为了调控HZSM-5分子筛酸性,提升二甲苯异构化反应性能,对HZSM-5分子筛进行碱金属或碱土金属离子(M)交换制备不同nM/nAl(M=Li、Na、K、Rb、Cs、Mg、Ca、Sr、Ba)的HZSM-5分子筛样品,采用XRD、XRF、27Al MAS NMR、氮气物理吸附-脱附、吡啶...为了调控HZSM-5分子筛酸性,提升二甲苯异构化反应性能,对HZSM-5分子筛进行碱金属或碱土金属离子(M)交换制备不同nM/nAl(M=Li、Na、K、Rb、Cs、Mg、Ca、Sr、Ba)的HZSM-5分子筛样品,采用XRD、XRF、27Al MAS NMR、氮气物理吸附-脱附、吡啶吸附红外等手段对分子筛样品进行表征,并考察其催化二甲苯异构化反应性能。结果表明:碱金属及碱土金属离子交换不会明显影响HZSM-5分子筛孔道结构;随着制备过程初始配比n_(M)/n_(Al)从0.1逐渐增加至1.3,金属离子交换HZSM-5分子筛样品的n_(M)/n_(Al)逐渐升高,导致其Bronsted(B)酸酸量/Lewis(L)酸酸量比值(简称B/L酸量比)呈现降低趋势;同族金属中,金属离子交换HZSM-5分子筛样品的B/L酸量比降幅随原子序数的升高而增大,碱金属离子交换样品的B/L酸量比降幅较碱土金属离子交换样品更为显著。尽管HZSM-5分子筛样品中较低的B/L酸量比会降低乙苯转化率,但是有利于降低分子间歧化与烷基转移反应与分子内甲基顺位迁移反应比值,提高反应产物中对二甲苯/邻二甲苯摩尔比,可以获得更高的二甲苯收率和对二甲苯在二甲苯异构体中的占比。展开更多
切段式机收甘蔗含杂率的自动测量可以客观评估机收甘蔗到糖厂入榨前的质量。针对现有抽样称重估算杂质方式效率低且主观性强的问题,以及因田间环境较为复杂使得检测目标蔗段存在运动状态变换导致的模糊、光照强度变化和蔗叶遮挡等技术难...切段式机收甘蔗含杂率的自动测量可以客观评估机收甘蔗到糖厂入榨前的质量。针对现有抽样称重估算杂质方式效率低且主观性强的问题,以及因田间环境较为复杂使得检测目标蔗段存在运动状态变换导致的模糊、光照强度变化和蔗叶遮挡等技术难点,提出了一种基于改进YOLOv5安装在切段式甘蔗机上的机收蔗含杂率检测的方法。首先,针对工业相机拍摄的蔗段目标为小目标的应用场景,增加小目标检测层,增强网络模型对其的专注;其次,将C3模块替换成C2f模块,提高网络模型对小物体、低对比度目标的检测速度和检测精度;最后,加入加权交并比WIoU(Weighted Intersection over Union)损失函数,提升预测框的回归精度,增强数据集训练效果。试验结果表明:基于改进YOLOv5的机收蔗含杂率检测模型,蔗段识别准确率达95.2%、mAP(mean Average Precision)值为62.5%,相较于原始YOLOv5模型分别提高了15.3、13.5个百分点,性能优于YOLOv7、YOLOv8等模型。在台架试验中,改进后模型检测的含杂率平均相对误差为19.58%,比改进前模型降低了38.12个百分点;含杂率平均值为7.31%,比人工测量的实际含杂率高出0.05个百分点。因此,此方法是一种实时性强、效率高、准确性高且能全量检测机收蔗含杂率的方法,能够为田间甘蔗收获作业质量提供技术支撑。展开更多
文摘为了调控HZSM-5分子筛酸性,提升二甲苯异构化反应性能,对HZSM-5分子筛进行碱金属或碱土金属离子(M)交换制备不同nM/nAl(M=Li、Na、K、Rb、Cs、Mg、Ca、Sr、Ba)的HZSM-5分子筛样品,采用XRD、XRF、27Al MAS NMR、氮气物理吸附-脱附、吡啶吸附红外等手段对分子筛样品进行表征,并考察其催化二甲苯异构化反应性能。结果表明:碱金属及碱土金属离子交换不会明显影响HZSM-5分子筛孔道结构;随着制备过程初始配比n_(M)/n_(Al)从0.1逐渐增加至1.3,金属离子交换HZSM-5分子筛样品的n_(M)/n_(Al)逐渐升高,导致其Bronsted(B)酸酸量/Lewis(L)酸酸量比值(简称B/L酸量比)呈现降低趋势;同族金属中,金属离子交换HZSM-5分子筛样品的B/L酸量比降幅随原子序数的升高而增大,碱金属离子交换样品的B/L酸量比降幅较碱土金属离子交换样品更为显著。尽管HZSM-5分子筛样品中较低的B/L酸量比会降低乙苯转化率,但是有利于降低分子间歧化与烷基转移反应与分子内甲基顺位迁移反应比值,提高反应产物中对二甲苯/邻二甲苯摩尔比,可以获得更高的二甲苯收率和对二甲苯在二甲苯异构体中的占比。
文摘切段式机收甘蔗含杂率的自动测量可以客观评估机收甘蔗到糖厂入榨前的质量。针对现有抽样称重估算杂质方式效率低且主观性强的问题,以及因田间环境较为复杂使得检测目标蔗段存在运动状态变换导致的模糊、光照强度变化和蔗叶遮挡等技术难点,提出了一种基于改进YOLOv5安装在切段式甘蔗机上的机收蔗含杂率检测的方法。首先,针对工业相机拍摄的蔗段目标为小目标的应用场景,增加小目标检测层,增强网络模型对其的专注;其次,将C3模块替换成C2f模块,提高网络模型对小物体、低对比度目标的检测速度和检测精度;最后,加入加权交并比WIoU(Weighted Intersection over Union)损失函数,提升预测框的回归精度,增强数据集训练效果。试验结果表明:基于改进YOLOv5的机收蔗含杂率检测模型,蔗段识别准确率达95.2%、mAP(mean Average Precision)值为62.5%,相较于原始YOLOv5模型分别提高了15.3、13.5个百分点,性能优于YOLOv7、YOLOv8等模型。在台架试验中,改进后模型检测的含杂率平均相对误差为19.58%,比改进前模型降低了38.12个百分点;含杂率平均值为7.31%,比人工测量的实际含杂率高出0.05个百分点。因此,此方法是一种实时性强、效率高、准确性高且能全量检测机收蔗含杂率的方法,能够为田间甘蔗收获作业质量提供技术支撑。