SiBCN ceramic aerogel is an ideal potential candidate for ultra-high temperature thermal insulation due to its unique microscopic pore structure combined with the excellent thermal stability of SiBCN ce-ramic.Here,red...SiBCN ceramic aerogel is an ideal potential candidate for ultra-high temperature thermal insulation due to its unique microscopic pore structure combined with the excellent thermal stability of SiBCN ce-ramic.Here,reduced graphene oxide(rGO)modified SiBCN aerogels(rGO/SiBCN)were prepared through solvothermal,freeze-casting and pyrolysis,and the dimension of the aerogel is up toΦ130 mm×28 mm.The density of the rGO/SiBCN aerogel is as low as 0.024 g/cm^(3) and the microstructural regulation is achieved by controlling the rGO content in the aerogel.The hierarchical cellular structure endows the aerogel with a high specific surface area(148.6 m^(2)/g)and low thermal conductivity(0.057 W m^(-1) K^(-1)).The 10 mm-thick sample exhibits excellent thermal insulation and ablation resistance,as evidenced by its ability to reduce the temperature from~1100℃to~180℃under the intense heat of a butane flame.Moreover,benefiting from the ultrahigh-temperature stability of SiBCN,the rGO/SiBCN aerogel exhibits good thermal stability up to 1200℃in argon and short-oxidation resistance at 800℃in air.There-fore,the rGO/SiBCN aerogel with superior overall performance could expand its practical application in high-temperature thermal insulation under extreme environments.展开更多
This paper aims to study a novel smart self-powered wireless lightweight (SPWL) bridge health monitoring sensor, which integrates key technologies such as large-scale, low-power wireless data transmission, environment...This paper aims to study a novel smart self-powered wireless lightweight (SPWL) bridge health monitoring sensor, which integrates key technologies such as large-scale, low-power wireless data transmission, environmental energy self-harvesting, and intelligent perception, and can operate stably for a long time in complex and changing environments. The self-powered system of the sensor can meet the needs of long-term bridge service performance monitoring, significantly improving the coverage and efficiency of monitoring. By optimizing the sensor system design, the maximum energy conversion of the energy harvesting unit is achieved. In order to verify the function and practicality of the new SPWL monitoring sensor, this study combined the actual bridge engineering, carried out a bridge monitoring case study, and developed an SPWL monitoring scheme based on the bridge structure principle. Compared with traditional monitoring methods, this technology significantly improves the sustainability and performance of infrastructure monitoring based on the new SPWL sensor, fully demonstrating the excellent monitoring capabilities of this type of sensor, and providing strong support for the development of intelligent transportation and intelligent infrastructure.展开更多
The bipolar plate(BPP)is a crucial component of proton exchange membrane fuel cells(PEMFC).However,the weight of BPPs can account for around 80%of a PEMFC stack,posing a hindrance to the commercialization of PEMFCs.Th...The bipolar plate(BPP)is a crucial component of proton exchange membrane fuel cells(PEMFC).However,the weight of BPPs can account for around 80%of a PEMFC stack,posing a hindrance to the commercialization of PEMFCs.Therefore,the lightweight design of BPPs should be considered as a priority.Honeycomb sandwich structures meet some requirements for bipolar plates,such as high mechanical strength and lightweight.Animals and plants in nature provide many excellent structures with characteristics such as low density and high energy absorption capacity.In this work,inspired by the microstructures of the Cybister elytra,a novel bio-inspired vertical honeycomb sandwich(BVHS)structure was designed and manufactured by laser powder bed fusion(LPBF)for the application of lightweight BPPs.Compared with the conventional vertical honeycomb sandwich(CVHS)structure formed by LPBF under the same process parameters setting,the introduction of fractal thin walls enabled self-supporting and thus improved LPBF formability.In addition,the BVHS structure exhibited superior energy absorption(EA)capability and bending properties.It is worth noting that,compared with the CVHS structure,the specific energy absorption(SEA)and specific bending strength of the BVHS structure increased by 56.99%and 46.91%,respectively.Finite element analysis(FEA)was employed to study stress distributions in structures during bending and analyze the influence mechanism of the fractal feature on the mechanical properties of BVHS structures.The electrical conductivity of structures were also studied in this work,the BVHS structures were slightly lower than the CVHS structure.FEA was also conducted to analyze the current flow direction and current density distribution of BVHS structures under a constant voltage,illustrating the influence mechanism of fractal angles on electrical conductivity properties.Finally,in order to solve the problem of trapped powder inside the enclosed unit cells,a droplet-shaped powder outlet was designed for LPBF-processed components.The number of powder outlets was optimized based on bending properties.Results of this work could provide guidelines for the design of lightweight BPPs with high mechanical strength and high electrical conductivity.展开更多
In this study,an inverse design framework was established to find lightweight honeycomb structures(HCSs)with high impact resistance.The hybrid HCS,composed of re-entrant(RE)and elliptical annular re-entrant(EARE)honey...In this study,an inverse design framework was established to find lightweight honeycomb structures(HCSs)with high impact resistance.The hybrid HCS,composed of re-entrant(RE)and elliptical annular re-entrant(EARE)honeycomb cells,was created by constructing arrangement matrices to achieve structural lightweight.The machine learning(ML)framework consisted of a neural network(NN)forward regression model for predicting impact resistance and a multi-objective optimization algorithm for generating high-performance designs.The surrogate of the local design space was initially realized by establishing the NN in the small sample dataset,and the active learning strategy was used to continuously extended the local optimal design until the model converged in the global space.The results indicated that the active learning strategy significantly improved the inference capability of the NN model in unknown design domains.By guiding the iteration direction of the optimization algorithm,lightweight designs with high impact resistance were identified.The energy absorption capacity of the optimal design reached 94.98%of the EARE honeycomb,while the initial peak stress and mass decreased by 28.85%and 19.91%,respectively.Furthermore,Shapley Additive Explanations(SHAP)for global explanation of the NN indicated a strong correlation between the arrangement mode of HCS and its impact resistance.By reducing the stiffness of the cells at the top boundary of the structure,the initial impact damage sustained by the structure can be significantly improved.Overall,this study proposed a general lightweight design method for array structures under impact loads,which is beneficial for the widespread application of honeycomb-based protective structures.展开更多
Thermal controllers equipped with phase-change materials are widely used for maintaining the moderate temperatures of various electric devices used in spacecraft. Yet, the structures of amounts of thermal controllers ...Thermal controllers equipped with phase-change materials are widely used for maintaining the moderate temperatures of various electric devices used in spacecraft. Yet, the structures of amounts of thermal controllers add up to such a large value that restricts the employment of scientific devices due to the limit of rocket capacity. A lightweight structure of phase-change thermal controllers has been one of the main focuses of spacecraft design engineering. In this work, we design a lightweight phase-change thermal controller structure based on lattice cells. The structure is manufactured entirely with AlSi10 Mg by direct metal laser melting. The dimensions of the structure are 230 mm × 170 mm × 15 mm, and the mass is 190 g, which is 60% lighter than most traditional structures(500–600 g) with the same dimensions. The 3 D-printed structure can reduce the risk of leakage at soldering manufacture by a welding process. Whether the strength of the designed structure is sufficient is determined through mechanical analysis and experiments. Thermal test results show that the thermal capacity of the lattice-based thermal controller is increased by50% compared to that of traditional controllers with the same volume.展开更多
The lightweight and high efficiency of natural structures are the inexhaustible sources for engineering improvements. The goal of the study is to find innovative solutions for mechanical lightweight design through the...The lightweight and high efficiency of natural structures are the inexhaustible sources for engineering improvements. The goal of the study is to find innovative solutions for mechanical lightweight design through the application of structural bionic approaches. Giant waterlily leaf ribs and cactus stem are investigated for their optimal framework and superior performance. Their structural characteristics are extracted and used in the bio-inspired design of Lin MC6000 gantry machining center crossbeam. By mimicking analogous network structure, the bionic model is established, which has better load-carrying capacity than conventional distribution. Finite Element Method (FEM) is used for numerical simulation. Results show better specific stiffness of the bionic model, which is increased by 17.36%. Finally the scaled models are fabricated by precision casting for static and dynamic tests. The physical experiments are compared to numerical simulation. The results show that the maximum static deformation of the bionic model is reduced by about 16.22%, with 3.31% weight reduction. In addition, the first four natural frequencies are improved obviously. The structural bionic design is a valuable reference for updating conventional mechanical structures with better performance and less material consumption.展开更多
A concept of Specific Structure Efficiency (SSE) was proposed that can be used in the lightweight effect evaluation ofstructures.The main procedures of bionic structure design were introduced systematically.The parame...A concept of Specific Structure Efficiency (SSE) was proposed that can be used in the lightweight effect evaluation ofstructures.The main procedures of bionic structure design were introduced systematically.The parameter relationship betweenhollow stem of plant and the minimum weight was deduced in detail.In order to improve SSE of pylons, the structural characteristicsof hollow stem were investigated and extracted.Bionic pylon was designed based on analogous biological structuralcharacteristics.Using finite element method based simulation, the displacements and stresses in the bionic pylon were comparedwith those of the conventional pylon.Results show that the SSE of bionic pylon is improved obviously.Static, dynamic andelectromagnetism tests were carried out on conventional and bionic pylons.The weight, stress, displacement and Radar CrossSection (RCS) of both pylons were measured.Experimental results illustrate that the SSE of bionic pylon is markedly improvedthat specific strength efficiency and specific stiffness efficiency of bionic pylon are increased by 52.9% and 43.6% respectively.The RCS of bionic pylon is reduced significantly.展开更多
Most of recent research on carbody lightweighting has focused on substitute material and new processing technologies rather than structures. However, new materials and processing techniques inevitably lead to higher c...Most of recent research on carbody lightweighting has focused on substitute material and new processing technologies rather than structures. However, new materials and processing techniques inevitably lead to higher costs. Also, material substitution and processing lightweighting have to be realized through body structural profiles and locations. In the huge conventional workload of lightweight optimization, model modifications involve heavy manual work, and it always leads to a large number of iteration calculations. As a new technique in carbody lightweighting, the implicit parameterization is used to optimize the carbody structure to improve the materials utilization rate in this paper. The implicit parameterized structural modeling enables the use of automatic modification and rapid multidisciplinary design optimization (MDO) in carbody structure, which is impossible in the traditional structure finite element method (FEM) without parameterization. The structural SFE parameterized model is built in accordance with the car structural FE model in concept development stage, and it is validated by some structural performance data. The validated SFE structural parameterized model can be used to generate rapidly and automatically FE model and evaluate different design variables group in the integrated MDO loop. The lightweighting result of body-in-white (BIW) after the optimization rounds reveals that the implicit parameterized model makes automatic MDO feasible and can significantly improve the computational efficiency of carbody structural lightweighting. This paper proposes the integrated method of implicit parameterized model and MDO, which has the obvious practical advantage and industrial significance in the carbody structural lightweighting design.展开更多
The influence of lightweight aggregate (LWA) pre-wetting on the chemical bound water and pore structure of the paste around aggregate as well as concrete permeability were investi-gated. The results show that, in ea...The influence of lightweight aggregate (LWA) pre-wetting on the chemical bound water and pore structure of the paste around aggregate as well as concrete permeability were investi-gated. The results show that, in early age the dry LWA has significant effect on the formation of dense paste around it and improving the concrete impermeability. However the prewetted LWA has strong water-releasing effect in later age, which increases the hydration degree of the paste around it, and makes the adjacent paste develop a structure with low porosity and finer aperture, furthermore the concrete impermeability can be improved. It is suggested that, as for concrete with low durability requirement, the LWA without pre-wetting treatment can be used as long as meet the workability re-quirement of fresh concrete, the good impermeability of concrete can be gained as well. As for con-crete with high durability requirement, the prewetted LWA should be used, and the pre-wetting time should be extended as long as possible, in order to optimize the concrete structure in long term, and improve the concrete durability.展开更多
The increasing demand for energy absorbent structures,paired with the need for more efficient use of materials in a wide range of engineering fields,has led to an extensive range of designs in the porous forms of sand...The increasing demand for energy absorbent structures,paired with the need for more efficient use of materials in a wide range of engineering fields,has led to an extensive range of designs in the porous forms of sandwiches,honeycomb,and foams.To achieve an even better performance,an ingenious solution is to learn how biological structures adjust their configurations to absorb energy without catastrophic failure.In this study,we have attempted to blend the shape freedom,offered by additive manufacturing techniques,with the biomimetic approach,to propose new lattice structures for energy absorbent applications.To this aim we have combined multiple bio-inspirational sources for the design of optimized configurations under compressive loads.Periodic lattice structures are fabricated based on the designed unit cell geometries and studied using experimental and computational strategies.The individual effect of each bio-inspired feature has been evaluated on the energy absorbance performance of the designed structure.Based on the design parameters of the lattices,a tuning between the strength and energy absorption could be obtained,paving the way for transition within a wide range of real-life applicative scenarios.展开更多
Large cavity structures are widely employed in aerospace engineering, such as thin-walled cylinders, blades andwings. Enhancing performance of aerial vehicles while reducing manufacturing costs and fuel consumptionhas...Large cavity structures are widely employed in aerospace engineering, such as thin-walled cylinders, blades andwings. Enhancing performance of aerial vehicles while reducing manufacturing costs and fuel consumptionhas become a focal point for contemporary researchers. Therefore, this paper aims to investigate the topologyoptimization of large cavity structures as a means to enhance their performance, safety, and efficiency. By usingthe variable density method, lightweight design is achieved without compromising structural strength. Theoptimization model considers both concentrated and distributed loads, and utilizes techniques like sensitivityfiltering and projection to obtain a robust optimized configuration. The mechanical properties are checked bycomparing the stress distribution and displacement of the unoptimized and optimized structures under the sameload. The results confirm that the optimized structures exhibit improved mechanical properties, thus offering keyinsights for engineering lightweight, high-strength large cavity structures.展开更多
Rolling stock manufacturers are finding structural solutions to reduce power required by the vehicles,and the lightweight design of the car body represents a possible solution.Optimization processes and innovative mat...Rolling stock manufacturers are finding structural solutions to reduce power required by the vehicles,and the lightweight design of the car body represents a possible solution.Optimization processes and innovative materials can be combined in order to achieve this goal.In this framework,we propose the redesign and optimization process of the car body roof for a light rail vehicle,introducing a sandwich structure.Bonded joint was used as a fastening system.The project was carried out on a single car of a modern tram platform.This preliminary numerical work was developed in two main steps:redesign of the car body structure and optimization of the innovated system.Objective of the process was the mass reduction of the whole metallic structure,while the constraint condition was imposed on the first frequency of vibration of the system.The effect of introducing a sandwich panel within the roof assembly was evaluated,focusing on the mechanical and dynamic performances of the whole car body.A mass saving of 63%on the optimized components was achieved,corresponding to a 7.6%if compared to the complete car body shell.In addition,a positive increasing of 17.7%on the first frequency of vibration was observed.Encouraging results have been achieved in terms of weight reduction and mechanical behaviour of the innovated car body.展开更多
Based on the analyses on arch and peltate venation structures, the design of reinforcing frames was improved. First, distribution rules of the arch structure were summarized. According to the load condition and the st...Based on the analyses on arch and peltate venation structures, the design of reinforcing frames was improved. First, distribution rules of the arch structure were summarized. According to the load condition and the structure of the frame, a mechanical model of arch structure was devel- oped, and two solutions for the model were analyzed and compared with each other. Through the a- nalysis, application rules of arch structure for improving the design were obtained. Then, distribu- tion rules of peltate venation structure were summarized. By using the same method, application rules of peltate venation structure for improving the design were also obtained. Finally, mechanical problem of the frame was described, and rib arrangement of the frame was redesigned. A parameter optimization for the widths of ribs in bionic arrangement was also carried out to accomplish the im- proving design. Comparison between bionic and conventional reinforcing frames shows that the weight is reduced by as much as 15.3%.展开更多
As a new grinding and maintenance technology,rail belt grinding shows significant advantages in many applications The dynamic characteristics of the rail belt grinding vehicle largely determines its grinding performan...As a new grinding and maintenance technology,rail belt grinding shows significant advantages in many applications The dynamic characteristics of the rail belt grinding vehicle largely determines its grinding performance and service life.In order to explore the vibration control method of the rail grinding vehicle with abrasive belt,the vibration response changes in structural optimization and lightweight design are respectively analyzed through transient response and random vibration simulations in this paper.Firstly,the transient response simulation analysis of the rail grinding vehicle with abrasive belt is carried out under operating conditions and non-operating conditions.Secondly,the vibration control of the grinding vehicle is implemented by setting vibration isolation elements,optimizing the structure,and increasing damping.Thirdly,in order to further explore the dynamic characteristics of the rail grinding vehicle,the random vibration simulation analysis of the grinding vehicle is carried out under the condition of the horizontal irregularity of the American AAR6 track.Finally,by replacing the Q235 steel frame material with 7075 aluminum alloy and LA43M magnesium alloy,both vibration control and lightweight design can be achieved simultaneously.The results of transient dynamic response analysis show that the acceleration of most positions in the two working conditions exceeds the standard value in GB/T 17426-1998 standard.By optimizing the structure of the grinding vehicle in three ways,the average vibration acceleration of the whole car is reduced by about 55.1%from 15.6 m/s^(2) to 7.0 m/s^(2).The results of random vibration analysis show that the grinding vehicle with Q235 steel frame does not meet the safety conditions of 3σ.By changing frame material,the maximum vibration stress of the vehicle can be reduced from 240.7 MPa to 160.0 MPa and the weight of the grinding vehicle is reduced by about 21.7%from 1500 kg to 1175 kg.The modal analysis results indicate that the vibration control of the grinding vehicle can be realized by optimizing the structure and replacing the materials with lower stiffness under the premise of ensuring the overall strength.The study provides the basis for the development of lightweight,diversified and efficient rail grinding equipment.展开更多
The lightweight design of hydraulic quadruped robots,especially the lightweight design of the leg joint Hydraulic Drive Unit(HDU),can improve the robot's response speed,motion speed,endurance,and load capacity.How...The lightweight design of hydraulic quadruped robots,especially the lightweight design of the leg joint Hydraulic Drive Unit(HDU),can improve the robot's response speed,motion speed,endurance,and load capacity.However,the lightweight design of HDU is a huge challenge due to the need for structural strength.This paper is inspired by the geometric shape of fish bones and biomimetic reinforcing ribs on the surface of the HDU shell are designed to increase its strength and reduce its weight.First,a HDU shell with biomimetic fish bone reinforcing ribs structure is proposed.Then,the MATLAB toolbox and ANSYS finite element analysis module are used to optimize the parameters of the biomimetic reinforcing ribs structure and the overall layout of the shell.Finally,the HDU shell is manufactured using additive manufacturing technology,and a performance testing platform is built to conduct dynamic and static performance tests on the designed HDU.The experimental results show that the HDU with biomimetic fish bone reinforcing ribs has excellent dynamic performance and better static performance than the prototype model,and the weight of the shell is reduced by 20%compared to the prototype model.This work has broad application prospects in the lightweight and high-strength design of closed-pressure vessel components.展开更多
Continuously rising demands of legislators require a significant reduction of CO2-emission and thus fuel consumption across all vehicle classes. In this context, lightweight construction materials and designs become a...Continuously rising demands of legislators require a significant reduction of CO2-emission and thus fuel consumption across all vehicle classes. In this context, lightweight construction materials and designs become a single most important factor. The main engineering challenge is to precisely adapt the material and component properties to the specific load situation. However, metallic car body structures using “Tailored blanks” or “Patchwork structures” meet these requirements only insufficiently, especially for complex load situations (like crash). An innovative approach has been developed to use laser beams to locally strengthen steel crash structures used in vehicle bodies. The method tailors the workpiece hardness and thus strength at selected locations to adjust the material properties for the expected load distribution. As a result, free designable 3D-strengthening-patterns surrounded by softer base metal zones can be realized by high power laser beams at high processing speed. The paper gives an overview of the realizable process window for different laser treatment modes using current high brilliant laser types. Furthermore, an efficient calculation model for determining the laser track properties (depth/width and flow curve) is shown. Based on that information, simultaneous FE modelling can be efficiently performed. Chassis components are both statically and cyclically loaded. Especially for these components, a modulation of the fatigue behavior by laser-treated structures has been investigated. Simulation and experimental results of optimized crash and deep drawing components with up to 55% improved level of performance are also illustrated.展开更多
基金National Natural Science Foundation of China(No.52173261).
文摘SiBCN ceramic aerogel is an ideal potential candidate for ultra-high temperature thermal insulation due to its unique microscopic pore structure combined with the excellent thermal stability of SiBCN ce-ramic.Here,reduced graphene oxide(rGO)modified SiBCN aerogels(rGO/SiBCN)were prepared through solvothermal,freeze-casting and pyrolysis,and the dimension of the aerogel is up toΦ130 mm×28 mm.The density of the rGO/SiBCN aerogel is as low as 0.024 g/cm^(3) and the microstructural regulation is achieved by controlling the rGO content in the aerogel.The hierarchical cellular structure endows the aerogel with a high specific surface area(148.6 m^(2)/g)and low thermal conductivity(0.057 W m^(-1) K^(-1)).The 10 mm-thick sample exhibits excellent thermal insulation and ablation resistance,as evidenced by its ability to reduce the temperature from~1100℃to~180℃under the intense heat of a butane flame.Moreover,benefiting from the ultrahigh-temperature stability of SiBCN,the rGO/SiBCN aerogel exhibits good thermal stability up to 1200℃in argon and short-oxidation resistance at 800℃in air.There-fore,the rGO/SiBCN aerogel with superior overall performance could expand its practical application in high-temperature thermal insulation under extreme environments.
文摘This paper aims to study a novel smart self-powered wireless lightweight (SPWL) bridge health monitoring sensor, which integrates key technologies such as large-scale, low-power wireless data transmission, environmental energy self-harvesting, and intelligent perception, and can operate stably for a long time in complex and changing environments. The self-powered system of the sensor can meet the needs of long-term bridge service performance monitoring, significantly improving the coverage and efficiency of monitoring. By optimizing the sensor system design, the maximum energy conversion of the energy harvesting unit is achieved. In order to verify the function and practicality of the new SPWL monitoring sensor, this study combined the actual bridge engineering, carried out a bridge monitoring case study, and developed an SPWL monitoring scheme based on the bridge structure principle. Compared with traditional monitoring methods, this technology significantly improves the sustainability and performance of infrastructure monitoring based on the new SPWL sensor, fully demonstrating the excellent monitoring capabilities of this type of sensor, and providing strong support for the development of intelligent transportation and intelligent infrastructure.
基金Supported by Defense Industrial Technology Development Program of China(Grant No.JCKY2020605C007)Key Research and Development Program of Jiangsu Province of China(Grant Nos.BE2022069,BE2022069-1,BE2022069-3)Aeronautical Science Foundation of China(Grant No.2020Z049052001).
文摘The bipolar plate(BPP)is a crucial component of proton exchange membrane fuel cells(PEMFC).However,the weight of BPPs can account for around 80%of a PEMFC stack,posing a hindrance to the commercialization of PEMFCs.Therefore,the lightweight design of BPPs should be considered as a priority.Honeycomb sandwich structures meet some requirements for bipolar plates,such as high mechanical strength and lightweight.Animals and plants in nature provide many excellent structures with characteristics such as low density and high energy absorption capacity.In this work,inspired by the microstructures of the Cybister elytra,a novel bio-inspired vertical honeycomb sandwich(BVHS)structure was designed and manufactured by laser powder bed fusion(LPBF)for the application of lightweight BPPs.Compared with the conventional vertical honeycomb sandwich(CVHS)structure formed by LPBF under the same process parameters setting,the introduction of fractal thin walls enabled self-supporting and thus improved LPBF formability.In addition,the BVHS structure exhibited superior energy absorption(EA)capability and bending properties.It is worth noting that,compared with the CVHS structure,the specific energy absorption(SEA)and specific bending strength of the BVHS structure increased by 56.99%and 46.91%,respectively.Finite element analysis(FEA)was employed to study stress distributions in structures during bending and analyze the influence mechanism of the fractal feature on the mechanical properties of BVHS structures.The electrical conductivity of structures were also studied in this work,the BVHS structures were slightly lower than the CVHS structure.FEA was also conducted to analyze the current flow direction and current density distribution of BVHS structures under a constant voltage,illustrating the influence mechanism of fractal angles on electrical conductivity properties.Finally,in order to solve the problem of trapped powder inside the enclosed unit cells,a droplet-shaped powder outlet was designed for LPBF-processed components.The number of powder outlets was optimized based on bending properties.Results of this work could provide guidelines for the design of lightweight BPPs with high mechanical strength and high electrical conductivity.
基金the financial supports from National Key R&D Program for Young Scientists of China(Grant No.2022YFC3080900)National Natural Science Foundation of China(Grant No.52374181)+1 种基金BIT Research and Innovation Promoting Project(Grant No.2024YCXZ017)supported by Science and Technology Innovation Program of Beijing institute of technology under Grant No.2022CX01025。
文摘In this study,an inverse design framework was established to find lightweight honeycomb structures(HCSs)with high impact resistance.The hybrid HCS,composed of re-entrant(RE)and elliptical annular re-entrant(EARE)honeycomb cells,was created by constructing arrangement matrices to achieve structural lightweight.The machine learning(ML)framework consisted of a neural network(NN)forward regression model for predicting impact resistance and a multi-objective optimization algorithm for generating high-performance designs.The surrogate of the local design space was initially realized by establishing the NN in the small sample dataset,and the active learning strategy was used to continuously extended the local optimal design until the model converged in the global space.The results indicated that the active learning strategy significantly improved the inference capability of the NN model in unknown design domains.By guiding the iteration direction of the optimization algorithm,lightweight designs with high impact resistance were identified.The energy absorption capacity of the optimal design reached 94.98%of the EARE honeycomb,while the initial peak stress and mass decreased by 28.85%and 19.91%,respectively.Furthermore,Shapley Additive Explanations(SHAP)for global explanation of the NN indicated a strong correlation between the arrangement mode of HCS and its impact resistance.By reducing the stiffness of the cells at the top boundary of the structure,the initial impact damage sustained by the structure can be significantly improved.Overall,this study proposed a general lightweight design method for array structures under impact loads,which is beneficial for the widespread application of honeycomb-based protective structures.
基金supports from Beijing Institute of Spacecraft System Engineering and the Young Elite Scientists Sponsorship Program by China Association for Science and Technology(Nos.2017QNRC001,2016QNRC001)
文摘Thermal controllers equipped with phase-change materials are widely used for maintaining the moderate temperatures of various electric devices used in spacecraft. Yet, the structures of amounts of thermal controllers add up to such a large value that restricts the employment of scientific devices due to the limit of rocket capacity. A lightweight structure of phase-change thermal controllers has been one of the main focuses of spacecraft design engineering. In this work, we design a lightweight phase-change thermal controller structure based on lattice cells. The structure is manufactured entirely with AlSi10 Mg by direct metal laser melting. The dimensions of the structure are 230 mm × 170 mm × 15 mm, and the mass is 190 g, which is 60% lighter than most traditional structures(500–600 g) with the same dimensions. The 3 D-printed structure can reduce the risk of leakage at soldering manufacture by a welding process. Whether the strength of the designed structure is sufficient is determined through mechanical analysis and experiments. Thermal test results show that the thermal capacity of the lattice-based thermal controller is increased by50% compared to that of traditional controllers with the same volume.
基金Acknowledgements The research was sponsored by the Natural Science Foundation of China (50975012), and the Scientific Research Foundation for the Outstanding Young Scientist of Shandong Province (2008BS05007).
文摘The lightweight and high efficiency of natural structures are the inexhaustible sources for engineering improvements. The goal of the study is to find innovative solutions for mechanical lightweight design through the application of structural bionic approaches. Giant waterlily leaf ribs and cactus stem are investigated for their optimal framework and superior performance. Their structural characteristics are extracted and used in the bio-inspired design of Lin MC6000 gantry machining center crossbeam. By mimicking analogous network structure, the bionic model is established, which has better load-carrying capacity than conventional distribution. Finite Element Method (FEM) is used for numerical simulation. Results show better specific stiffness of the bionic model, which is increased by 17.36%. Finally the scaled models are fabricated by precision casting for static and dynamic tests. The physical experiments are compared to numerical simulation. The results show that the maximum static deformation of the bionic model is reduced by about 16.22%, with 3.31% weight reduction. In addition, the first four natural frequencies are improved obviously. The structural bionic design is a valuable reference for updating conventional mechanical structures with better performance and less material consumption.
基金support by National Natural Science Foundation of China(Grant No.50975012)
文摘A concept of Specific Structure Efficiency (SSE) was proposed that can be used in the lightweight effect evaluation ofstructures.The main procedures of bionic structure design were introduced systematically.The parameter relationship betweenhollow stem of plant and the minimum weight was deduced in detail.In order to improve SSE of pylons, the structural characteristicsof hollow stem were investigated and extracted.Bionic pylon was designed based on analogous biological structuralcharacteristics.Using finite element method based simulation, the displacements and stresses in the bionic pylon were comparedwith those of the conventional pylon.Results show that the SSE of bionic pylon is improved obviously.Static, dynamic andelectromagnetism tests were carried out on conventional and bionic pylons.The weight, stress, displacement and Radar CrossSection (RCS) of both pylons were measured.Experimental results illustrate that the SSE of bionic pylon is markedly improvedthat specific strength efficiency and specific stiffness efficiency of bionic pylon are increased by 52.9% and 43.6% respectively.The RCS of bionic pylon is reduced significantly.
基金Supported by National Natural Science Foundation of China(Grant No.51175214)Scientific and Technological Planning Project of China(Grant No.2011BAG03B02-1)
文摘Most of recent research on carbody lightweighting has focused on substitute material and new processing technologies rather than structures. However, new materials and processing techniques inevitably lead to higher costs. Also, material substitution and processing lightweighting have to be realized through body structural profiles and locations. In the huge conventional workload of lightweight optimization, model modifications involve heavy manual work, and it always leads to a large number of iteration calculations. As a new technique in carbody lightweighting, the implicit parameterization is used to optimize the carbody structure to improve the materials utilization rate in this paper. The implicit parameterized structural modeling enables the use of automatic modification and rapid multidisciplinary design optimization (MDO) in carbody structure, which is impossible in the traditional structure finite element method (FEM) without parameterization. The structural SFE parameterized model is built in accordance with the car structural FE model in concept development stage, and it is validated by some structural performance data. The validated SFE structural parameterized model can be used to generate rapidly and automatically FE model and evaluate different design variables group in the integrated MDO loop. The lightweighting result of body-in-white (BIW) after the optimization rounds reveals that the implicit parameterized model makes automatic MDO feasible and can significantly improve the computational efficiency of carbody structural lightweighting. This paper proposes the integrated method of implicit parameterized model and MDO, which has the obvious practical advantage and industrial significance in the carbody structural lightweighting design.
基金Funded by the Western Transportation Construction of Communication Ministry (No. 200331882008)
文摘The influence of lightweight aggregate (LWA) pre-wetting on the chemical bound water and pore structure of the paste around aggregate as well as concrete permeability were investi-gated. The results show that, in early age the dry LWA has significant effect on the formation of dense paste around it and improving the concrete impermeability. However the prewetted LWA has strong water-releasing effect in later age, which increases the hydration degree of the paste around it, and makes the adjacent paste develop a structure with low porosity and finer aperture, furthermore the concrete impermeability can be improved. It is suggested that, as for concrete with low durability requirement, the LWA without pre-wetting treatment can be used as long as meet the workability re-quirement of fresh concrete, the good impermeability of concrete can be gained as well. As for con-crete with high durability requirement, the prewetted LWA should be used, and the pre-wetting time should be extended as long as possible, in order to optimize the concrete structure in long term, and improve the concrete durability.
文摘The increasing demand for energy absorbent structures,paired with the need for more efficient use of materials in a wide range of engineering fields,has led to an extensive range of designs in the porous forms of sandwiches,honeycomb,and foams.To achieve an even better performance,an ingenious solution is to learn how biological structures adjust their configurations to absorb energy without catastrophic failure.In this study,we have attempted to blend the shape freedom,offered by additive manufacturing techniques,with the biomimetic approach,to propose new lattice structures for energy absorbent applications.To this aim we have combined multiple bio-inspirational sources for the design of optimized configurations under compressive loads.Periodic lattice structures are fabricated based on the designed unit cell geometries and studied using experimental and computational strategies.The individual effect of each bio-inspired feature has been evaluated on the energy absorbance performance of the designed structure.Based on the design parameters of the lattices,a tuning between the strength and energy absorption could be obtained,paving the way for transition within a wide range of real-life applicative scenarios.
基金the National Natural Science Foundation of China and the Natural Science Foundation of Jiangsu Province.It was also supported in part by Young Elite Scientists Sponsorship Program by CAST.
文摘Large cavity structures are widely employed in aerospace engineering, such as thin-walled cylinders, blades andwings. Enhancing performance of aerial vehicles while reducing manufacturing costs and fuel consumptionhas become a focal point for contemporary researchers. Therefore, this paper aims to investigate the topologyoptimization of large cavity structures as a means to enhance their performance, safety, and efficiency. By usingthe variable density method, lightweight design is achieved without compromising structural strength. Theoptimization model considers both concentrated and distributed loads, and utilizes techniques like sensitivityfiltering and projection to obtain a robust optimized configuration. The mechanical properties are checked bycomparing the stress distribution and displacement of the unoptimized and optimized structures under the sameload. The results confirm that the optimized structures exhibit improved mechanical properties, thus offering keyinsights for engineering lightweight, high-strength large cavity structures.
文摘Rolling stock manufacturers are finding structural solutions to reduce power required by the vehicles,and the lightweight design of the car body represents a possible solution.Optimization processes and innovative materials can be combined in order to achieve this goal.In this framework,we propose the redesign and optimization process of the car body roof for a light rail vehicle,introducing a sandwich structure.Bonded joint was used as a fastening system.The project was carried out on a single car of a modern tram platform.This preliminary numerical work was developed in two main steps:redesign of the car body structure and optimization of the innovated system.Objective of the process was the mass reduction of the whole metallic structure,while the constraint condition was imposed on the first frequency of vibration of the system.The effect of introducing a sandwich panel within the roof assembly was evaluated,focusing on the mechanical and dynamic performances of the whole car body.A mass saving of 63%on the optimized components was achieved,corresponding to a 7.6%if compared to the complete car body shell.In addition,a positive increasing of 17.7%on the first frequency of vibration was observed.Encouraging results have been achieved in terms of weight reduction and mechanical behaviour of the innovated car body.
基金Supported by the National Natural Science Foundation of Chi- na ( 50975012 ) Research Fund for the Doctoral Program of Higher Education of China ( 20091102110022 ) Innovation Foundation of BUAA for PhD Graduates (YWF-12-RBYJ-015)
文摘Based on the analyses on arch and peltate venation structures, the design of reinforcing frames was improved. First, distribution rules of the arch structure were summarized. According to the load condition and the structure of the frame, a mechanical model of arch structure was devel- oped, and two solutions for the model were analyzed and compared with each other. Through the a- nalysis, application rules of arch structure for improving the design were obtained. Then, distribu- tion rules of peltate venation structure were summarized. By using the same method, application rules of peltate venation structure for improving the design were also obtained. Finally, mechanical problem of the frame was described, and rib arrangement of the frame was redesigned. A parameter optimization for the widths of ribs in bionic arrangement was also carried out to accomplish the im- proving design. Comparison between bionic and conventional reinforcing frames shows that the weight is reduced by as much as 15.3%.
基金Supported by Fundamental Research Funds for the Central Universities of China (Grant No.2023JBZY020)Transformation Cultivation Program of Scientific and Technological Achievements from Beijing Jiaotong University of China (Grant No.M21ZZ200010)。
文摘As a new grinding and maintenance technology,rail belt grinding shows significant advantages in many applications The dynamic characteristics of the rail belt grinding vehicle largely determines its grinding performance and service life.In order to explore the vibration control method of the rail grinding vehicle with abrasive belt,the vibration response changes in structural optimization and lightweight design are respectively analyzed through transient response and random vibration simulations in this paper.Firstly,the transient response simulation analysis of the rail grinding vehicle with abrasive belt is carried out under operating conditions and non-operating conditions.Secondly,the vibration control of the grinding vehicle is implemented by setting vibration isolation elements,optimizing the structure,and increasing damping.Thirdly,in order to further explore the dynamic characteristics of the rail grinding vehicle,the random vibration simulation analysis of the grinding vehicle is carried out under the condition of the horizontal irregularity of the American AAR6 track.Finally,by replacing the Q235 steel frame material with 7075 aluminum alloy and LA43M magnesium alloy,both vibration control and lightweight design can be achieved simultaneously.The results of transient dynamic response analysis show that the acceleration of most positions in the two working conditions exceeds the standard value in GB/T 17426-1998 standard.By optimizing the structure of the grinding vehicle in three ways,the average vibration acceleration of the whole car is reduced by about 55.1%from 15.6 m/s^(2) to 7.0 m/s^(2).The results of random vibration analysis show that the grinding vehicle with Q235 steel frame does not meet the safety conditions of 3σ.By changing frame material,the maximum vibration stress of the vehicle can be reduced from 240.7 MPa to 160.0 MPa and the weight of the grinding vehicle is reduced by about 21.7%from 1500 kg to 1175 kg.The modal analysis results indicate that the vibration control of the grinding vehicle can be realized by optimizing the structure and replacing the materials with lower stiffness under the premise of ensuring the overall strength.The study provides the basis for the development of lightweight,diversified and efficient rail grinding equipment.
文摘The lightweight design of hydraulic quadruped robots,especially the lightweight design of the leg joint Hydraulic Drive Unit(HDU),can improve the robot's response speed,motion speed,endurance,and load capacity.However,the lightweight design of HDU is a huge challenge due to the need for structural strength.This paper is inspired by the geometric shape of fish bones and biomimetic reinforcing ribs on the surface of the HDU shell are designed to increase its strength and reduce its weight.First,a HDU shell with biomimetic fish bone reinforcing ribs structure is proposed.Then,the MATLAB toolbox and ANSYS finite element analysis module are used to optimize the parameters of the biomimetic reinforcing ribs structure and the overall layout of the shell.Finally,the HDU shell is manufactured using additive manufacturing technology,and a performance testing platform is built to conduct dynamic and static performance tests on the designed HDU.The experimental results show that the HDU with biomimetic fish bone reinforcing ribs has excellent dynamic performance and better static performance than the prototype model,and the weight of the shell is reduced by 20%compared to the prototype model.This work has broad application prospects in the lightweight and high-strength design of closed-pressure vessel components.
文摘Continuously rising demands of legislators require a significant reduction of CO2-emission and thus fuel consumption across all vehicle classes. In this context, lightweight construction materials and designs become a single most important factor. The main engineering challenge is to precisely adapt the material and component properties to the specific load situation. However, metallic car body structures using “Tailored blanks” or “Patchwork structures” meet these requirements only insufficiently, especially for complex load situations (like crash). An innovative approach has been developed to use laser beams to locally strengthen steel crash structures used in vehicle bodies. The method tailors the workpiece hardness and thus strength at selected locations to adjust the material properties for the expected load distribution. As a result, free designable 3D-strengthening-patterns surrounded by softer base metal zones can be realized by high power laser beams at high processing speed. The paper gives an overview of the realizable process window for different laser treatment modes using current high brilliant laser types. Furthermore, an efficient calculation model for determining the laser track properties (depth/width and flow curve) is shown. Based on that information, simultaneous FE modelling can be efficiently performed. Chassis components are both statically and cyclically loaded. Especially for these components, a modulation of the fatigue behavior by laser-treated structures has been investigated. Simulation and experimental results of optimized crash and deep drawing components with up to 55% improved level of performance are also illustrated.