Distinct brain remodeling has been found after different nerve reconstruction strategies,including motor representation of the affected limb.However,differences among reconstruction strategies at the brain network lev...Distinct brain remodeling has been found after different nerve reconstruction strategies,including motor representation of the affected limb.However,differences among reconstruction strategies at the brain network level have not been elucidated.This study aimed to explore intranetwork changes related to altered peripheral neural pathways after different nerve reconstruction surgeries,including nerve repair,endto-end nerve transfer,and end-to-side nerve transfer.Sprague–Dawley rats underwent complete left brachial plexus transection and were divided into four equal groups of eight:no nerve repair,grafted nerve repair,phrenic nerve end-to-end transfer,and end-to-side transfer with a graft sutured to the anterior upper trunk.Resting-state brain functional magnetic resonance imaging was obtained 7 months after surgery.The independent component analysis algorithm was utilized to identify group-level network components of interest and extract resting-state functional connectivity values of each voxel within the component.Alterations in intra-network resting-state functional connectivity were compared among the groups.Target muscle reinnervation was assessed by behavioral observation(elbow flexion)and electromyography.The results showed that alterations in the sensorimotor and interoception networks were mostly related to changes in the peripheral neural pathway.Nerve repair was related to enhanced connectivity within the sensorimotor network,while end-to-side nerve transfer might be more beneficial for restoring control over the affected limb by the original motor representation.The thalamic-cortical pathway was enhanced within the interoception network after nerve repair and end-to-end nerve transfer.Brain areas related to cognition and emotion were enhanced after end-to-side nerve transfer.Our study revealed important brain networks related to different nerve reconstructions.These networks may be potential targets for enhancing motor recovery.展开更多
AIM:To analyze whether alterations of voxel mirror homology connectivity(VMHC)values,as determined by resting-state functional magnetic resonance imaging(rsfMRI),occur in cerebral regions of patients with hypertensive...AIM:To analyze whether alterations of voxel mirror homology connectivity(VMHC)values,as determined by resting-state functional magnetic resonance imaging(rsfMRI),occur in cerebral regions of patients with hypertensive retinopathy(HR)and to determine the relationship between VMHC values and clinical characteristics in patients with HR.METHODS:Twenty-one patients with HR and 21 agematched healthy controls(HCs)were assessed by rsfMRI scanning.The functional connectivity between the hemispheres of the cerebrum was assessed by measuring VMHC,with the ability of VMHC to distinguish between the HR and HC groups assessed using receiver operating characteristic(ROC)curve analysis.Differences in the demographic and clinical characteristics of the HR and HC groups were analyzed by independent sample t-tests.The relationship between average VMHC in several brain areas of HR patients and clinical features was determined using Pearson correlation analysis.RESULTS:Mean VMHC values of the bilateral cuneus gyrus(BA19),bilateral middle orbitofrontal gyrus(BA47),bilateral middle temporal gyrus(BA39)and bilateral superior medial frontal gyrus(BA9)were lower in the HR than in the HC group.CONCLUSION:VMHC values can predict the development of early HR,prevent the transformation of hypertensive microangiopathy,and provide useful information explaining the changes in neural mechanism associated with HR.展开更多
BACKGROUND Studies have shown that locomotive syndrome(LS)is significantly correlated with adverse outcomes,such as decreased self-care abilities,fractures,and increased mortality.Subthreshold depression(StD)is consid...BACKGROUND Studies have shown that locomotive syndrome(LS)is significantly correlated with adverse outcomes,such as decreased self-care abilities,fractures,and increased mortality.Subthreshold depression(StD)is considered an independent predictor of clinical depression,regarded as its prodromal stage,and even linked to increased mortality risk.Limited research has addressed the prevalence and relationship between LS and StD in elderly cancer patients.Understanding the prevalence of LS and StD among elderly cancer patients and elucidating their relationship will provide evidence to support the development of targeted interventions,thereby improving health outcomes in this population.AIM To investigate the relationship between musculoskeletal system function and predepressive states in elderly cancer patients.METHODS A convenience sampling method was employed to recruit 500 elderly cancer patients undergoing follow-up visits at the Department of Oncology,Affiliated Hospital of Jiangnan University,from April 2024 to December 2024.Participants completed the general information questionnaire, the 25-question Geriatric Locomotive Function Scale, and theGeriatric Depression Scale-Short Form-15. Influencing factors were analyzed, and correlation analyses wereperformed.RESULTSA total of 483 elderly cancer patients successfully completed the study. The prevalence of LS and StD amongparticipants was 56.5% and 38.7%, respectively. Logistic regression analysis identified age, tumor metastasis,exercise habits, and the presence of StD as significant risk factors for LS in elderly cancer patients. Additionally,having three or more chronic diseases and LS were significant predictors for developing StD. Spearman’s correlationanalysis revealed a significant positive correlation between LS and StD (r = 0.424, P < 0.001).CONCLUSIONElderly cancer patients exhibit a high prevalence of LS and StD, conditions which are positively correlated andmutually influential. Thus, it is critical to monitor and address pre-depressive states while evaluating and managingmotor function in this population.展开更多
The purpose of this paper is to show that by using a certain type of discrete-continuous limit, a series of integral entities can be defined(Mittag-Leffler multi-index functions, associated coherent states and their p...The purpose of this paper is to show that by using a certain type of discrete-continuous limit, a series of integral entities can be defined(Mittag-Leffler multi-index functions, associated coherent states and their properties), which are counterparts of the corresponding discrete entities. We built and examine the properties of a new aspect of generalized integral multi-index Mittag-Leffler functions and we constructed and examined the properties of coherent states associated with this new function. This approach is motivated through the fact that these functions can be connected with the coherent states of the continuous spectrum, as well as with so-called nu-function.展开更多
BACKGROUND Successful aging(SA)refers to the ability to maintain high levels of physical,cognitive,psychological,and social engagement in old age,with high cognitive function being the key to achieving SA.AIM To explo...BACKGROUND Successful aging(SA)refers to the ability to maintain high levels of physical,cognitive,psychological,and social engagement in old age,with high cognitive function being the key to achieving SA.AIM To explore the potential characteristics of the brain network and functional connectivity(FC)of SA.METHODS Twenty-six SA individuals and 47 usual aging individuals were recruited from community-dwelling elderly,which were taken the magnetic resonance imaging scan and the global cognitive function assessment by Mini Mental State Examination(MMSE).The resting state-functional magnetic resonance imaging data were preprocessed by DPABISurf,and the brain functional network was conducted by DPABINet.The support vector machine model was constructed with altered functional connectivities to evaluate the identification value of SA.RESULTS The results found that the 6 inter-network FCs of 5 brain networks were significantly altered and related to MMSE performance.The FC of the right orbital part of the middle frontal gyrus and right angular gyrus was mostly increased and positively related to MMSE score,and the FC of the right supramarginal gyrus and right temporal pole:Middle temporal gyrus was the only one decreased and negatively related to MMSE score.All 17 significantly altered FCs of SA were taken into the support vector machine model,and the area under the curve was 0.895.CONCLUSION The identification of key brain networks and FC of SA could help us better understand the brain mechanism and further explore neuroimaging biomarkers of SA.展开更多
BACKGROUND Chronic heart failure(CHF)is a severe cardiovascular disease that significantly threatens human health.Depression,a common comorbidity,may substantially impact cardiac structure and function.However,the exa...BACKGROUND Chronic heart failure(CHF)is a severe cardiovascular disease that significantly threatens human health.Depression,a common comorbidity,may substantially impact cardiac structure and function.However,the exact relationship between depression and cardiac remodeling and left ventricular functional changes remains incompletely understood.This study sets out to explore,with a clinically grounded perspective,how depressive states may subtly or profoundly influence the trajectory of cardiac remodeling and the functional dynamics of the left ventricle in individuals grappling with CHF.Beyond mere observation,it also aims to untangle the underlying physiological or neurohormonal pathways that might bridge emotional distress and cardiac dysfunction.AIM To delve into how depressive symptoms might shape the progression of cardiac remodeling and impair left ventricular function among individuals living with CHF.Particular attention is given to the role of inflammatory signaling and disruptions in neuroendocrine balance as possible mediating factors.By examining these intertwined physiological and psychological processes,the study seeks to shed light on the reciprocal link between emotional distress and CHF,offering insights that may inform more precise,mechanism-based treatment strategies.METHODS In this retrospective clinical trial,248 patients diagnosed with CHF were analyzed in the tertiary treatment center between January 2018 and December 2022.According to Hamilton's Depression Scale score,participants were classified into two cohort of depression(score 17)and no significant depression characteristics(score 17).Cardiac morphology and functional parameters were assessed using a combination of hyperechocardiocardiocardiography,heart magnetic resonance,and associated blood biomarkers.RESULTS The results of this study underscore the significant effects that depression can have on both the structure and function of the heart in patients with CHF.In particular,the individuals in the cohort with depression were 42.3%±6.7%of the individuals without depression vs 51.6%±5.9%,P<0.01)In comparison,the left ventricular ejection fraction,an important measure of contractional performance,was significantly reduced,underlining the harmful physiological interaction between mood disorders and cardiac efficiency.The measurement of the left ventricular end-diastolic diameter showed a significant expansion of the ventricular envelope in the depression group(68.2±7.5 mm vs 59.6±6.3 mm,P<0.01).Inflammatory markers,including high-sensitivity C-reactive protein(hs-CRP)and tumor necrosis factor-α(TNF-α),were significantly elevated in the depressed group(hs-CRP:8.7±2.3 mg/L vs 4.5±1.6 mg/L;TNF-α:42.5±7.6 pg/mL vs 28.3±5.4 pg/mL).Both B-type natriuretic peptide(1256±345 pg/mL vs 756±234 pg/mL)and angiotensin II(86.4±15.7 ng/mL vs 62.5±12.3 ng/mL)levels were significantly higher in the depressed group.CONCLUSION Among people with CHF,the presence of depressive symptoms appears to be closely related to pronounced changes in heart structure and impaired functional abilities.It is likely that depressive states contribute to the progress of heart reform and deterioration of left stomach function,possibly due to increased inflammatory cascades and increased activation of neuroendocrine regulatory pathways.展开更多
Sodium-sulfur(Na-S)batteries are believed as the hopeful energy storage and conversion techniques owing to the high specific capacity and low cost.Nevertheless,unstable sodium(Na)deposition/stripping of Na metal anode...Sodium-sulfur(Na-S)batteries are believed as the hopeful energy storage and conversion techniques owing to the high specific capacity and low cost.Nevertheless,unstable sodium(Na)deposition/stripping of Na metal anode,low intrinsic conductivity of sulfur cathode,and severe shuttling effect of sodium polysulfides(NaPSs)pose significant challenges in the actual reversible capacity and cycle life of Na-S batteries.Herein,a self-supporting electrode made of nitrogen-doped carbon fiber embedded with cobalt nanoparticles(Co/NC-CF)is designed to load sulfur.Meanwhile,gel polymer electrolyte(GPE)with high ion transfer ability is obtained by in-situ polymerization inside the battery.During the polymerization process,an integrated electrode-electrolyte and a continuous ion-electron conduction network in a composite cathode are constructed inside the Na-S battery.It is noteworthy that the designed GPE demonstrates superior ionic conductivity and effective adsorption of NaPSs that can significantly suppress the shuttle effect.Leveraging the synergistic interplay between the designed GPE and self-supporting cathode,the assembled quasi-solid-state(QSS)Na-S battery exhibits great cycling stability.These experimental results are further corroborated by COMSOL Multiphysics simulations and density functional theory(DFT)calculations,which mechanistically validate the enhanced electrochemical performance.The findings of this study offer new and promising perspectives for advancing the development of nextgeneration solid-state batteries.展开更多
BACKGROUND Currently,adolescent depression is one of the most significant public health concerns,markedly influencing emotional,cognitive,and social maturation.Despite advancements in distinguish the neurobiological s...BACKGROUND Currently,adolescent depression is one of the most significant public health concerns,markedly influencing emotional,cognitive,and social maturation.Despite advancements in distinguish the neurobiological substrates underlying depression,the intricate patterns of disrupted brain network connectivity in adolescents warrant further exploration.AIM To elucidate the neural correlates of adolescent depression by examining brain network connectivity using resting-state functional magnetic resonance imaging(rs-fMRI).METHODS The study cohort comprised 74 depressed adolescents and 59 healthy controls aged 12 to 17 years.Participants underwent rs-fMRI to evaluate functional connectivity within and across critical brain networks,including the visual,default mode network(DMN),dorsal attention,salience,somatomotor,and frontoparietal control networks.RESULTS Analyses revealed pronounced functional disparities within key neural circuits among adolescents with depression.The results demonstrated existence of hemispheric asymmetries characterized by enhanced activity in the left visual network,which contrasted the diminished activity in the right hemisphere.The DMN facilitated increased activity within the left prefrontal cortex and reduced engagement in the right hemisphere,implicating disrupted self-referential and emotional processing mechanisms.Additionally,an overactive right dorsal attention network and a hypoactive salience network were identified,underscoring significant abnormalities in attentional and emotional regulation in adolescent depression.CONCLUSION The findings from this study underscore distinct neural connectivity disruptions in adolescent depression,underscoring the critical role of specific neurobiological markers for precise early diagnosis of adolescent depression.The observed functional asymmetries and network-specific deviations elucidate the complex neurobiological architecture of adolescent depression,supporting the development of targeted therapeutic strategies.展开更多
BACKGROUND Very late-onset schizophrenia-like psychosis(VLOSLP)is a subtype of schizophrenia spectrum disorders in which individuals experience psychotic symptoms for the first time after the age of 60.The incidence o...BACKGROUND Very late-onset schizophrenia-like psychosis(VLOSLP)is a subtype of schizophrenia spectrum disorders in which individuals experience psychotic symptoms for the first time after the age of 60.The incidence of VLOSLP shows a linear relationship with increasing age.However,no studies have reported alterations in spontaneous brain activity among VLOSLP patients and their correlation with cognitive function and clinical symptoms.AIM To explore VLOSLP brain activity and correlations with cognitive function and clinical symptoms using resting-state functional magnetic resonance imaging.METHODS This study included 33 VLOSLP patients and 34 healthy controls.The cognitive assessment utilized the Mini Mental State Examination,Montreal Cognitive Assessment,and the Repeatable Battery for the Assessment of Neuropsychological Status(RBANS).Clinical characteristic acquisition was performed via the Positive and Negative Syndrome Scale(PANSS).All participants were scanned via resting-state functional magnetic resonance imaging,and the data were processed using amplitude of low-frequency fluctuations(ALFF),fractional ALFF(fALFF),regional homogeneity,and voxelmirrored homotopic connectivity(VMHC).RESULTS The VLOSLP group presented decreased ALFF values in the left cuneus,right precuneus,right precentral gyrus,and left paracentral lobule;increased fALFF values in the left caudate nucleus;decreased fALFF values in the right calcarine fissure and surrounding cortex(CAL)and right precuneus;increased regional homogeneity values in the right putamen;and decreased VMHC values in the bilateral CAL,bilateral superior temporal gyrus,and bilateral cuneus.In the VLOSLP group,ALFF values in the right precuneus were negatively correlated with Mini Mental State Examination score and PANSS positive subscale score,and VMHC values in the bilateral CAL were negatively correlated with the RBANS total score,RBANS delayed memory score,and PANSS positive subscale score.CONCLUSION The changes of brain activity in VLOSLP are concentrated in the right precuneus and bilateral CAL regions,which may be associated with cognitive impairment and clinically positive symptoms.展开更多
Freezing of gait is a significant and debilitating motor symptom often observed in individuals with Parkinson's disease.Resting-state functional magnetic resonance imaging,along with its multi-level feature indice...Freezing of gait is a significant and debilitating motor symptom often observed in individuals with Parkinson's disease.Resting-state functional magnetic resonance imaging,along with its multi-level feature indices,has provided a fresh perspective and valuable insight into the study of freezing of gait in Parkinson's disease.It has been revealed that Parkinson's disease is accompanied by widespread irregularities in inherent brain network activity.However,the effective integration of the multi-level indices of resting-state functional magnetic resonance imaging into clinical settings for the diagnosis of freezing of gait in Parkinson's disease remains a challenge.Although previous studies have demonstrated that radiomics can extract optimal features as biomarkers to identify or predict diseases,a knowledge gap still exists in the field of freezing of gait in Parkinson's disease.This cross-sectional study aimed to evaluate the ability of radiomics features based on multi-level indices of resting-state functional magnetic resonance imaging,along with clinical features,to distinguish between Parkinson's disease patients with and without freezing of gait.We recruited 28 patients with Parkinson's disease who had freezing of gait(15 men and 13 women,average age 63 years)and 30 patients with Parkinson's disease who had no freezing of gait(16 men and 14 women,average age 64 years).Magnetic resonance imaging scans were obtained using a 3.0T scanner to extract the mean amplitude of low-frequency fluctuations,mean regional homogeneity,and degree centrality.Neurological and clinical characteristics were also evaluated.We used the least absolute shrinkage and selection operator algorithm to extract features and established feedforward neural network models based solely on resting-state functional magnetic resonance imaging indicators.We then performed predictive analysis of three distinct groups based on resting-state functional magnetic resonance imaging indicators indicators combined with clinical features.Subsequently,we conducted 100 additional five-fold cross-validations to determine the most effective model for each classification task and evaluated the performance of the model using the area under the receiver operating characteristic curve.The results showed that when differentiating patients with Parkinson's disease who had freezing of gait from those who did not have freezing of gait,or from healthy controls,the models using only the mean regional homogeneity values achieved the highest area under the receiver operating characteristic curve values of 0.750(with an accuracy of 70.9%)and 0.759(with an accuracy of 65.3%),respectively.When classifying patients with Parkinson's disease who had freezing of gait from those who had no freezing of gait,the model using the mean amplitude of low-frequency fluctuation values combined with two clinical features achieved the highest area under the receiver operating characteristic curve of 0.847(with an accuracy of 74.3%).The most significant features for patients with Parkinson's disease who had freezing of gait were amplitude of low-frequency fluctuation alterations in the left parahippocampal gyrus and two clinical characteristics:Montreal Cognitive Assessment and Hamilton Depression Scale scores.Our findings suggest that radiomics features derived from resting-state functional magnetic resonance imaging indices and clinical information can serve as valuable indices for the identification of freezing of gait in Parkinson's disease.展开更多
Inflammation is closely related to stroke prognosis, and high inflammation status leads to poor functional outcome in stroke. DNA methylation is involved in the pathogenesis and prognosis of stroke. However, the effec...Inflammation is closely related to stroke prognosis, and high inflammation status leads to poor functional outcome in stroke. DNA methylation is involved in the pathogenesis and prognosis of stroke. However, the effect of DNA methylation on stroke at high levels of inflammation is unclear. In this study, we constructed a hyperinflammatory cerebral ischemia mouse model and investigated the effect of hypomethylation and hypermethylation on the functional outcome. We constructed a mouse model of transient middle cerebral artery occlusion and treated the mice with lipopolysaccharide to induce a hyperinflammatory state. To investigate the effect of DNA methylation on stroke, we used small molecule inhibitors to restrain the function of key DNA methylation and demethylation enzymes. 2,3,5-Triphenyltetrazolium chloride staining, neurological function scores, neurobehavioral tests, enzyme-linked immunosorbent assay, quantitative reverse transcription PCR and western blot assay were used to evaluate the effects after stroke in mice. We assessed changes in the global methylation status by measuring DNA 5-mc and DNA 5-hmc levels in peripheral blood after the use of the inhibitor. In the group treated with the DNA methylation inhibitor, brain tissue 2,3,5-triphenyltetrazolium chloride staining showed an increase in infarct volume, which was accompanied by a decrease in neurological scores and worsening of neurobehavioral performance. The levels of inflammatory factors interleukin 6 and interleukin-1 beta in ischemic brain tissue and plasma were elevated, indicating increased inflammation. Related inflammatory pathway exploration showed significant overactivation of nuclear factor kappa B. These results suggested that inhibiting DNA methylation led to poor functional outcome in mice with high inflammation following stroke. Further, the effects were reversed by inhibition of DNA demethylation. Our findings suggest that DNA methylation regulates the inflammatory response in stroke and has an important role in the functional outcome of hyperinflammatory stroke.展开更多
To conveniently calculate the Wigner function of the optical cumulant operator and its dissipation evolution in a thermal environment, in this paper, the thermo-entangled state representation is introduced to derive t...To conveniently calculate the Wigner function of the optical cumulant operator and its dissipation evolution in a thermal environment, in this paper, the thermo-entangled state representation is introduced to derive the general evolution formula of the Wigner function, and its relation to Weyl correspondence is also discussed. The method of integration within the ordered product of operators is essential to our discussion.展开更多
BACKGROUND Research has found that the amygdala plays a significant role in underlying pathology of major depressive disorder(MDD).However,few studies have explored machine learning-assisted diagnostic biomarkers base...BACKGROUND Research has found that the amygdala plays a significant role in underlying pathology of major depressive disorder(MDD).However,few studies have explored machine learning-assisted diagnostic biomarkers based on amygdala functional connectivity(FC).AIM To investigate the analysis of neuroimaging biomarkers as a streamlined approach for the diagnosis of MDD in adolescents.METHODS Forty-four adolescents diagnosed with MDD and 43 healthy controls were enrolled in the study.Using resting-state functional magnetic resonance imaging,the FC was compared between the adolescents with MDD and the healthy controls,with the bilateral amygdala serving as the seed point,followed by statistical analysis of the results.The support vector machine(SVM)method was then applied to classify functional connections in various brain regions and to evaluate the neurophysiological characteristics associated with MDD.RESULTS Compared to the controls and using the bilateral amygdala as the region of interest,patients with MDD showed significantly lower FC values in the left inferior temporal gyrus,bilateral calcarine,right lingual gyrus,and left superior occipital gyrus.However,there was an increase in the FC value in Vermis-10.The SVM analysis revealed that the reduction in the FC value in the right lingual gyrus could effectively differentiate patients with MDD from healthy controls,achieving a diagnostic accuracy of 83.91%,sensitivity of 79.55%,specificity of 88.37%,and an area under the curve of 67.65%.CONCLUSION The results showed that an abnormal FC value in the right lingual gyrus was effective as a neuroimaging biomarker to distinguish patients with MDD from healthy controls.展开更多
Solid polymer electrolyte(SPE) shows great potential for all-solid-state batteries because of the inherent safety and flexibility;however, the unfavourable Li+deposition and large thickness hamper its development and ...Solid polymer electrolyte(SPE) shows great potential for all-solid-state batteries because of the inherent safety and flexibility;however, the unfavourable Li+deposition and large thickness hamper its development and application. Herein, a laminar MXene functional layer-thin SPE layer-cathode integration(MXene-PEO-LFP) is designed and fabricated. The MXene functional layer formed by stacking rigid MXene nanosheets imparts higher compressive strength relative to PEO electrolyte layer. And the abundant negatively-charged groups on MXene functional layer effectively repel anions and attract cations to adjust the charge distribution behavior at electrolyte–anode interface. Furthermore,the functional layer with rich lithiophilic groups and outstanding electronic conductivity results in low Li nucleation overpotential and nucleation energy barrier. In consequence, the cell assembled with MXene-PEO-LFP, where the PEO electrolyte layer is only 12 μm, much thinner than most solid electrolytes, exhibits uniform, dendrite-free Li+deposition and excellent cycling stability. High capacity(142.8 mAh g-1), stable operation of 140 cycles(capacity decay per cycle, 0.065%), and low polarization potential(0.5 C) are obtained in this Li|MXene-PEO-LFP cell,which is superior to most PEO-based electrolytes under identical condition. This integrated design may provide a strategy for the large-scale application of thin polymer electrolytes in all-solid-state battery.展开更多
This paper introduces a hybrid approach combining Green’s function Monte Carlo(GFMC)method with projected entangled pair state(PEPS)ansatz.This hybrid method regards PEPS as a trial state and a guiding wave function ...This paper introduces a hybrid approach combining Green’s function Monte Carlo(GFMC)method with projected entangled pair state(PEPS)ansatz.This hybrid method regards PEPS as a trial state and a guiding wave function in GFMC.By leveraging PEPS’s proficiency in capturing quantum state entanglement and GFMC’s efficient parallel architecture,the hybrid method is well-suited for the accurate and efficient treatment of frustrated quantum spin systems.As a benchmark,we applied this approach to study the frustrated J_(1)–J_(2) Heisenberg model on a square lattice with periodic boundary conditions(PBCs).Compared with other numerical methods,our approach integrating PEPS and GFMC shows competitive accuracy in the performance of ground-state energy.This paper provides systematic and comprehensive discussion of the approach of our previous work[Phys.Rev.B 109235133(2024)].展开更多
Schwann cell transplantation is considered one of the most promising cell-based therapy to repair injured spinal cord due to its unique growth-promoting and myelin-forming properties.A the Food and Drug Administration...Schwann cell transplantation is considered one of the most promising cell-based therapy to repair injured spinal cord due to its unique growth-promoting and myelin-forming properties.A the Food and Drug Administration-approved Phase I clinical trial has been conducted to evaluate the safety of transplanted human autologous Schwann cells to treat patients with spinal cord injury.A major challenge for Schwann cell transplantation is that grafted Schwann cells are confined within the lesion cavity,and they do not migrate into the host environment due to the inhibitory barrier formed by injury-induced glial scar,thus limiting axonal reentry into the host spinal cord.Here we introduce a combinatorial strategy by suppressing the inhibitory extracellular environment with injection of lentivirus-mediated transfection of chondroitinase ABC gene at the rostral and caudal borders of the lesion site and simultaneously leveraging the repair capacity of transplanted Schwann cells in adult rats following a mid-thoracic contusive spinal cord injury.We report that when the glial scar was degraded by chondroitinase ABC at the rostral and caudal lesion borders,Schwann cells migrated for considerable distances in both rostral and caudal directions.Such Schwann cell migration led to enhanced axonal regrowth,including the serotonergic and dopaminergic axons originating from supraspinal regions,and promoted recovery of locomotor and urinary bladder functions.Importantly,the Schwann cell survival and axonal regrowth persisted up to 6 months after the injury,even when treatment was delayed for 3 months to mimic chronic spinal cord injury.These findings collectively show promising evidence for a combinatorial strategy with chondroitinase ABC and Schwann cells in promoting remodeling and recovery of function following spinal cord injury.展开更多
Traumatic brain injury involves complex pathophysiological mechanisms,among which oxidative stress significantly contributes to the occurrence of secondary injury.In this study,we evaluated hypidone hydrochloride(YL-0...Traumatic brain injury involves complex pathophysiological mechanisms,among which oxidative stress significantly contributes to the occurrence of secondary injury.In this study,we evaluated hypidone hydrochloride(YL-0919),a self-developed antidepressant with selective sigma-1 receptor agonist properties,and its associated mechanisms and targets in traumatic brain injury.Behavioral experiments to assess functional deficits were followed by assessment of neuronal damage through histological analyses and examination of blood-brain barrier permeability and brain edema.Next,we investigated the antioxidative effects of YL-0919 by assessing the levels of traditional markers of oxidative stress in vivo in mice and in vitro in HT22 cells.Finally,the targeted action of YL-0919 was verified by employing a sigma-1 receptor antagonist(BD-1047).Our findings demonstrated that YL-0919 markedly improved deficits in motor function and spatial cognition on day 3 post traumatic brain injury,while also decreasing neuronal mortality and reversing blood-brain barrier disruption and brain edema.Furthermore,YL-0919 effectively combated oxidative stress both in vivo and in vitro.The protective effects of YL-0919 were partially inhibited by BD-1047.These results indicated that YL-0919 relieved impairments in motor and spatial cognition by restraining oxidative stress,a neuroprotective effect that was partially reversed by the sigma-1 receptor antagonist BD-1047.YL-0919 may have potential as a new treatment for traumatic brain injury.展开更多
Flexible lithium metal batteries with high capacity and power density have been regarded as the core power resources of wearable electronics.However,the main challenge lies in the limited electrochemical performance o...Flexible lithium metal batteries with high capacity and power density have been regarded as the core power resources of wearable electronics.However,the main challenge lies in the limited electrochemical performance of solid-state polymer electrolytes,which hinders further practical applications.Incorporating functional inorganic additives is an effective approach to improve the performance,including increasing ionic conductivity,achieving dendrite inhibiting capability,and improving safety and stability.Herein,this review summarizes the latest developments of functional inorganic additives in composite solid-state electrolytes for flexible metal batteries with special emphasis on their mechanisms,strategies,and cutting-edge applications,in particular,the relationship between them is discussed in detail.Finally,the perspective on future research directions and the key challenges on this topic are outlooked.展开更多
Bipolar disorder is characterised by recurrent and alternating episodes of mania/hypomania and depression.Current breakthroughs in functional MRI techniques have uncovered the functional neuroanatomy of bipolar disord...Bipolar disorder is characterised by recurrent and alternating episodes of mania/hypomania and depression.Current breakthroughs in functional MRI techniques have uncovered the functional neuroanatomy of bipolar disorder.However,the pathophysiology underlying mood instability,mood switching and the development of extreme mood states is less well understood.This reviewpresents a comprehensive overviewof current evidence from functional MRI studies from the perspective of mood states.We first summarise the disrupted brain activation patterns and functional connectivity that have been reported in bipolar disorder,irrespective of the mood state.We next focus on research that solely included patients in a single mood state for a better understanding of the pathophysiology of bipolar disorder and research comparing patients with different mood states to dissect mood state-related effects.Finally,we briefly summarise current theoretical models and conclude this review by proposing potential avenues for future research.A comprehensive understanding of the pathophysiology with consideration of mood states could not only deepen our understanding of how acute mood episodes develop at a neurophysiological level but could also facilitate the identification of biological targets for personalised treatment and the development of new interventions for bipolar disorder.展开更多
Ejaculation is regulated by the central nervous system.However,the central pathophysiology of primary intravaginal anejaculation(PIAJ)is unclear.The present study aimed to examine the changes in regional brain activit...Ejaculation is regulated by the central nervous system.However,the central pathophysiology of primary intravaginal anejaculation(PIAJ)is unclear.The present study aimed to examine the changes in regional brain activity and functional connectivity underlying PIAJ.A total of 20 PIAJ patients and 16 healthy controls(HCs)were enrolled from September 2020 to September 2022 in the Department of Andrology,Nanjing Drum Tower Hospital(Nanjing,China).Magnetic resonance imaging data were acquired from all participants and then were preprocessed.The measures of fractional amplitude of low-frequency fluctuation(fALFF),regional homogeneity(ReHo),and functional connectivity(FC)were calculated and compared between the groups.PIAJ patients showed increased fALFF values in the left precuneus compared with HCs.Additionally,PIAJ patients showed increased ReHo values in the left precuneus,left postcentral gyrus,left superior occipital gyrus,left calcarine fissure,right precuneus,and right middle temporal gyrus,and decreased ReHo values in the left inferior parietal gyrus,compared with HCs.Finally,brain regions with altered fALFF and ReHo values in PIAJ patients showed increased FC with widespread cortical regions,which included the frontal,parietal,temporal,and occipital regions,compared with HCs.In conclusion,increased regional brain activity in the parietal,temporal,and occipital regions,and increased FC between these brain regions,may be associated with PIAJ occurrence.展开更多
基金supported by the National Natural Science Foundation of China,Nos.81871836(to MZ),82172554(to XH),and 81802249(to XH),81902301(to JW)the National Key R&D Program of China,Nos.2018YFC2001600(to JX)and 2018YFC2001604(to JX)+3 种基金Shanghai Rising Star Program,No.19QA1409000(to MZ)Shanghai Municipal Commission of Health and Family Planning,No.2018YQ02(to MZ)Shanghai Youth Top Talent Development PlanShanghai“Rising Stars of Medical Talent”Youth Development Program,No.RY411.19.01.10(to XH)。
文摘Distinct brain remodeling has been found after different nerve reconstruction strategies,including motor representation of the affected limb.However,differences among reconstruction strategies at the brain network level have not been elucidated.This study aimed to explore intranetwork changes related to altered peripheral neural pathways after different nerve reconstruction surgeries,including nerve repair,endto-end nerve transfer,and end-to-side nerve transfer.Sprague–Dawley rats underwent complete left brachial plexus transection and were divided into four equal groups of eight:no nerve repair,grafted nerve repair,phrenic nerve end-to-end transfer,and end-to-side transfer with a graft sutured to the anterior upper trunk.Resting-state brain functional magnetic resonance imaging was obtained 7 months after surgery.The independent component analysis algorithm was utilized to identify group-level network components of interest and extract resting-state functional connectivity values of each voxel within the component.Alterations in intra-network resting-state functional connectivity were compared among the groups.Target muscle reinnervation was assessed by behavioral observation(elbow flexion)and electromyography.The results showed that alterations in the sensorimotor and interoception networks were mostly related to changes in the peripheral neural pathway.Nerve repair was related to enhanced connectivity within the sensorimotor network,while end-to-side nerve transfer might be more beneficial for restoring control over the affected limb by the original motor representation.The thalamic-cortical pathway was enhanced within the interoception network after nerve repair and end-to-end nerve transfer.Brain areas related to cognition and emotion were enhanced after end-to-side nerve transfer.Our study revealed important brain networks related to different nerve reconstructions.These networks may be potential targets for enhancing motor recovery.
基金Supported by National Natural Science Foundation of China(No.82160195,No.82460203).
文摘AIM:To analyze whether alterations of voxel mirror homology connectivity(VMHC)values,as determined by resting-state functional magnetic resonance imaging(rsfMRI),occur in cerebral regions of patients with hypertensive retinopathy(HR)and to determine the relationship between VMHC values and clinical characteristics in patients with HR.METHODS:Twenty-one patients with HR and 21 agematched healthy controls(HCs)were assessed by rsfMRI scanning.The functional connectivity between the hemispheres of the cerebrum was assessed by measuring VMHC,with the ability of VMHC to distinguish between the HR and HC groups assessed using receiver operating characteristic(ROC)curve analysis.Differences in the demographic and clinical characteristics of the HR and HC groups were analyzed by independent sample t-tests.The relationship between average VMHC in several brain areas of HR patients and clinical features was determined using Pearson correlation analysis.RESULTS:Mean VMHC values of the bilateral cuneus gyrus(BA19),bilateral middle orbitofrontal gyrus(BA47),bilateral middle temporal gyrus(BA39)and bilateral superior medial frontal gyrus(BA9)were lower in the HR than in the HC group.CONCLUSION:VMHC values can predict the development of early HR,prevent the transformation of hypertensive microangiopathy,and provide useful information explaining the changes in neural mechanism associated with HR.
基金Supported by Wuxi Institute of Translational Medicine Project Program,No.LCYJ202336the Scientific and Technological Achievements Promotion Project of Wuxi Municipal Health Commission Project Program,No.T202336+1 种基金the Hospital Management Innovation Research Project of Jiangsu Hospital Association,No.JSYGY-3-2024-601Jiangsu Provincial Traditional Chinese Medicine Science and Technology Development Plan Project,No.MS2024063.
文摘BACKGROUND Studies have shown that locomotive syndrome(LS)is significantly correlated with adverse outcomes,such as decreased self-care abilities,fractures,and increased mortality.Subthreshold depression(StD)is considered an independent predictor of clinical depression,regarded as its prodromal stage,and even linked to increased mortality risk.Limited research has addressed the prevalence and relationship between LS and StD in elderly cancer patients.Understanding the prevalence of LS and StD among elderly cancer patients and elucidating their relationship will provide evidence to support the development of targeted interventions,thereby improving health outcomes in this population.AIM To investigate the relationship between musculoskeletal system function and predepressive states in elderly cancer patients.METHODS A convenience sampling method was employed to recruit 500 elderly cancer patients undergoing follow-up visits at the Department of Oncology,Affiliated Hospital of Jiangnan University,from April 2024 to December 2024.Participants completed the general information questionnaire, the 25-question Geriatric Locomotive Function Scale, and theGeriatric Depression Scale-Short Form-15. Influencing factors were analyzed, and correlation analyses wereperformed.RESULTSA total of 483 elderly cancer patients successfully completed the study. The prevalence of LS and StD amongparticipants was 56.5% and 38.7%, respectively. Logistic regression analysis identified age, tumor metastasis,exercise habits, and the presence of StD as significant risk factors for LS in elderly cancer patients. Additionally,having three or more chronic diseases and LS were significant predictors for developing StD. Spearman’s correlationanalysis revealed a significant positive correlation between LS and StD (r = 0.424, P < 0.001).CONCLUSIONElderly cancer patients exhibit a high prevalence of LS and StD, conditions which are positively correlated andmutually influential. Thus, it is critical to monitor and address pre-depressive states while evaluating and managingmotor function in this population.
文摘The purpose of this paper is to show that by using a certain type of discrete-continuous limit, a series of integral entities can be defined(Mittag-Leffler multi-index functions, associated coherent states and their properties), which are counterparts of the corresponding discrete entities. We built and examine the properties of a new aspect of generalized integral multi-index Mittag-Leffler functions and we constructed and examined the properties of coherent states associated with this new function. This approach is motivated through the fact that these functions can be connected with the coherent states of the continuous spectrum, as well as with so-called nu-function.
基金Supported by the Wuxi Municipal Health Commission Major Project,No.Z202107。
文摘BACKGROUND Successful aging(SA)refers to the ability to maintain high levels of physical,cognitive,psychological,and social engagement in old age,with high cognitive function being the key to achieving SA.AIM To explore the potential characteristics of the brain network and functional connectivity(FC)of SA.METHODS Twenty-six SA individuals and 47 usual aging individuals were recruited from community-dwelling elderly,which were taken the magnetic resonance imaging scan and the global cognitive function assessment by Mini Mental State Examination(MMSE).The resting state-functional magnetic resonance imaging data were preprocessed by DPABISurf,and the brain functional network was conducted by DPABINet.The support vector machine model was constructed with altered functional connectivities to evaluate the identification value of SA.RESULTS The results found that the 6 inter-network FCs of 5 brain networks were significantly altered and related to MMSE performance.The FC of the right orbital part of the middle frontal gyrus and right angular gyrus was mostly increased and positively related to MMSE score,and the FC of the right supramarginal gyrus and right temporal pole:Middle temporal gyrus was the only one decreased and negatively related to MMSE score.All 17 significantly altered FCs of SA were taken into the support vector machine model,and the area under the curve was 0.895.CONCLUSION The identification of key brain networks and FC of SA could help us better understand the brain mechanism and further explore neuroimaging biomarkers of SA.
文摘BACKGROUND Chronic heart failure(CHF)is a severe cardiovascular disease that significantly threatens human health.Depression,a common comorbidity,may substantially impact cardiac structure and function.However,the exact relationship between depression and cardiac remodeling and left ventricular functional changes remains incompletely understood.This study sets out to explore,with a clinically grounded perspective,how depressive states may subtly or profoundly influence the trajectory of cardiac remodeling and the functional dynamics of the left ventricle in individuals grappling with CHF.Beyond mere observation,it also aims to untangle the underlying physiological or neurohormonal pathways that might bridge emotional distress and cardiac dysfunction.AIM To delve into how depressive symptoms might shape the progression of cardiac remodeling and impair left ventricular function among individuals living with CHF.Particular attention is given to the role of inflammatory signaling and disruptions in neuroendocrine balance as possible mediating factors.By examining these intertwined physiological and psychological processes,the study seeks to shed light on the reciprocal link between emotional distress and CHF,offering insights that may inform more precise,mechanism-based treatment strategies.METHODS In this retrospective clinical trial,248 patients diagnosed with CHF were analyzed in the tertiary treatment center between January 2018 and December 2022.According to Hamilton's Depression Scale score,participants were classified into two cohort of depression(score 17)and no significant depression characteristics(score 17).Cardiac morphology and functional parameters were assessed using a combination of hyperechocardiocardiocardiography,heart magnetic resonance,and associated blood biomarkers.RESULTS The results of this study underscore the significant effects that depression can have on both the structure and function of the heart in patients with CHF.In particular,the individuals in the cohort with depression were 42.3%±6.7%of the individuals without depression vs 51.6%±5.9%,P<0.01)In comparison,the left ventricular ejection fraction,an important measure of contractional performance,was significantly reduced,underlining the harmful physiological interaction between mood disorders and cardiac efficiency.The measurement of the left ventricular end-diastolic diameter showed a significant expansion of the ventricular envelope in the depression group(68.2±7.5 mm vs 59.6±6.3 mm,P<0.01).Inflammatory markers,including high-sensitivity C-reactive protein(hs-CRP)and tumor necrosis factor-α(TNF-α),were significantly elevated in the depressed group(hs-CRP:8.7±2.3 mg/L vs 4.5±1.6 mg/L;TNF-α:42.5±7.6 pg/mL vs 28.3±5.4 pg/mL).Both B-type natriuretic peptide(1256±345 pg/mL vs 756±234 pg/mL)and angiotensin II(86.4±15.7 ng/mL vs 62.5±12.3 ng/mL)levels were significantly higher in the depressed group.CONCLUSION Among people with CHF,the presence of depressive symptoms appears to be closely related to pronounced changes in heart structure and impaired functional abilities.It is likely that depressive states contribute to the progress of heart reform and deterioration of left stomach function,possibly due to increased inflammatory cascades and increased activation of neuroendocrine regulatory pathways.
基金supported by the National Natural Science Foundation of China(No.52130101)the Project of Science and Technology Development Plan of Jilin Province in China(Nos.20210402058GH and 20220201114GX)。
文摘Sodium-sulfur(Na-S)batteries are believed as the hopeful energy storage and conversion techniques owing to the high specific capacity and low cost.Nevertheless,unstable sodium(Na)deposition/stripping of Na metal anode,low intrinsic conductivity of sulfur cathode,and severe shuttling effect of sodium polysulfides(NaPSs)pose significant challenges in the actual reversible capacity and cycle life of Na-S batteries.Herein,a self-supporting electrode made of nitrogen-doped carbon fiber embedded with cobalt nanoparticles(Co/NC-CF)is designed to load sulfur.Meanwhile,gel polymer electrolyte(GPE)with high ion transfer ability is obtained by in-situ polymerization inside the battery.During the polymerization process,an integrated electrode-electrolyte and a continuous ion-electron conduction network in a composite cathode are constructed inside the Na-S battery.It is noteworthy that the designed GPE demonstrates superior ionic conductivity and effective adsorption of NaPSs that can significantly suppress the shuttle effect.Leveraging the synergistic interplay between the designed GPE and self-supporting cathode,the assembled quasi-solid-state(QSS)Na-S battery exhibits great cycling stability.These experimental results are further corroborated by COMSOL Multiphysics simulations and density functional theory(DFT)calculations,which mechanistically validate the enhanced electrochemical performance.The findings of this study offer new and promising perspectives for advancing the development of nextgeneration solid-state batteries.
基金Supported by the Medical Research Project of the Chongqing Municipal Health Commission,No.2024WSJK110.
文摘BACKGROUND Currently,adolescent depression is one of the most significant public health concerns,markedly influencing emotional,cognitive,and social maturation.Despite advancements in distinguish the neurobiological substrates underlying depression,the intricate patterns of disrupted brain network connectivity in adolescents warrant further exploration.AIM To elucidate the neural correlates of adolescent depression by examining brain network connectivity using resting-state functional magnetic resonance imaging(rs-fMRI).METHODS The study cohort comprised 74 depressed adolescents and 59 healthy controls aged 12 to 17 years.Participants underwent rs-fMRI to evaluate functional connectivity within and across critical brain networks,including the visual,default mode network(DMN),dorsal attention,salience,somatomotor,and frontoparietal control networks.RESULTS Analyses revealed pronounced functional disparities within key neural circuits among adolescents with depression.The results demonstrated existence of hemispheric asymmetries characterized by enhanced activity in the left visual network,which contrasted the diminished activity in the right hemisphere.The DMN facilitated increased activity within the left prefrontal cortex and reduced engagement in the right hemisphere,implicating disrupted self-referential and emotional processing mechanisms.Additionally,an overactive right dorsal attention network and a hypoactive salience network were identified,underscoring significant abnormalities in attentional and emotional regulation in adolescent depression.CONCLUSION The findings from this study underscore distinct neural connectivity disruptions in adolescent depression,underscoring the critical role of specific neurobiological markers for precise early diagnosis of adolescent depression.The observed functional asymmetries and network-specific deviations elucidate the complex neurobiological architecture of adolescent depression,supporting the development of targeted therapeutic strategies.
基金Supported by Wuxi Municipal Health Commission Major Project,No.202107and Wuxi Taihu Talent Project,No.WXTTP 2021.
文摘BACKGROUND Very late-onset schizophrenia-like psychosis(VLOSLP)is a subtype of schizophrenia spectrum disorders in which individuals experience psychotic symptoms for the first time after the age of 60.The incidence of VLOSLP shows a linear relationship with increasing age.However,no studies have reported alterations in spontaneous brain activity among VLOSLP patients and their correlation with cognitive function and clinical symptoms.AIM To explore VLOSLP brain activity and correlations with cognitive function and clinical symptoms using resting-state functional magnetic resonance imaging.METHODS This study included 33 VLOSLP patients and 34 healthy controls.The cognitive assessment utilized the Mini Mental State Examination,Montreal Cognitive Assessment,and the Repeatable Battery for the Assessment of Neuropsychological Status(RBANS).Clinical characteristic acquisition was performed via the Positive and Negative Syndrome Scale(PANSS).All participants were scanned via resting-state functional magnetic resonance imaging,and the data were processed using amplitude of low-frequency fluctuations(ALFF),fractional ALFF(fALFF),regional homogeneity,and voxelmirrored homotopic connectivity(VMHC).RESULTS The VLOSLP group presented decreased ALFF values in the left cuneus,right precuneus,right precentral gyrus,and left paracentral lobule;increased fALFF values in the left caudate nucleus;decreased fALFF values in the right calcarine fissure and surrounding cortex(CAL)and right precuneus;increased regional homogeneity values in the right putamen;and decreased VMHC values in the bilateral CAL,bilateral superior temporal gyrus,and bilateral cuneus.In the VLOSLP group,ALFF values in the right precuneus were negatively correlated with Mini Mental State Examination score and PANSS positive subscale score,and VMHC values in the bilateral CAL were negatively correlated with the RBANS total score,RBANS delayed memory score,and PANSS positive subscale score.CONCLUSION The changes of brain activity in VLOSLP are concentrated in the right precuneus and bilateral CAL regions,which may be associated with cognitive impairment and clinically positive symptoms.
基金supported by the National Natural Science Foundation of China,No.82071909(to GF)the Natural Science Foundation of Liaoning Province,No.2023-MS-07(to HL)。
文摘Freezing of gait is a significant and debilitating motor symptom often observed in individuals with Parkinson's disease.Resting-state functional magnetic resonance imaging,along with its multi-level feature indices,has provided a fresh perspective and valuable insight into the study of freezing of gait in Parkinson's disease.It has been revealed that Parkinson's disease is accompanied by widespread irregularities in inherent brain network activity.However,the effective integration of the multi-level indices of resting-state functional magnetic resonance imaging into clinical settings for the diagnosis of freezing of gait in Parkinson's disease remains a challenge.Although previous studies have demonstrated that radiomics can extract optimal features as biomarkers to identify or predict diseases,a knowledge gap still exists in the field of freezing of gait in Parkinson's disease.This cross-sectional study aimed to evaluate the ability of radiomics features based on multi-level indices of resting-state functional magnetic resonance imaging,along with clinical features,to distinguish between Parkinson's disease patients with and without freezing of gait.We recruited 28 patients with Parkinson's disease who had freezing of gait(15 men and 13 women,average age 63 years)and 30 patients with Parkinson's disease who had no freezing of gait(16 men and 14 women,average age 64 years).Magnetic resonance imaging scans were obtained using a 3.0T scanner to extract the mean amplitude of low-frequency fluctuations,mean regional homogeneity,and degree centrality.Neurological and clinical characteristics were also evaluated.We used the least absolute shrinkage and selection operator algorithm to extract features and established feedforward neural network models based solely on resting-state functional magnetic resonance imaging indicators.We then performed predictive analysis of three distinct groups based on resting-state functional magnetic resonance imaging indicators indicators combined with clinical features.Subsequently,we conducted 100 additional five-fold cross-validations to determine the most effective model for each classification task and evaluated the performance of the model using the area under the receiver operating characteristic curve.The results showed that when differentiating patients with Parkinson's disease who had freezing of gait from those who did not have freezing of gait,or from healthy controls,the models using only the mean regional homogeneity values achieved the highest area under the receiver operating characteristic curve values of 0.750(with an accuracy of 70.9%)and 0.759(with an accuracy of 65.3%),respectively.When classifying patients with Parkinson's disease who had freezing of gait from those who had no freezing of gait,the model using the mean amplitude of low-frequency fluctuation values combined with two clinical features achieved the highest area under the receiver operating characteristic curve of 0.847(with an accuracy of 74.3%).The most significant features for patients with Parkinson's disease who had freezing of gait were amplitude of low-frequency fluctuation alterations in the left parahippocampal gyrus and two clinical characteristics:Montreal Cognitive Assessment and Hamilton Depression Scale scores.Our findings suggest that radiomics features derived from resting-state functional magnetic resonance imaging indices and clinical information can serve as valuable indices for the identification of freezing of gait in Parkinson's disease.
基金supported by the National Natural Science Foundation of China,No.82171270 (to ZL)Public Service Platform for Artificial In telligence Screening and Auxiliary Diagnosis for the Medical and Health Industry,Ministry of Industry and Information Technology of the People's Republic of China,No.2020-0103-3-1 (to ZL)+3 种基金the Natural Science Foundation of Beijing,No.Z200016 (to ZL)Beijing Talents Project,No.2018000021223ZK03 (to ZL)Beijing Municipal Committee of Science and Technology,No.Z201 100005620010 (to ZL)CAMS Innovation Fund for Medical Sciences,No.2019-I2M-5-029 (to YongW)。
文摘Inflammation is closely related to stroke prognosis, and high inflammation status leads to poor functional outcome in stroke. DNA methylation is involved in the pathogenesis and prognosis of stroke. However, the effect of DNA methylation on stroke at high levels of inflammation is unclear. In this study, we constructed a hyperinflammatory cerebral ischemia mouse model and investigated the effect of hypomethylation and hypermethylation on the functional outcome. We constructed a mouse model of transient middle cerebral artery occlusion and treated the mice with lipopolysaccharide to induce a hyperinflammatory state. To investigate the effect of DNA methylation on stroke, we used small molecule inhibitors to restrain the function of key DNA methylation and demethylation enzymes. 2,3,5-Triphenyltetrazolium chloride staining, neurological function scores, neurobehavioral tests, enzyme-linked immunosorbent assay, quantitative reverse transcription PCR and western blot assay were used to evaluate the effects after stroke in mice. We assessed changes in the global methylation status by measuring DNA 5-mc and DNA 5-hmc levels in peripheral blood after the use of the inhibitor. In the group treated with the DNA methylation inhibitor, brain tissue 2,3,5-triphenyltetrazolium chloride staining showed an increase in infarct volume, which was accompanied by a decrease in neurological scores and worsening of neurobehavioral performance. The levels of inflammatory factors interleukin 6 and interleukin-1 beta in ischemic brain tissue and plasma were elevated, indicating increased inflammation. Related inflammatory pathway exploration showed significant overactivation of nuclear factor kappa B. These results suggested that inhibiting DNA methylation led to poor functional outcome in mice with high inflammation following stroke. Further, the effects were reversed by inhibition of DNA demethylation. Our findings suggest that DNA methylation regulates the inflammatory response in stroke and has an important role in the functional outcome of hyperinflammatory stroke.
基金Project supported by the Foundation for Young Talents in College of Anhui Province, China (Grant Nos. gxyq2021210 and gxyq2019077)the Natural Science Foundation of the Anhui Higher Education Institutions, China (Grant Nos. 2022AH051580 and 2022AH051586)。
文摘To conveniently calculate the Wigner function of the optical cumulant operator and its dissipation evolution in a thermal environment, in this paper, the thermo-entangled state representation is introduced to derive the general evolution formula of the Wigner function, and its relation to Weyl correspondence is also discussed. The method of integration within the ordered product of operators is essential to our discussion.
文摘BACKGROUND Research has found that the amygdala plays a significant role in underlying pathology of major depressive disorder(MDD).However,few studies have explored machine learning-assisted diagnostic biomarkers based on amygdala functional connectivity(FC).AIM To investigate the analysis of neuroimaging biomarkers as a streamlined approach for the diagnosis of MDD in adolescents.METHODS Forty-four adolescents diagnosed with MDD and 43 healthy controls were enrolled in the study.Using resting-state functional magnetic resonance imaging,the FC was compared between the adolescents with MDD and the healthy controls,with the bilateral amygdala serving as the seed point,followed by statistical analysis of the results.The support vector machine(SVM)method was then applied to classify functional connections in various brain regions and to evaluate the neurophysiological characteristics associated with MDD.RESULTS Compared to the controls and using the bilateral amygdala as the region of interest,patients with MDD showed significantly lower FC values in the left inferior temporal gyrus,bilateral calcarine,right lingual gyrus,and left superior occipital gyrus.However,there was an increase in the FC value in Vermis-10.The SVM analysis revealed that the reduction in the FC value in the right lingual gyrus could effectively differentiate patients with MDD from healthy controls,achieving a diagnostic accuracy of 83.91%,sensitivity of 79.55%,specificity of 88.37%,and an area under the curve of 67.65%.CONCLUSION The results showed that an abnormal FC value in the right lingual gyrus was effective as a neuroimaging biomarker to distinguish patients with MDD from healthy controls.
基金This work is supported by National Natural Science Founda-tion of China(U2004199)National Key Research and Devel-opment Program of China(2018YFD0200606)+1 种基金China Postdoctoral Science Foundation(2021T140615),Natural Sci-enceFoundationofHenanProvince(212300410285)Young Talent Support Project of Henan Province(2021HYTP028).
文摘Solid polymer electrolyte(SPE) shows great potential for all-solid-state batteries because of the inherent safety and flexibility;however, the unfavourable Li+deposition and large thickness hamper its development and application. Herein, a laminar MXene functional layer-thin SPE layer-cathode integration(MXene-PEO-LFP) is designed and fabricated. The MXene functional layer formed by stacking rigid MXene nanosheets imparts higher compressive strength relative to PEO electrolyte layer. And the abundant negatively-charged groups on MXene functional layer effectively repel anions and attract cations to adjust the charge distribution behavior at electrolyte–anode interface. Furthermore,the functional layer with rich lithiophilic groups and outstanding electronic conductivity results in low Li nucleation overpotential and nucleation energy barrier. In consequence, the cell assembled with MXene-PEO-LFP, where the PEO electrolyte layer is only 12 μm, much thinner than most solid electrolytes, exhibits uniform, dendrite-free Li+deposition and excellent cycling stability. High capacity(142.8 mAh g-1), stable operation of 140 cycles(capacity decay per cycle, 0.065%), and low polarization potential(0.5 C) are obtained in this Li|MXene-PEO-LFP cell,which is superior to most PEO-based electrolytes under identical condition. This integrated design may provide a strategy for the large-scale application of thin polymer electrolytes in all-solid-state battery.
基金Project supported by the National Natural Science Foundation of China(Grant No.11934020)the Innovation Program for Quantum Science and Technology(Grant No.2021ZD0302402).
文摘This paper introduces a hybrid approach combining Green’s function Monte Carlo(GFMC)method with projected entangled pair state(PEPS)ansatz.This hybrid method regards PEPS as a trial state and a guiding wave function in GFMC.By leveraging PEPS’s proficiency in capturing quantum state entanglement and GFMC’s efficient parallel architecture,the hybrid method is well-suited for the accurate and efficient treatment of frustrated quantum spin systems.As a benchmark,we applied this approach to study the frustrated J_(1)–J_(2) Heisenberg model on a square lattice with periodic boundary conditions(PBCs).Compared with other numerical methods,our approach integrating PEPS and GFMC shows competitive accuracy in the performance of ground-state energy.This paper provides systematic and comprehensive discussion of the approach of our previous work[Phys.Rev.B 109235133(2024)].
基金supported in part by NIH R01 NS100531,R01 NS103481NIH R21NS130241(to LD)+3 种基金Merit Review Award I01 BX002356,I01 BX003705 from the U.S.Department of Veterans AffairsIndiana Spinal Cord and Brain Injury Research Foundation(No.19919)Mari Hulman George Endowment Funds(to XMX)Indiana Spinal Cord&Brain Injury Research Fund from ISDH(to NKL and LD)。
文摘Schwann cell transplantation is considered one of the most promising cell-based therapy to repair injured spinal cord due to its unique growth-promoting and myelin-forming properties.A the Food and Drug Administration-approved Phase I clinical trial has been conducted to evaluate the safety of transplanted human autologous Schwann cells to treat patients with spinal cord injury.A major challenge for Schwann cell transplantation is that grafted Schwann cells are confined within the lesion cavity,and they do not migrate into the host environment due to the inhibitory barrier formed by injury-induced glial scar,thus limiting axonal reentry into the host spinal cord.Here we introduce a combinatorial strategy by suppressing the inhibitory extracellular environment with injection of lentivirus-mediated transfection of chondroitinase ABC gene at the rostral and caudal borders of the lesion site and simultaneously leveraging the repair capacity of transplanted Schwann cells in adult rats following a mid-thoracic contusive spinal cord injury.We report that when the glial scar was degraded by chondroitinase ABC at the rostral and caudal lesion borders,Schwann cells migrated for considerable distances in both rostral and caudal directions.Such Schwann cell migration led to enhanced axonal regrowth,including the serotonergic and dopaminergic axons originating from supraspinal regions,and promoted recovery of locomotor and urinary bladder functions.Importantly,the Schwann cell survival and axonal regrowth persisted up to 6 months after the injury,even when treatment was delayed for 3 months to mimic chronic spinal cord injury.These findings collectively show promising evidence for a combinatorial strategy with chondroitinase ABC and Schwann cells in promoting remodeling and recovery of function following spinal cord injury.
基金supported by the National Natural Science Foundation of China,Nos.82204360(to HM)and 82270411(to GW)National Science and Technology Innovation 2030 Major Program,No.2021ZD0200900(to YL)。
文摘Traumatic brain injury involves complex pathophysiological mechanisms,among which oxidative stress significantly contributes to the occurrence of secondary injury.In this study,we evaluated hypidone hydrochloride(YL-0919),a self-developed antidepressant with selective sigma-1 receptor agonist properties,and its associated mechanisms and targets in traumatic brain injury.Behavioral experiments to assess functional deficits were followed by assessment of neuronal damage through histological analyses and examination of blood-brain barrier permeability and brain edema.Next,we investigated the antioxidative effects of YL-0919 by assessing the levels of traditional markers of oxidative stress in vivo in mice and in vitro in HT22 cells.Finally,the targeted action of YL-0919 was verified by employing a sigma-1 receptor antagonist(BD-1047).Our findings demonstrated that YL-0919 markedly improved deficits in motor function and spatial cognition on day 3 post traumatic brain injury,while also decreasing neuronal mortality and reversing blood-brain barrier disruption and brain edema.Furthermore,YL-0919 effectively combated oxidative stress both in vivo and in vitro.The protective effects of YL-0919 were partially inhibited by BD-1047.These results indicated that YL-0919 relieved impairments in motor and spatial cognition by restraining oxidative stress,a neuroprotective effect that was partially reversed by the sigma-1 receptor antagonist BD-1047.YL-0919 may have potential as a new treatment for traumatic brain injury.
基金supported by the Natural Science Foundation of China(No.22179062,52125202,22171136,and U2004209)financial support by the Fundamental Research Funds for the Central Universities(No.30922010303)the financial support by the Natural Science Foundation of Jiangsu Province(BK20220079).
文摘Flexible lithium metal batteries with high capacity and power density have been regarded as the core power resources of wearable electronics.However,the main challenge lies in the limited electrochemical performance of solid-state polymer electrolytes,which hinders further practical applications.Incorporating functional inorganic additives is an effective approach to improve the performance,including increasing ionic conductivity,achieving dendrite inhibiting capability,and improving safety and stability.Herein,this review summarizes the latest developments of functional inorganic additives in composite solid-state electrolytes for flexible metal batteries with special emphasis on their mechanisms,strategies,and cutting-edge applications,in particular,the relationship between them is discussed in detail.Finally,the perspective on future research directions and the key challenges on this topic are outlooked.
基金the National Key Technology R&D Program(2015BA/13B01)Beijing National Science Foundation(7222236)+1 种基金Capital Health Research and Development of Special Fund(2022-1-4111)National Natural Science Foundation of China(82071528,82171529,82271569,82371530).
文摘Bipolar disorder is characterised by recurrent and alternating episodes of mania/hypomania and depression.Current breakthroughs in functional MRI techniques have uncovered the functional neuroanatomy of bipolar disorder.However,the pathophysiology underlying mood instability,mood switching and the development of extreme mood states is less well understood.This reviewpresents a comprehensive overviewof current evidence from functional MRI studies from the perspective of mood states.We first summarise the disrupted brain activation patterns and functional connectivity that have been reported in bipolar disorder,irrespective of the mood state.We next focus on research that solely included patients in a single mood state for a better understanding of the pathophysiology of bipolar disorder and research comparing patients with different mood states to dissect mood state-related effects.Finally,we briefly summarise current theoretical models and conclude this review by proposing potential avenues for future research.A comprehensive understanding of the pathophysiology with consideration of mood states could not only deepen our understanding of how acute mood episodes develop at a neurophysiological level but could also facilitate the identification of biological targets for personalised treatment and the development of new interventions for bipolar disorder.
基金supported by grants from the Nanjing Medical Technology Development Project(No.YKK19059)Excellent Young Doctor Training Program of Jiangsu Province Hospital of Chinese Medicine(No.2023QB0126)+1 种基金Jiangsu Province Graduate Research and Practice Innovation Program Project-School Assisted General Project(No.SJCX23_0804)the General project of Natural Science Foundat。
文摘Ejaculation is regulated by the central nervous system.However,the central pathophysiology of primary intravaginal anejaculation(PIAJ)is unclear.The present study aimed to examine the changes in regional brain activity and functional connectivity underlying PIAJ.A total of 20 PIAJ patients and 16 healthy controls(HCs)were enrolled from September 2020 to September 2022 in the Department of Andrology,Nanjing Drum Tower Hospital(Nanjing,China).Magnetic resonance imaging data were acquired from all participants and then were preprocessed.The measures of fractional amplitude of low-frequency fluctuation(fALFF),regional homogeneity(ReHo),and functional connectivity(FC)were calculated and compared between the groups.PIAJ patients showed increased fALFF values in the left precuneus compared with HCs.Additionally,PIAJ patients showed increased ReHo values in the left precuneus,left postcentral gyrus,left superior occipital gyrus,left calcarine fissure,right precuneus,and right middle temporal gyrus,and decreased ReHo values in the left inferior parietal gyrus,compared with HCs.Finally,brain regions with altered fALFF and ReHo values in PIAJ patients showed increased FC with widespread cortical regions,which included the frontal,parietal,temporal,and occipital regions,compared with HCs.In conclusion,increased regional brain activity in the parietal,temporal,and occipital regions,and increased FC between these brain regions,may be associated with PIAJ occurrence.