparative experimental results validate the effectiveness of the designed control system and control allocation law.The NDO-GFTISMC features faster convergence,stronger robustness,and 81.25%and 75.0%reduction in maximum state tracking error under uncertainty compared to the Incremental Nonlinear Dynamic Inversion Controller based on NDO(NDO-INDI)and Incremental Sliding Mode Controller based on NDO(NDO-ISMC),respectively.The design of the morphing aircraft significantly enhances lateral maneuver capability,maintaining a substantial control margin during lateral maneuvering,reducing the burden of the rudder surface,and effectively solving the actuator saturation problem of traditional aircraft during lateral maneuvering.
基金supported by the National Science and Technology Major Project(Grant No.J2019-Ⅳ-0003-0070).
文摘A novel parameter identification method for magnetic levitation bearing rotor systems is proposed,based on the modulation function method.The fundamental principle of the modulation function method for parameter identification is derived on the basis of the characteristics of the modulation function.The transformation of the differential equation model of a continuous system into a general algebraic equation model is effectively achieved,thereby avoiding the influence of errors introduced by the initial value and differential derivation of the system.Modulation function method parameter identification models have been established for single-degree-of-freedom and multi-degree-of-freedom magnetic levitation bearing rotor systems.The influence of different parameters of Hartley modulation function on the accuracy of system parameter identification has been investigated,thus providing a basis for the design of Hartley modulation function parameters.Simulation and experimental results demonstrate that the modulation function method can effectively identify system parameters despite the presence of system noise.
基金Supported by the Innovation Platform Open Fund in Hunan Province Colleges and Universities of China(201485).
文摘In this paper,a class of quaternion-valued cellular neural networks(QVCNNS)with time-varying delays are considered.Combining graph theory with the continuation theorem of Mawhin’s coincidence degree theory as well as Lyapunov functional method,we establish new criteria on the existence and exponential stability of periodic solutions for QVCNNS by removing the assumptions for the boundedness on the activation functions and the assumptions that the values of the activation functions are zero at origin.Hence,our results are less conservative and new.
基金financially supported by the National Natural Science Foundation of China (Grant Nos. 52071148 and 51509256)the Aeronautical Science Foundation of China (Grant No. 202000023079001)the Fundamental Research Funds for the Central Universities (Grant No.YCJJ20242103)。
文摘A three-dimensional panel method is developed to investigate the seakeeping performance of two parallel ships advancing in head and oblique waves. In this method, the fluid domain is partitioned into two regions by introducing a virtual control surface. In the inner part, the Taylor expansion boundary element method is used, whose kernel function is the Rankine source;in the outer part, the free surface Green function with the forward speed effect considered is adopted. The velocity potentials and normal velocities on the virtual control surface are equal for the inner and outer domains. Moreover, the numerical estimation method for viscous roll damping recommended by the ITTC is included in the present method. This hybrid method is validated through the previously measured motions of two ship models, and the present numerical results are in good agreement with those of the experiments. Furthermore, the influences of longitudinal distances and wave heading angles on six-degree-of-freedom motions and the hydrodynamic interaction between the present two ship models are discussed in detail.
基金supported by grants from the National Natural Science Foundation of China(Nos.12172159 and 12362019).
文摘Since the plasticity of soil and the irregular shape of the excavation,the efficiency and stability of the traditional local radial basis function(RBF)collocation method(LRBFCM)are inadequate for analyzing three-dimensional(3D)deformation of deep excavation.In this work,the technique known as the direct method,where the local influence nodes are collocated on a straight line,is introduced to optimize the LRBFCM.The direct method can improve the accuracy of the partial derivative,reduce the size effect caused by the large length-width ratio,and weaken the influence of the shape parameters on the LRBFCM.The mapping technique is adopted to transform the physical coordinates of a quadratic-type block to normalized coordinates,in which the deformation problem can easily be solved using the direct method.The stability of the LRBFCM is further modified by considering the irregular shape of 3D excavation,which is divided into several quadratic-type blocks.The soil’s plasticity is described by the Drucker-Prager(D-P)model.The improved LRBFCM is integrated with the incremental method to analyze the plasticity.Five different examples,including strip excavations and circular excavations,are presented to validate the proposed approach’s efficiency.
基金supported by the National Natural Science Foundation of China(62173218,61833011)International International Cooperation Project of Shanghai Science and Technology Commission(21190780300).
文摘Dear Editor,This letter deals with the controller synthesis problem of networked Takagi-Sugeno(T-S)fuzzy systems.Due to the introduction of network communications,the same premise is no longer shared by fuzzy plants and fuzzy controllers.This makes the classic parallel distribution compensation(PDC)control infeasible.To overcome this situation,a novel method for reconstructing the membership functions'grades is proposed,which synchronizes the time scales.Then,the membership function dependent method is adopted to introduce asynchronous errors and detailed membership function information.For the event-triggered control strategy,a series of robust H∞stable conditions in LMI form are derived.Finally,a simulation of a practical system is used to demonstrate the method proposed in this letter can reduce conservatism.
基金Project(51104185)supported by the National Natural Science Foundation of ChinaProject(2010QZZD003)supported by the Key Project of Central South University of Fundamental Research Funds for the Central Universities of China
文摘In order to explore the effect mechanism of solvent on the synthesis of the metal organic framework materials, the microscopic interaction between solvent and framework and the effects of N,N-dimethyl-formamide(DMF) or N-methyl- 2-pyrrolidone(NMP) on solvothermal synthesis of [Zn4O(BDC)3]8 were investigated through a combined DFT and experimental study. XRD and SEM showed that the absorbability of NMP in the pore of [Zn4O(BDC)3]8 was weaker than that of DMF. The thermal decomposition temperature of [Zn4O(BDC)3]8 synthesized in DMF was higher than that in NMP according to TG and FT-IR. In addition, the nitrogen sorption isotherms indicated that NMP improved gas sorption property of [Zn4O(BDC)3]8. The COSMO optimized calculations indicated that the total energy of Zn4O(BDC)3 in NMP was higher than that in DMF, and compared with non-solvent system, the charge of zinc atoms decreased and the charge value was the smallest in NMP. Furthermore, the interaction of DMF, NMP or DEF in [Zn4O(BDC)3]8 crystal model was calculated by DFT method. The results suggested that NMP should be easier to be removed from pore of materials than DMF from the point of view of energy state. It can be concluded that NMP was a favorable solvent to synthesize [Zn4O(BDC)3]8 and the microscopic mechanism was that the binding force between Zn4O(BDC)3 and NMP molecule was weaker than DMF.
文摘Aim The general arbitrary cracked problem in an elastic plane was discussed. Methods For the purpose of acquiring the solution of the problem, a new formulation on the problem was proposed. Compared with the classical plane elastic crack model, only the known conditions were revised in the new formulation, which are greatly convenient to solve the problem, and no other new condition was given. Results and Conclusion The general exact analytic solution is given here based on the formulation though the problem is very complicated. Furthermore, the stress intensity factors K Ⅰ, K Ⅱ of the problem are also given.